
Eigenvalue problems

Morten Hjorth-Jensen1,2

Department of Physics, University of Oslo, Norway1

Department of Physics and Astronomy and National Superconducting Cyclotron
Laboratory, Michigan State University, USA2

May 16-20 2016
c© 1999-2016, Morten Hjorth-Jensen. Released under CC Attribution-NonCommercial 4.0 license

Overview of eigenvalue discussion

Eigenvalue problems
Discussion of Jacobi’s algorithm
Presentation of quantum dot problem for two electrons.
Discussion of Householder’s and Francis’ algorithms
Power methods
Lanczos’ method

The physical problem

Two fermions in a trap in two or three dimensions
Or two bosons in a trap in two or three dimensions
How to solve a one-body problem in an external potential
Ground state and excited states

Eigenvalue problems, basic definitions

Let us consider the matrix A of dimension n. The eigenvalues of A
are defined through the matrix equation

Ax(ν) = λ(ν)x(ν),

where λ(ν) are the eigenvalues and x(ν) the corresponding
eigenvectors. Unless otherwise stated, when we use the wording
eigenvector we mean the right eigenvector. The left eigenvalue
problem is defined as

x(ν)L A = λ(ν)x(ν)L

The above right eigenvector problem is equivalent to a set of n
equations with n unknowns xi .

Eigenvalue problems, basic definitions

The eigenvalue problem can be rewritten as
(
A− λ(ν)I

)
x(ν) = 0,

with I being the unity matrix. This equation provides a solution to
the problem if and only if the determinant is zero, namely

∣∣∣A− λ(ν)I
∣∣∣ = 0,

which in turn means that the determinant is a polynomial of degree
n in λ and in general we will have n distinct zeros.

Eigenvalue problems, basic definitions

The eigenvalues of a matrix A ∈ Cn×n are thus the n roots of its
characteristic polynomial

P(λ) = det(λI− A),

or

P(λ) =
n∏

i=1

(λi − λ) .

The set of these roots is called the spectrum and is denoted as
λ(A). If λ(A) = {λ1, λ2, . . . , λn} then we have

det(A) = λ1λ2 . . . λn,

and if we define the trace of A as

Tr(A) =
n∑

i=1

aii

then
Tr(A) = λ1 + λ2 + · · ·+ λn.

Abel-Ruffini Impossibility Theorem
The Abel-Ruffini theorem (also known as Abel’s impossibility
theorem) states that there is no general solution in radicals to
polynomial equations of degree five or higher.
The content of this theorem is frequently misunderstood. It does
not assert that higher-degree polynomial equations are unsolvable.
In fact, if the polynomial has real or complex coefficients, and we
allow complex solutions, then every polynomial equation has
solutions; this is the fundamental theorem of algebra. Although
these solutions cannot always be computed exactly with radicals,
they can be computed to any desired degree of accuracy using
numerical methods such as the Newton-Raphson method or
Laguerre method, and in this way they are no different from
solutions to polynomial equations of the second, third, or fourth
degrees.
The theorem only concerns the form that such a solution must
take. The content of the theorem is that the solution of a
higher-degree equation cannot in all cases be expressed in terms of
the polynomial coefficients with a finite number of operations of
addition, subtraction, multiplication, division and root extraction.
Some polynomials of arbitrary degree, of which the simplest
nontrivial example is the monomial equation axn = b, are always
solvable with a radical.

Abel-Ruffini Impossibility Theorem

The Abel-Ruffini theorem says that there are some fifth-degree
equations whose solution cannot be so expressed. The equation
x5 − x + 1 = 0 is an example. Some other fifth degree equations
can be solved by radicals, for example x5 − x4 − x + 1 = 0. The
precise criterion that distinguishes between those equations that
can be solved by radicals and those that cannot was given by Galois
and is now part of Galois theory: a polynomial equation can be
solved by radicals if and only if its Galois group is a solvable group.
Today, in the modern algebraic context, we say that second, third
and fourth degree polynomial equations can always be solved by
radicals because the symmetric groups S2,S3 and S4 are solvable
groups, whereas Sn is not solvable for n ≥ 5.

Eigenvalue problems, basic definitions

In the present discussion we assume that our matrix is real and
symmetric, that is A ∈ Rn×n. The matrix A has n eigenvalues
λ1 . . . λn (distinct or not). Let D be the diagonal matrix with the
eigenvalues on the diagonal

D =

λ1 0 0 0 . . . 0 0
0 λ2 0 0 . . . 0 0
0 0 λ3 0 0 . . . 0
. .
0 λn−1
0 0 λn

.

If A is real and symmetric then there exists a real orthogonal matrix
S such that

STAS = diag(λ1, λ2, . . . , λn),

and for j = 1 : n we have AS(:, j) = λjS(:, j).

Eigenvalue problems, basic definitions

To obtain the eigenvalues of A ∈ Rn×n, the strategy is to perform a
series of similarity transformations on the original matrix A, in order
to reduce it either into a diagonal form as above or into a
tridiagonal form.
We say that a matrix B is a similarity transform of A if

B = STAS, where STS = S−1S = I.

The importance of a similarity transformation lies in the fact that
the resulting matrix has the same eigenvalues, but the eigenvectors
are in general different.

Eigenvalue problems, basic definitions

To prove this we start with the eigenvalue problem and a similarity
transformed matrix B.

Ax = λx and B = STAS.

We multiply the first equation on the left by ST and insert STS = I
between A and x. Then we get

(STAS)(STx) = λSTx, (1)

which is the same as

B
(
STx

)
= λ

(
STx

)
.

The variable λ is an eigenvalue of B as well, but with eigenvector
STx.

Eigenvalue problems, basic definitions

The basic philosophy is to
Either apply subsequent similarity transformations (direct
method) so that

ST
N . . .S

T
1 AS1 . . .SN = D, (2)

Or apply subsequent similarity transformations so that A
becomes tridiagonal (Householder) or upper/lower triangular
(the QR method to be discussed later).
Thereafter, techniques for obtaining eigenvalues from
tridiagonal matrices can be used.
Or use so-called power methods
Or use iterative methods (Krylov, Lanczos, Arnoldi). These
methods are popular for huge matrix problems.

Discussion of Jacobi’s method for eigenvalues

The general overview
One speaks normally of two main approaches to solving the
eigenvalue problem.

The first is the formal method, involving determinants and the
characteristic polynomial. This proves how many eigenvalues
there are, and is the way most of you learned about how to
solve the eigenvalue problem, but for matrices of dimensions
greater than 2 or 3, it is rather impractical.
The other general approach is to use similarity or unitary
tranformations to reduce a matrix to diagonal form. This is
normally done in two steps: first reduce to for example a
tridiagonal form, and then to diagonal form. The main
algorithms we will discuss in detail, Jacobi’s and Householder’s
(so-called direct method) and Lanczos algorithms (an iterative
method), follow this methodology.

