Project 1 on Computational Physics and
Machine Learning, deadline January 31,
2023

Data Analysis and Machine Learning FYS-STK3155/FYS4155

Department of Physics, University of Oslo, Norway

Dec 11, 2022

Regression analysis and resampling methods

The main aim of this project is to study in more detail various regression
methods, including the Ordinary Least Squares (OLS) method, Ridge regression
and finally Lasso regression and eventually kernel regression and/or Bayesian
Linear Regression as well as Logistic Regression for classification problems. The
project includes also a discussion of support vector machines for classification
problems.

The numerical methods include matrix inversion, singular value decomposi-
tion, convex optimization methods (gradient descent, steepest descent, stochastic
gradient descent, ie iterative solvers) and several central (deterministic) ML
methods.

The methods are in turn combined with resampling techniques like the
bootstrap method and cross validation.

We will first study how to fit polynomials to a specific two-dimensional
function called Franke’s function. This is a function which has been widely
used when testing various interpolation and fitting algorithms. Furthermore,
after having established the model and the method, we will employ resamling
techniques such as cross-validation and/or bootstrap in order to perform a proper
assessment of our models. We will also study in detail the so-called Bias-Variance
trade off.

The Franke function, which is a weighted sum of four exponentials reads as
follows

3 9z —2)2  (9y—2)2\ 3 9z +1)2  (9y+1)
f(x,y)fzexp (— 1 - 1 >+4exp <— 19 — ) >
T —T)2 _ 92
+ %exp (— © 1 07 _ Oy 1 3) ) N %exp (—(9z — 4)* — (9y — 7)?).

© 1999-2022, "Data Analysis and Machine Learning
FYS-STK3155/FYS4155":"http://www.uio.no/studier /emner/matnat/fys/FYS3155/index-
eng.html". Released under CC Attribution-NonCommercial 4.0 license


http://www.uio.no/studier/emner/matnat/fys/FYS3155/index-eng.html
http://www.dtic.mil/dtic/tr/fulltext/u2/a081688.pdf

The function is defined for z,y € [0,1]. Our first step will be to perform an
OLS regression analysis of this function, trying out a polynomial fit with an z
and y dependence of the form [z,y, 2, y%, xy, ...]. We will also include bootstrap
first as a resampling technique. After that we will include the cross-validation
technique.

We can use a uniform distribution to set up the arrays of values for x and
y, or as in the example below just a set of fixed values for x and y with a
given step size. We will fit a function (for example a polynomial) of = and y.
Thereafter we will repeat much of the same procedure using Ridge and Lasso
regression, introducing thus a dependence on the regularization parameter (also
called penalty) .

The Python code for the Franke function is included here (it performs also a
three-dimensional plot of it)

from mpl_toolkits.mplot3d import Axes3D

import matplotlib.pyplot as plt

from matplotlib import cm

from matplotlib.ticker import LinearLocator, FormatStrFormatter
import numpy as np

from random import random, seed

fig = plt.figure()
ax = fig.gca(projection="3d’)

Make data. Use alternatively the uniform distribution
= np.arange(0, 1, 0.05)

= np.arange(0, 1, 0.05)

Using numpy’s meshgrid (why?)

x, y = np.meshgrid(x,y)

H < MW OH

def FrankeFunction(x,y):
terml = 0.75%np.exp(-(0.25%(9*x-2)*x2) - 0.25*%((9*y-2)*x2))
term2 = 0.75*np.exp(-((9*x+1)*%2)/49.0 - 0.1%(9*y+1))
term3 = 0.5*np.exp(-(9*x-7)**2/4.0 - 0.25%((9%y-3)**2))
termd4 = -0.2+#np.exp(-(9*x-4)**x2 - (9*y-7)**2)
return terml + term2 + term3 + term4d

z = FrankeFunction(x, y)
# Plot the surface.
surf = ax.plot_surface(x, y, z, cmap=cm.coolwarm,

linewidth=0, antialiased=False)

# Customize the z axis.



ax.set_zlim(-0.10, 1.40)
ax.zaxis.set_major_locator(LinearLocator(10))
ax.zaxis.set_major_formatter (FormatStrFormatter(’%.02f’))

# Add a color bar which maps values to colors.
fig.colorbar(surf, shrink=0.5, aspect=5)

plt.show()

Discussion of data sets and report format. Before we proceed however, we
would like to add some words about data sets and how to prepare your reports.
The data sets that we propose here are (the default sets)

o Regression (fitting a continuous function).