Discussion of Jacobi’s method for eigenvalues

Direct or non-iterative methods require for matrices of
dimensionality n× n typically O(n3) operations. These methods are
normally called standard methods and are used for dimensionalities
n ∼ 105 or smaller. A brief historical overview

Year n

1950 n = 20 (Wilkinson)
1965 n = 200 (Forsythe et al.)
1980 n = 2000 Linpack
1995 n = 20000 Lapack
2012 n ∼ 105 Lapack

shows that in the course of 60 years the dimension that direct
diagonalization methods can handle has increased by almost a
factor of 104. However, it pales beside the progress achieved by
computer hardware, from flops to petaflops, a factor of almost
1015. We see clearly played out in history the O(n3) bottleneck of
direct matrix algorithms.
Sloppily speaking, when n ∼ 104 is cubed we have O(1012)
operations, which is smaller than the 1015 increase in flops.

Discussion of Jacobi’s method for eigenvalues

If the matrix to diagonalize is large and sparse, direct methods
simply become impractical, also because many of the direct
methods tend to destroy sparsity. As a result large dense matrices
may arise during the diagonalization procedure. The idea behind
iterative methods is to project the n−dimensional problem in
smaller spaces, so-called Krylov subspaces. Given a matrix A and a
vector v, the associated Krylov sequences of vectors (and thereby
subspaces) v, Av, A2v, A3v, . . . , represent successively larger
Krylov subspaces.

Matrix Ax = b Ax = λx
A = A∗ Conjugate gradient Lanczos
A 6= A∗ GMRES etc Arnoldi

Discussion of Jacobi’s method for eigenvalues

The Numerical Recipes codes have been rewritten in Fortran 90/95
and C/C++ by us. The original source codes are taken from the
widely used software package LAPACK, which follows two other
popular packages developed in the 1970s, namely EISPACK and
LINPACK.

LINPACK: package for linear equations and least square
problems.
LAPACK:package for solving symmetric, unsymmetric and
generalized eigenvalue problems. From LAPACK’s website
http://www.netlib.org it is possible to download for free
all source codes from this library. Both C/C++ and Fortran
versions are available.
BLAS (I, II and III): (Basic Linear Algebra Subprograms) are
routines that provide standard building blocks for performing
basic vector and matrix operations. Blas I is vector operations,
II vector-matrix operations and III matrix-matrix operations.

Discussion of Jacobi’s method for eigenvalues

Consider an example of an (n× n) orthogonal transformation matrix

S =

1 0 . . . 0 0 . . . 0 0
0 1 . . . 0 0 . . . 0 0
. 0 . . .
0 0 . . . cos θ 0 . . . 0 sin θ
0 0 . . . 0 1 . . . 0 0
. 1 . . .
0 0 . . . − sin θ 0 . . . 0 cos θ

with property ST = S−1. It performs a plane rotation around an
angle θ in the Euclidean n−dimensional space.

Discussion of Jacobi’s method for eigenvalues
It means that its matrix elements that differ from zero are given by

skk = sll = cos θ, skl = −slk = − sin θ, sii = 1 i 6= k i 6= l ,

A similarity transformation

B = STAS,

results in

bik =aik cos θ − ail sin θ, i 6= k, i 6= l

bil =ail cos θ + aik sin θ, i 6= k, i 6= l

bkk =akk cos2 θ − 2akl cos θ sin θ + all sin2 θ

bll =all cos2 θ + 2akl cos θsinθ + akk sin2 θ

bkl =(akk − all) cos θ sin θ + akl(cos2 θ − sin2 θ)

The angle θ is arbitrary. The recipe is to choose θ so that all
non-diagonal matrix elements bkl become zero.

Discussion of Jacobi’s method for eigenvalues

The main idea is thus to reduce systematically the norm of the
off-diagonal matrix elements of a matrix A

off(A) =

√√√√
n∑

i=1

n∑

j=1,j 6=i

a2
ij .

To demonstrate the algorithm, we consider the simple 2× 2
similarity transformation of the full matrix. The matrix is
symmetric, we single out 1 ≤ k < l ≤ n and use the abbreviations
c = cos θ and s = sin θ to obtain

(
bkk 0
0 bll

)
=

(
c −s
s c

)(
akk akl
alk all

)(
c s
−s c

)
.

Discussion of Jacobi’s method for eigenvalues

We require that the non-diagonal matrix elements bkl = blk = 0,
implying that

akl(c
2 − s2) + (akk − all)cs = bkl = 0.

If akl = 0 one sees immediately that cos θ = 1 and sin θ = 0.

Discussion of Jacobi’s method for eigenvalues
The Frobenius norm of an orthogonal transformation is always
preserved. The Frobenius norm is defined as

norm(A)F =

√√√√
n∑

i=1

n∑

j=1

|aij |2.

This means that for our 2× 2 case we have

2a2
kl + a2

kk + a2
ll = b2

kk + b2
ll ,

which leads to

off(B)2 = norm(B)2F −
n∑

i=1

b2
ii = off(A)2 − 2a2

kl ,

since

norm(B)2F −
n∑

i=1

b2
ii = norm(A)2F −

n∑

i=1

a2
ii + (a2

kk + a2
ll − b2

kk − b2
ll).

This results means that the matrix A moves closer to diagonal form
for each transformation.

Discussion of Jacobi’s method for eigenvalues

Defining the quantities tan θ = t = s/c and

cot 2θ = τ =
all − akk
2akl

,

we obtain the quadratic equation (using cot 2θ = 1/2(cot θ− tan θ)

t2 + 2τ t − 1 = 0,

resulting in
t = −τ ±

√
1+ τ2,

and c and s are easily obtained via

c =
1√

1+ t2
,

and s = tc . Convince yourself that we have |θ| ≤ π/4. This has
the effect of minimizing the difference between the matrices B and
A since

norm(B− A)2F = 4(1− c)
n∑

i=1,i 6=k,l

(a2
ik + a2

il) +
2a2

kl

c2 .

Discussion of Jacobi’s method for eigenvalues

Choose a tolerance ε, making it a small number, typically 10−8

or smaller.
Setup a while test where one compares the norm of the newly
computed off-diagonal matrix elements

off(A) =

√√√√
n∑

i=1

n∑

j=1,j 6=i

a2
ij > ε.

Now choose the matrix elements akl so that we have those
with largest value, that is |akl | = maxi 6=j |aij |.
Compute thereafter τ = (all − akk)/2akl , tan θ, cos θ and sin θ.
Compute thereafter the similarity transformation for this set of
values (k , l), obtaining the new matrix
B = S(k, l , θ)TAS(k , l , θ).
Compute the new norm of the off-diagonal matrix elements
and continue till you have satisfied off(B) ≤ ε

Discussion of Jacobi’s method for eigenvalues

The convergence rate of the Jacobi method is however poor, one
needs typically 3n2 − 5n2 rotations and each rotation requires 4n
operations, resulting in a total of 12n3 − 20n3 operations in order
to zero out non-diagonal matrix elements.

Discussion of Jacobi’s method for eigenvalues

We specialize to a symmetric 3× 3 matrix A. We start the process
as follows (assuming that a23 = a32 is the largest non-diagonal)
with c = cos θ and s = sin θ

B =

1 0 0
0 c −s
0 s c

a11 a12 a13
a21 a22 a23
a31 a32 a33

1 0 0
0 c s
0 −s c

 .

We will choose the angle θ in order to have a23 = a32 = 0. We get
(symmetric matrix)

B =

a11 a12c − a13s a12s + a13c
a12c − a13s a22c

2 + a33s
2 − 2a23sc (a22 − a33)sc + a23(c

2 − s2)
a12s + a13c (a22 − a33)sc + a23(c

2 − s2) a22s
2 + a33c

2 + 2a23sc

 .

Note that a11 is unchanged! As it should.

Discussion of Jacobi’s method for eigenvalues

We have

B =

a11 a12c − a13s a12s + a13c
a12c − a13s a22c

2 + a33s
2 − 2a23sc (a22 − a33)sc + a23(c

2 − s2)
a12s + a13c (a22 − a33)sc + a23(c

2 − s2) a22s
2 + a33c

2 + 2a23sc

 .

or

b11 =a11

b12 =a12 cos θ − a13 sin θ, 1 6= 2, 1 6= 3
b13 =a13 cos θ + a12 sin θ, 1 6= 2, 1 6= 3

b22 =a22 cos2 θ − 2a23 cos θ sin θ + a33 sin2 θ

b33 =a33 cos2 θ + 2a23 cos θ sin θ + a22 sin2 θ

b23 =(a22 − a33) cos θ sin θ + a23(cos2 θ − sin2 θ)

We will fix the angle θ so that b23 = 0.

Discussion of Jacobi’s method for eigenvalues

We get then a new matrix

B =

b11 b12 b13
b12 b22 0
b13 0 a33

 .

We repeat then assuming that b12 is the largest non-diagonal
matrix element and get a new matrix

C =

c −s 0
s c 0
0 0 1

b11 b12 b13
b12 b22 0
b13 0 b33

c s 0
−s c 0
0 0 1

 .

We continue this process till all non-diagonal matrix elements are
zero (ideally). You will notice that performing the above operations
that the matrix element b23 which was previous zero becomes
different from zero. This is one of the problems which slows down
the jacobi procedure.

Discussion of Jacobi’s method for eigenvalues

The more general expression for the new matrix elements are

bii =aii , i 6= k , i 6= l

bik =aik cos θ − ail sin θ, i 6= k, i 6= l

bil =ail cos θ + aik sin θ, i 6= k, i 6= l

bkk =akk cos2 θ − 2akl cos θ sin θ + all sin2 θ

bll =all cos2 θ + 2akl cos θ sin θ + akk sin2 θ

bkl =(akk − all) cos θ sin θ + akl(cos2 θ − sin2 θ)

This is what we will need to code.

Discussion of Jacobi’s method for eigenvalues

Code example
// we have defined a matrix A and a matrix R for the eigenvector, both of dim n x n
// The final matrix R has the eigenvectors in its row elements, it is set to one
// for the diagonal elements in the beginning, zero else.
....
double tolerance = 1.0E-10;
int iterations = 0;
while (maxnondiag > tolerance && iterations <= maxiter)
{

int p, q;
maxnondiag = offdiag(A, p, q, n);
Jacobi_rotate(A, R, p, q, n);
iterations++;

}
...

Discussion of Jacobi’s method for eigenvalues

Finding the max nondiagonal element
// the offdiag function, using Armadillo
double offdiag(mat A, int p, int q, int n);
{

double max;
for (int i = 0; i < n; ++i)
{

for (int j = i+1; j < n; ++j)
{

double aij = fabs(A(i,j));
if (aij > max)
{

max = aij; p = i; q = j;
}

}
}
return max;

}
// more statements

Discussion of Jacobi’s method for eigenvalues
Finding the new matrix elements
void Jacobi_rotate (mat A, mat R, int k, int l, int n)
{

double s, c;
if (A(k,l) != 0.0) {

double t, tau;
tau = (A(l,l) - A(k,k))/(2*A(k,l));

if (tau >= 0) {
t = 1.0/(tau + sqrt(1.0 + tau*tau));

} else {
t = -1.0/(-tau +sqrt(1.0 + tau*tau));

}

c = 1/sqrt(1+t*t);
s = c*t;

} else {
c = 1.0;
s = 0.0;

}
double a_kk, a_ll, a_ik, a_il, r_ik, r_il;
a_kk = A(k,k);
a_ll = A(l,l);
A(k,k) = c*c*a_kk - 2.0*c*s*A(k,l) + s*s*a_ll;
A(l,l) = s*s*a_kk + 2.0*c*s*A(k,l) + c*c*a_ll;
A(k,l) = 0.0; // hard-coding non-diagonal elements by hand
A(l,k) = 0.0; // same here
for (int i = 0; i < n; i++) {

if (i != k && i != l) {
a_ik = A(i,k);
a_il = A(i,l);
A(i,k) = c*a_ik - s*a_il;
A(k,i) = A(i,k);
A(i,l) = c*a_il + s*a_ik;
A(l,i) = A(i,l);

}
// And finally the new eigenvectors

r_ik = R(i,k);
r_il = R(i,l);

R(i,k) = c*r_ik - s*r_il;
R(i,l) = c*r_il + s*r_ik;

}
return;

} // end of function jacobi_rotate

Discussion of numerical project for two electrons
We can write our original differential equation in terms of a
discretized equation with approximations to the derivatives as

−ui+1 − 2ui + ui−i
h2 = f (xi , u(xi)),

with i = 1, 2, . . . , n. We need to add to this system the two
boundary conditions u(a) = u0 and u(b) = un+1. If we define a
matrix

A =
1
h2

2 −1
−1 2 −1

−1 2 −1
.

−1 2 −1
−1 2

and the corresponding vectors u = (u1, u2, . . . , un)
T and

f(u) = f (x1, x2, . . . , xn, u1, u2, . . . , un)
T we can rewrite the

differential equation including the boundary conditions as a system
of linear equations with a large number of unknowns

Au = f(u).

Discussion of numerical project

We are first interested in the solution of the radial part of
Schroedinger’s equation for one electron. This equation reads

− ~2

2m

(
1
r2

d

dr
r2 d

dr
− l(l + 1)

r2

)
R(r) + V (r)R(r) = ER(r).

In our case V (r) is the harmonic oscillator potential (1/2)kr2 with
k = mω2 and E is the energy of the harmonic oscillator in three
dimensions. The oscillator frequency is ω and the energies are

Enl = ~ω
(
2n + l +

3
2

)
,

with n = 0, 1, 2, . . . and l = 0, 1, 2,

Discussion of numerical project

Since we have made a transformation to spherical coordinates it
means that r ∈ [0,∞). The quantum number l is the orbital
momentum of the electron. Then we substitute R(r) = (1/r)u(r)
and obtain

− ~2

2m
d2

dr2 u(r) +

(
V (r) +

l(l + 1)
r2

~2

2m

)
u(r) = Eu(r).

The boundary conditions are u(0) = 0 and u(∞) = 0.

Discussion of numerical project

We introduce a dimensionless variable ρ = (1/α)r where α is a
constant with dimension length and get

− ~2

2mα2
d2

dρ2 u(ρ) +

(
V (ρ) +

l(l + 1)
ρ2

~2

2mα2

)
u(ρ) = Eu(ρ).

In numerical project we choose l = 0. Inserting
V (ρ) = (1/2)kα2ρ2 we end up with

− ~2

2mα2
d2

dρ2 u(ρ) +
k

2
α2ρ2u(ρ) = Eu(ρ).

We multiply thereafter with 2mα2/~2 on both sides and obtain

− d2

dρ2 u(ρ) +
mk

~2 α
4ρ2u(ρ) =

2mα2

~2 Eu(ρ).

Discussion of numerical project
We have thus

− d2

dρ2 u(ρ) +
mk

~2 α
4ρ2u(ρ) =

2mα2

~2 Eu(ρ).

The constant α can now be fixed so that

mk

~2 α
4 = 1,

or

α =

(
~2

mk

)1/4

.

Defining

λ =
2mα2

~2 E ,

we can rewrite Schroedinger’s equation as

− d2

dρ2 u(ρ) + ρ2u(ρ) = λu(ρ).

This is the first equation to solve numerically. In three dimensions
the eigenvalues for l = 0 are λ0 = 3, λ1 = 7, λ2 = 11,

Discussion of numerical project

We use the by now standard expression for the second derivative of
a function u

u′′ =
u(ρ+ h)− 2u(ρ) + u(ρ− h)

h2 + O(h2), (3)

where h is our step. Next we define minimum and maximum values
for the variable ρ, ρmin = 0 and ρmax, respectively. You need to
check your results for the energies against different values ρmax,
since we cannot set ρmax =∞.

Discussion of numerical project

With a given number of steps, nstep, we then define the step h as

h =
ρmax − ρmin

nstep
.

Define an arbitrary value of ρ as

ρi = ρmin + ih i = 0, 1, 2, . . . , nstep

we can rewrite the Schrödinger equation for ρi as

−u(ρi + h)− 2u(ρi) + u(ρi − h)

h2 + ρ2
i u(ρi) = λu(ρi),

or in a more compact way

−ui+1 − 2ui + ui−1

h2 + ρ2
i ui = −

ui+1 − 2ui + ui−1

h2 + Viui = λui ,

where Vi = ρ2
i is the harmonic oscillator potential.

Discussion of numerical project
Define first the diagonal matrix element

di =
2
h2 + Vi ,

and the non-diagonal matrix element

ei = −
1
h2 .

In this case the non-diagonal matrix elements are given by a mere
constant. All non-diagonal matrix elements are equal.
With these definitions the Schroedinger equation takes the
following form

diui + ei−1ui−1 + ei+1ui+1 = λui ,

where ui is unknown. We can write the latter equation as a matrix
eigenvalue problem

d1 e1 0 0 . . . 0 0
e1 d2 e2 0 . . . 0 0
0 e2 d3 e3 0 . . . 0
. .
0 dnstep−2 enstep−1
0 enstep−1 dnstep−1

u1
u2
. . .
. . .
. . .

unstep−1

= λ

u1
u2
. . .
. . .
. . .

unstep−1

(4)
or if we wish to be more detailed, we can write the tridiagonal
matrix as

2
h2 + V1 − 1

h2 0 0 . . . 0 0
− 1

h2
2
h2 + V2 − 1

h2 0 . . . 0 0
0 − 1

h2
2
h2 + V3 − 1

h2 0 . . . 0
. .
0 2

h2 + Vnstep−2 − 1
h2

0 − 1
h2

2
h2 + Vnstep−1

(5)
Recall that the solutions are known via the boundary conditions at
i = nstep and at the other end point, that is for ρ0. The solution is
zero in both cases.

Discussion of numerical project

We are going to study two electrons in a harmonic oscillator well
which also interact via a repulsive Coulomb interaction. Let us start
with the single-electron equation written as

− ~2

2m
d2

dr2 u(r) +
1
2
kr2u(r) = E (1)u(r),

where E (1) stands for the energy with one electron only. For two
electrons with no repulsive Coulomb interaction, we have the
following Schroedinger equation
(
− ~2

2m
d2

dr2
1
− ~2

2m
d2

dr2
2
+

1
2
kr2

1 +
1
2
kr2

2

)
u(r1, r2) = E (2)u(r1, r2).

Discussion of numerical project

Note that we deal with a two-electron wave function u(r1, r2) and
two-electron energy E (2).
With no interaction this can be written out as the product of two
single-electron wave functions, that is we have a solution on closed
form.
We introduce the relative coordinate r = r1 − r2 and the
center-of-mass coordinate R = 1/2(r1 + r2). With these new
coordinates, the radial Schroedinger equation reads
(
−~2

m

d2

dr2 −
~2

4m
d2

dR2 +
1
4
kr2 + kR2

)
u(r ,R) = E (2)u(r ,R).

Discussion of numerical project

The equations for r and R can be separated via the ansatz for the
wave function u(r ,R) = ψ(r)φ(R) and the energy is given by the
sum of the relative energy Er and the center-of-mass energy ER ,
that is

E (2) = Er + ER .

We add then the repulsive Coulomb interaction between two
electrons, namely a term

V (r1, r2) =
βe2

|r1 − r2|
=
βe2

r
,

with βe2 = 1.44 eVnm.

Discussion of numerical project

Adding this term, the r -dependent Schroedinger equation becomes
(
−~2

m

d2

dr2 +
1
4
kr2 +

βe2

r

)
ψ(r) = Erψ(r).

This equation is similar to the one we had previously in parts (a)
and (b) and we introduce again a dimensionless variable ρ = r/α.
Repeating the same steps, we arrive at

− d2

dρ2ψ(ρ) +
mk

4~2α
4ρ2ψ(ρ) +

mαβe2

ρ~2 ψ(ρ) =
mα2

~2 Erψ(ρ).

Discussion of numerical project

We want to manipulate this equation further to make it as similar
to that in (a) as possible. We define a ’frequency’

ω2
r =

1
4
mk

~2 α
4,

and fix the constant α by requiring

mαβe2

~2 = 1

or

α =
~2

mβe2 .

Discussion of numerical project

Defining

λ =
mα2

~2 E ,

we can rewrite Schroedinger’s equation as

− d2

dρ2ψ(ρ) + ω2
r ρ

2ψ(ρ) +
1
ρ
ψ(ρ) = λψ(ρ).

Discussion of numerical project

We treat ωr as a parameter which reflects the strength of the
oscillator potential.
Here we will study the cases ωr = 0.01, ωr = 0.5, ωr = 1, and
ωr = 5 for the ground state only, that is the lowest-lying state.

Discussion of numerical project

With no repulsive Coulomb interaction you should get a result
which corresponds to the relative energy of a non-interacting
system. Make sure your results are stable as functions of ρmax and
the number of steps.
We are only interested in the ground state with l = 0. We omit the
center-of-mass energy.
For specific oscillator frequencies, the above equation has analytic
answers, see the article by M. Taut, Phys. Rev. A 48, 3561 - 3566
(1993). The article can be retrieved from the following web address
http://prola.aps.org/abstract/PRA/v48/i5/p3561_1.

Discussion of numerical project, simple program for one
particle in a harmonic oscillator trap

The following program uses the eigenvalue solver provided by
Armadillo and returns the eigenvalues for the lowest states. You
can run this code interactively if you use ipython notebook. To
install armadillo, please go back to the introduction slides.
/*

Solves the one-particle Schrodinger equation
for a potential specified in function
potential(). This example is for the harmonic oscillator in 3d

*/
#include <cmath>
#include <iostream>
#include <fstream>
#include <iomanip>
#include <armadillo>

using namespace std;
using namespace arma;

double potential(double);
void output(double, double, int, vec&);

// Begin of main program

int main(int argc, char* argv[])
{

int i, j, Dim, lOrbital;
double RMin, RMax, Step, DiagConst, NondiagConst, OrbitalFactor;
// With spherical coordinates RMin = 0 always
RMin = 0.0;

RMax = 8.0; lOrbital = 0; Dim =2000;
mat Hamiltonian = zeros<mat>(Dim,Dim);
// Integration step length
Step = RMax/ Dim;
DiagConst = 2.0 / (Step*Step);
NondiagConst = -1.0 / (Step*Step);
OrbitalFactor = lOrbital * (lOrbital + 1.0);

// local memory for r and the potential w[r]
vec r(Dim); vec w(Dim);
for(i = 0; i < Dim; i++) {

r(i) = RMin + (i+1) * Step;
w(i) = potential(r(i)) + OrbitalFactor/(r(i) * r(i));

}

// Setting up tridiagonal matrix and brute diagonalization using Armadillo
Hamiltonian(0,0) = DiagConst + w(0);
Hamiltonian(0,1) = NondiagConst;
for(i = 1; i < Dim-1; i++) {

Hamiltonian(i,i-1) = NondiagConst;
Hamiltonian(i,i) = DiagConst + w(i);
Hamiltonian(i,i+1) = NondiagConst;

}
Hamiltonian(Dim-1,Dim-2) = NondiagConst;
Hamiltonian(Dim-1,Dim-1) = DiagConst + w(Dim-1);
// diagonalize and obtain eigenvalues
vec Eigval(Dim);
eig_sym(Eigval, Hamiltonian);
output(RMin , RMax, Dim, Eigval);

return 0;
} // end of main function

/*
The function potential()
calculates and return the value of the
potential for a given argument x.
The potential here is for the hydrogen atom

*/

double potential(double x)
{

return x*x;

} // End: function potential()

void output(double RMin , double RMax, int Dim, vec& d)
{

int i;
cout << "RESULTS:" << endl;
cout << setiosflags(ios::showpoint | ios::uppercase);
cout <<"Rmin = " << setw(15) << setprecision(8) << RMin << endl;
cout <<"Rmax = " << setw(15) << setprecision(8) << RMax << endl;
cout <<"Number of steps = " << setw(15) << Dim << endl;
cout << "Five lowest eigenvalues:" << endl;
for(i = 0; i < 5; i++) {

cout << setw(15) << setprecision(8) << d[i] << endl;
}

} // end of function output

The corresponding Python program
The code sets up the Hamiltonian matrix by defining the the
minimun and maximum values of r with a maximum value of
integration points. These are set in the initialization function. It
plots the eigenfunctions of the three lowest eigenstates.
#Program which solves the one-particle Schrodinger equation
#for a potential specified in function
#potential(). This example is for the harmonic oscillator in 3d

from matplotlib import pyplot as plt
import numpy as np
#Function for initialization of parameters
def initialize():

RMin = 0.0
RMax = 10.0
lOrbital = 0
Dim = 400
return RMin, RMax, lOrbital, Dim

Here we set up the harmonic oscillator potential
def potential(r):

return r*r

#Get the boundary, orbital momentum and number of integration points
RMin, RMax, lOrbital, Dim = initialize()

#Initialize constants
Step = RMax/(Dim+1)
DiagConst = 2.0 / (Step*Step)
NondiagConst = -1.0 / (Step*Step)
OrbitalFactor = lOrbital * (lOrbital + 1.0)

#Calculate array of potential values
v = np.zeros(Dim)
r = np.linspace(RMin,RMax,Dim)
for i in xrange(Dim):

r[i] = RMin + (i+1) * Step;
v[i] = potential(r[i]) + OrbitalFactor/(r[i]*r[i]);

#Setting up a tridiagonal matrix and finding eigenvectors and eigenvalues
Hamiltonian = np.zeros((Dim,Dim))
Hamiltonian[0,0] = DiagConst + v[0];
Hamiltonian[0,1] = NondiagConst;
for i in xrange(1,Dim-1):

Hamiltonian[i,i-1] = NondiagConst;
Hamiltonian[i,i] = DiagConst + v[i];
Hamiltonian[i,i+1] = NondiagConst;

Hamiltonian[Dim-1,Dim-2] = NondiagConst;
Hamiltonian[Dim-1,Dim-1] = DiagConst + v[Dim-1];
diagonalize and obtain eigenvalues, not necessarily sorted
EigValues, EigVectors = np.linalg.eig(Hamiltonian)
sort eigenvectors and eigenvalues
permute = EigValues.argsort()
EigValues = EigValues[permute]
EigVectors = EigVectors[:,permute]
now plot the results for the three lowest lying eigenstates
for i in xrange(3):

print EigValues[i]
FirstEigvector = EigVectors[:,0]
SecondEigvector = EigVectors[:,1]
ThirdEigvector = EigVectors[:,2]
plt.plot(r, FirstEigvector**2 ,’b-’,r, SecondEigvector**2 ,’g-’,r, ThirdEigvector**2 ,’r-’)
plt.axis([0,4.6,0.0, 0.025])
plt.xlabel(r’r’)
plt.ylabel(r’Radial probability $r^2|R(r)|^2$’)
plt.title(r’Radial probability distributions for three lowest-lying states’)
plt.savefig(’eigenvector.pdf’)
plt.show()

The corresponding Python program for the interactive case
#Program which solves the one-particle Schrodinger equation
#for a potential specified in function
#potential(). This example is for the harmonic oscillator in 3d with a repulsive Coulomb interaction

from matplotlib import pyplot as plt
import numpy as np
#Function for initialization of parameters
def initialize():

RMin = 0.0
RMax = 10.0
lOrbital = 0
Dim = 600
omega = 1.0
return RMin, RMax, lOrbital, Dim, omega

Here we set up the harmonic oscillator potential
def potential(r):

return r*r
Here we set up the harmonic oscillator potential with interaction
def intpotential(r,omega):

return omega*omega*r*r+1.0/r

#Get the boundary, orbital momentum and number of integration points
RMin, RMax, lOrbital, Dim, omega = initialize()

#Initialize constants
Step = RMax/(Dim+1)
DiagConst = 2.0 / (Step*Step)
NondiagConst = -1.0 / (Step*Step)
OrbitalFactor = lOrbital * (lOrbital + 1.0)

#Calculate array of potential values
v = np.zeros(Dim)
vint = np.zeros(Dim)
r = np.linspace(RMin,RMax,Dim)
for i in xrange(Dim):

r[i] = RMin + (i+1) * Step;
v[i] = potential(r[i]) + OrbitalFactor/(r[i]*r[i]);
vint[i] = intpotential(r[i],omega) + OrbitalFactor/(r[i]*r[i]);

#Setting up a tridiagonal matrix and finding eigenvectors and eigenvalues
Hamiltonian = np.zeros((Dim,Dim))
IntHamiltonian = np.zeros((Dim,Dim))
Hamiltonian[0,0] = DiagConst + v[0];
Hamiltonian[0,1] = NondiagConst;
IntHamiltonian[0,0] = DiagConst + vint[0];
IntHamiltonian[0,1] = NondiagConst;
for i in xrange(1,Dim-1):

Hamiltonian[i,i-1] = NondiagConst;
Hamiltonian[i,i] = DiagConst + v[i];
Hamiltonian[i,i+1] = NondiagConst;
IntHamiltonian[i,i-1] = NondiagConst;
IntHamiltonian[i,i] = DiagConst + vint[i];
IntHamiltonian[i,i+1] = NondiagConst;

Hamiltonian[Dim-1,Dim-2] = NondiagConst;
Hamiltonian[Dim-1,Dim-1] = DiagConst + v[Dim-1];
IntHamiltonian[Dim-1,Dim-2] = NondiagConst;
IntHamiltonian[Dim-1,Dim-1] = DiagConst + vint[Dim-1];
diagonalize and obtain eigenvalues, not necessarily sorted
EigValues, EigVectors = np.linalg.eig(Hamiltonian)
EigValuesInt, EigVectorsInt = np.linalg.eig(IntHamiltonian)
sort eigenvectors and eigenvalues
permute = EigValues.argsort()
EigValues = EigValues[permute]
EigVectors = EigVectors[:,permute]
permute = EigValuesInt.argsort()
EigValuesInt = EigValuesInt[permute]
EigVectorsInt = EigVectorsInt[:,permute]
now plot the results for the three lowest lying eigenstates
for i in xrange(1):

print EigValues[i], EigValuesInt[i],
FirstEigvector = EigVectors[:,0]
FirstEigvectorInt = EigVectorsInt[:,0]
plt.plot(r, FirstEigvector**2 ,’b-’,r, FirstEigvectorInt**2 ,’g-’)
plt.axis([0,3.0,0.0, 0.015])
plt.xlabel(r’r’)
plt.ylabel(r’Radial probability $r^2|R(r)|^2$’)
plt.title(r’Radial probability distributions for three lowest-lying states’)
plt.savefig(’eigenvectorint.pdf’)
plt.show()

Discussion of Householder’s method for eigenvalues

The drawbacks with Jacobi’s method are rather obvious, with
perhaps the most negative feature being the fact that we cannot
tell * a priori* how many transformations are needed. Can we do
better? The answer to this is yes and is given by a clever algorithm
outlined by Householder. It was ranked among the top ten
algorithms in the previous century. We will discuss this algorithm in
more detail below.
The first step consists in finding an orthogonal matrix S which is
the product of (n − 2) orthogonal matrices

S = S1S2 . . .Sn−2,

each of which successively transforms one row and one column of A
into the required tridiagonal form. Only n − 2 transformations are
required, since the last two elements are already in tridiagonal form.

Discussion of Householder’s method for eigenvalues

In order to determine each Si let us see what happens after the
first multiplication, namely,

ST
1 AS1 =

a11 e1 0 0 . . . 0 0
e1 a′22 a′23 a′2n
0 a′32 a′33 a′3n
0
0 a′n2 a′n3 a′nn

where the primed quantities represent a matrix A′ of dimension
n − 1 which will subsequentely be transformed by S2.

Discussion of Householder’s method for eigenvalues

The factor e1 is a possibly non-vanishing element. The next
transformation produced by S2 has the same effect as Ss but now
on the submatirx A′ only

(S1S2)
T AS1S2 =

a11 e1 0 0 . . . 0 0
e1 a′22 e2 0 0
0 e2 a′′33 a′′3n
0
0 0 a′′n3 a′′nn

Note that the effective size of the matrix on which we apply the
transformation reduces for every new step. In the previous Jacobi
method each similarity transformation is in principle performed on
the full size of the original matrix.

Discussion of Householder’s method for eigenvalues

After a series of such transformations, we end with a set of
diagonal matrix elements

a11, a
′
22, a

′′
33 . . . a

n−1
nn ,

and off-diagonal matrix elements

e1, e2, e3, . . . , en−1.

Discussion of Householder’s method for eigenvalues

The resulting matrix reads

STAS =

a11 e1 0 0 . . . 0 0
e1 a′22 e2 0 . . . 0 0
0 e2 a′′33 e3 0 . . . 0
. .

0 a
(n−1)
n−2 en−1

0 en−1 a
(n−1)
nn

.

Discussion of Householder’s method for eigenvalues

It remains to find a recipe for determining the transformation Sn.
We illustrate the method for S1 which we assume takes the form

S1 =

(
1 0T

0 P

)
,

with 0T being a zero row vector, 0T = {0, 0, · · · } of dimension
(n − 1). The matrix P is symmetric with dimension
((n − 1)× (n − 1)) satisfying P2 = I and PT = P. A possible
choice which fullfils the latter two requirements is

P = I− 2uuT ,

where I is the (n − 1) unity matrix and u is an n − 1 column vector
with norm uTu (inner product).

Discussion of Householder’s method for eigenvalues

Note that uuT is an outer product giving a matrix of dimension
((n − 1)× (n − 1)). Each matrix element of P then reads

Pij = δij − 2uiuj ,

where i and j range from 1 to n − 1. Applying the transformation
S1 results in

ST
1 AS1 =

(
a11 (Pv)T

Pv A′

)
,

where vT = {a21, a31, · · · , an1} and Ps must satisfy
(Pv)T = {k , 0, 0, · · · }. Then

Pv = v − 2u(uTv) = ke, (6)

with eT = {1, 0, 0, . . . 0}.

Discussion of Householder’s method for eigenvalues

Solving the latter equation gives us u and thus the needed
transformation P. We do first however need to compute the scalar
k by taking the scalar product of the last equation with its
transpose and using the fact that P2 = I. We get then

(Pv)TPv = k2 = vTv = |v |2 =
n∑

i=2

a2
i1,

which determines the constant k = ±v .

Discussion of Householder’s method for eigenvalues

Now we can rewrite Eq. (6) as

v − ke = 2u(uTv),

and taking the scalar product of this equation with itself and obtain

2(uTv)2 = (v2 ± a21v), (7)

which finally determines

u =
v − ke
2(uTv)

.

In solving Eq. (7) great care has to be exercised so as to choose
those values which make the right-hand largest in order to avoid
loss of numerical precision. The above steps are then repeated for
every transformations till we have a tridiagonal matrix suitable for
obtaining the eigenvalues.

Discussion of Householder’s method for eigenvalues

Our Householder transformation has given us a tridiagonal matrix.
We discuss here how one can use Householder’s iterative procedure
to obtain the eigenvalues. Let us specialize to a 4× 4 matrix. The
tridiagonal matrix takes the form

A =

d1 e1 0 0
e1 d2 e2 0
0 e2 d3 e3
0 0 e3 d4

 .

As a first observation, if any of the elements ei are zero the matrix
can be separated into smaller pieces before diagonalization.
Specifically, if e1 = 0 then d1 is an eigenvalue.

Discussion of Householder’s method for eigenvalues

Thus, let us introduce a transformation S1 which operates like

S1 =

cos θ 0 0 sin θ
0 0 0 0
0 0 0 0

cos θ 0 0 cos θ

Then the similarity transformation

ST
1 AS1 = A′ =

d ′1 e ′1 0 0
e ′1 d2 e2 0
0 e2 d3 e ′3
0 0 e ′3 d ′4

produces a matrix where the primed elements in A′ have been
changed by the transformation whereas the unprimed elements are
unchanged. If we now choose θ to give the element a

′
21 = e

′
= 0

then we have the first eigenvalue = a
′
11 = d

′
1.

Discussion of Householder’s method for eigenvalues

This procedure can be continued on the remaining
three-dimensional submatrix for the next eigenvalue. Thus after few
transformations we have the wanted diagonal form.
What we see here is just a special case of the more general
procedure developed by Francis in two articles in 1961 and 1962.
The algorithm is based on the so-called QR method (or just
QR-algorithm). It follows from a theorem by Schur which states
that any square matrix can be written out in terms of an orthogonal
matrix Q and an upper triangular matrix U. Historically R was used
instead of U since the wording right triangular matrix was first used.
The method is based on an iterative procedure similar to Jacobi’s
method, by a succession of planar rotations. For a tridiagonal
matrix it is simple to carry out in principle, but complicated in
detail! We will discuss this in more detail during week 38.

Eigenvalues with the QR and Lanczos methods

Our Householder transformation has given us a tridiagonal matrix.
We discuss here how one can use Jacobi’s iterative procedure to
obtain the eigenvalues, although it may not be the best approach.
Let us specialize to a 4× 4 matrix. The tridiagonal matrix takes
the form

A =

d1 e1 0 0
e1 d2 e2 0
0 e2 d3 e3
0 0 e3 d4

 .

As a first observation, if any of the elements ei are zero the matrix
can be separated into smaller pieces before diagonalization.
Specifically, if e1 = 0 then d1 is an eigenvalue.

Eigenvalues with the QR and Lanczos methods

Thus, let us introduce a transformation S1 which operates like

S1 =

cos θ 0 0 sin θ
0 0 0 0
0 0 0 0

cos θ 0 0 cos θ

Then the similarity transformation

ST
1 AS1 = A′ =

d ′1 e ′1 0 0
e ′1 d2 e2 0
0 e2 d3 e ′3
0 0 e ′3 d ′4

produces a matrix where the primed elements in A′ have been
changed by the transformation whereas the unprimed elements are
unchanged.

Eigenvalues with the QR and Lanczos methods

If we now choose θ to give the element a
′
21 = e

′
= 0 then we have

the first eigenvalue = a
′
11 = d

′
1.

This procedure can be continued on the remaining
three-dimensional submatrix for the next eigenvalue. Thus after few
transformations we have the wanted diagonal form.
What we see here is just a special case of the more general
procedure developed by Francis in two articles in 1961 and 1962.
Using Jacobi’s method is not very efficient ether.
The algorithm is based on the so-called QR method (or just
QR-algorithm). It follows from a theorem by Schur which states
that any square matrix can be written out in terms of an
orthogonal matrix Q̂ and an upper triangular matrix Û. Historically
R was used instead of U since the wording right triangular matrix
was first used.

Eigenvalues with the QR algorithm and Lanczos’ method

The method is based on an iterative procedure similar to Jacobi’s
method, by a succession of planar rotations. For a tridiagonal
matrix it is simple to carry out in principle, but complicated in
detail!
Schur’s theorem

Â = Q̂Û,

is used to rewrite any square matrix into a unitary matrix times an
upper triangular matrix. We say that a square matrix is similar to a
triangular matrix.
Householder’s algorithm which we have derived is just a special
case of the general Householder algorithm. For a symmetric square
matrix we obtain a tridiagonal matrix.
There is a corollary to Schur’s theorem which states that every
Hermitian matrix is unitarily similar to a diagonal matrix.

Eigenvalues with the QR algorithm and Lanczos’ method

It follows that we can define a new matrix

ÂQ̂ = Q̂ÛQ̂,

and multiply from the left with Q̂−1 we get

Q̂−1ÂQ̂ = B̂ = ÛQ̂,

where the matrix B̂ is a similarity transformation of Â and has the
same eigenvalues as B̂ .

Eigenvalues with the QR algorithm and Lanczos’ method

Suppose Â is the triangular matrix we obtained after the
Householder transformation,

Â = Q̂Û,

and multiply from the left with Q̂−1 resulting in

Q̂−1Â = Û.

Suppose that Q̂ consists of a series of planar Jacobi like rotations
acting on sub blocks of Â so that all elements below the diagonal
are zeroed out

Q̂ = R̂12R̂23 . . . R̂n−1,n.

Eigenvalues with the QR algorithm and Lanczos’ method

A transformation of the type R̂12 looks like

R̂12 =

c s 0 0 0 . . . 0 0 0
−s c 0 0 0 . . . 0 0 0
0 0 1 0 0 . . . 0 0 0
.
0 0 0 0 0 . . . 1 0 0
0 0 0 0 0 . . . 0 1 0
0 0 0 0 0 . . . 0 0 1

Eigenvalues with the QR algorithm and Lanczos’ method

The matrix Û takes then the form

Û =

x x x 0 0 . . . 0 0 0
0 x x x 0 . . . 0 0 0
0 0 x x x . . . 0 0 0
.
0 0 0 0 0 . . . x x x
0 0 0 0 0 . . . 0 x x
0 0 0 0 0 . . . 0 0 x

which has a second superdiagonal.

Eigenvalues with the QR algorithm and Lanczos’ method

We have now found Q̂ and Û and this allows us to find the matrix
B̂ which is, due to Schur’s theorem, unitarily similar to a triangular
matrix (upper in our case) since we have that

Q̂−1ÂQ̂ = B̂,

from Schur’s theorem the matrix B̂ is triangular and the
eigenvalues the same as those of Â and are given by the diagonal
matrix elements of B̂ . Why?
Our matrix B̂ = ÛQ̂.

Eigenvalues with the QR algorithm and Lanczos’ method

The matrix Â is transformed into a tridiagonal form and the last
step is to transform it into a diagonal matrix giving the eigenvalues
on the diagonal.
The eigenvalues of a matrix can be obtained using the
characteristic polynomial

P(λ) = det(λI− A) =
n∏

i=1

(λi − λ) ,

which rewritten in matrix form reads

P(λ) =

d1 − λ e1 0 0 . . . 0 0
e1 d2 − λ e2 0 . . . 0 0
0 e2 d3 − λ e3 0 . . . 0
. .
0 dNstep−2 − λ eNstep−1
0 eNstep−1 dNstep−1 − λ

Eigenvalues with the QR algorithm and Lanczos’ method

We can solve this equation in an iterative manner. We let Pk(λ) be
the value of k subdeterminant of the above matrix of dimension
n × n. The polynomial Pk(λ) is clearly a polynomial of degree k .
Starting with P1(λ) we have P1(λ) = d1 − λ. The next polynomial
reads P2(λ) = (d2 − λ)P1(λ)− e2

1 . By expanding the determinant
for Pk(λ) in terms of the minors of the nth column we arrive at the
recursion relation

Pk(λ) = (dk − λ)Pk−1(λ)− e2
k−1Pk−2(λ).

Together with the starting values P1(λ) and P2(λ) and good root
searching methods we arrive at an efficient computational scheme
for finding the roots of Pn(λ). However, for large matrices this
algorithm is rather inefficient and time-consuming.

Eigenvalues and Lanczos’ method
Basic features with a real symmetric matrix (and normally huge
n > 106 and sparse) Â of dimension n × n:

Lanczos’ algorithm generates a sequence of real tridiagonal
matrices Tk of dimension k × k with k ≤ n, with the property
that the extremal eigenvalues of Tk are progressively better
estimates of Â’ extremal eigenvalues.* The method converges
to the extremal eigenvalues.
The similarity transformation is

T̂ = Q̂T ÂQ̂,

with the first vector Q̂ê1 = q̂1.
We are going to solve iteratively

T̂ = Q̂T ÂQ̂,

with the first vector Q̂ê1 = q̂1. We can write out the matrix Q̂ in
terms of its column vectors

Q̂ = [q̂1q̂2 . . . q̂n] .

Eigenvalues and Lanczos’ method, tridiagonal matrix

The matrix
T̂ = Q̂T ÂQ̂,

can be written as

T̂ =

α1 β1 0 0
β1 α2 β2 0 . . . 0
0 β2 α3 β3 . . . 0
. 0
. . . βn−2 αn−1 βn−1
0 0 βn−1 αn

Eigenvalues and Lanczos’ method, tridiagonal and
orthogonal matrices

Using the fact that
Q̂Q̂T = Î ,

we can rewrite
T̂ = Q̂T ÂQ̂,

as
Q̂T̂ = ÂQ̂.

Eigenvalues and Lanczos’ method

If we equate columns

T̂ =

α1 β1 0 0
β1 α2 β2 0 . . . 0
0 β2 α3 β3 . . . 0
. 0
. . . βn−2 αn−1 βn−1
0 0 βn−1 αn

we obtain
Âq̂k = βk−1q̂k−1 + αk q̂k + βk q̂k+1.

Eigenvalues and Lanczos’ method, defining the Lanczos’
vectors

We have thus

Âq̂k = βk−1q̂k−1 + αk q̂k + βk q̂k+1,

with β0q̂0 = 0 for k = 1 : n − 1. Remember that the vectors q̂k are
orthornormal and this implies

αk = q̂Tk Âq̂k ,

and these vectors are called Lanczos vectors.

Eigenvalues and Lanczos’ method, basic steps

We have thus

Âq̂k = βk−1q̂k−1 + αk q̂k + βk q̂k+1,

with β0q̂0 = 0 for k = 1 : n − 1 and

αk = q̂Tk Âq̂k .

If
r̂k = (Â− αk Î)q̂k − βk−1q̂k−1,

is non-zero, then
q̂k+1 = r̂k/βk ,

with βk = ±||r̂k ||2.