1. Either the Franke function proposed by us or data sets your propose.

o Classification. Here you will also need to develop a Logistic regression
code. The data set we propose are the so-called Wisconsin Breat Cancer
Data data set of images representing various features of tumors. A longer
explanation with links to the scientific literature can be found at the
Machine Learning repository of the University of California at Irvine. Feel
free to consult this site and the pertinent literature.

You can find more information about this at the Scikit-Learn site or at the
University of California at Irvine.

However, if you would like to study other data sets, feel free to propose
other sets. What we list here are mere suggestions from our side. If you opt for
another data set, consider using a set which has been studied in the scientific
literature. This makes it easier for you to compare and analyze your results.
Comparing with existing results from the scientific literature is also an essential
element of the scientific discussion. The University of California at Irvine with its
Machine Learning repository at https://archive.ics.uci.edu/ml/index.php
is an excellent site to look up for examples and inspiration. Kaggle.com is an
equally interesting site. Feel free to explore these sites.

Your answers to the projects have to be presented as a standard scien-
tific report. The instructions on how to do this and how we grade are avail-
able at https://github.com/CompPhysics/Machinelearning/blob/master/
doc/Projects/EvaluationGrading/EvaluationForm.md. Please do spend some
time to read our guidelines. For PhD students the grades are either passed or
not passed, with a threshold of at least the grade B.


https://www.kaggle.com/uciml/breast-cancer-wisconsin-data
https://www.kaggle.com/uciml/breast-cancer-wisconsin-data
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Diagnostic%29
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_breast_cancer.html
https://archive.ics.uci.edu/ml/datasets/breast+cancer+wisconsin+(original)
https://archive.ics.uci.edu/ml/index.php
https://www.kaggle.com/
https://github.com/CompPhysics/MachineLearning/blob/master/doc/Projects/EvaluationGrading/EvaluationForm.md
https://github.com/CompPhysics/MachineLearning/blob/master/doc/Projects/EvaluationGrading/EvaluationForm.md

Part a): Ordinary Least Square (OLS) on the Franke function. We will
generate our own dataset for a function FrankeFunction(z,y) with z,y € [0, 1].
The function f(z,y) is the Franke function. You should explore also the addition
of an added stochastic noise to this function using the normal distribution
N(0,1).

Write your own code (using either a matrix inversion or a singular value
decomposition from e.g., numpy ) and perform a standard least square regression
analysis using polynomials in z and y up to fifth order. You can use all the
functionality of Numpy.

IS,
MSE(y,§) = —> (v —5)*
i=0
and the R? score function. If g; is the predicted value of the i — th sample
and y; is the corresponding true value, then the score R? is defined as

-1 -

Z?:o (yi — yi)Q
n—1 —\9

Zizo (yi — y)2

where we have defined the mean value of y as

n—1
Z Yi-
=0

You should consider and discuss ways to scale your data and split the
data in training and test data. For this part you can either write your own
code or use for example the function for splitting training data provided by
the library Scikit-Learn (make sure you have installed it). This function is
called train_test_ split. Similarly, you can use the data normalization/scaling
functionality of Scikit-Learn.

It is normal in essentially all Machine Learning studies to split the data in a
training set and a test set (eventually also an additional validation set). There
is no explicit recipe for how much data should be included as training data and
say test data. An accepted rule of thumb is to use approximately 2/3 to 4/5 of
the data as training data.

Rz(yag) =1-

S|

g:

Part b): Bias-variance trade-off and resamplng techniques. Our aim
here is to study the bias-variance trade-off by implementing the bootstrap
resampling technique.

With a code which does OLS and includes resampling techniques, we will
now discuss the bias-variance trade-off in the context of continuous predictions
such as regression. However, many of the intuitions and ideas discussed here also
carry over to classification tasks and basically all Machine Learning algorithms.

Before you perform an analysis of the bias-variance trade-off on your test
data, make first a figure similar to Fig. 2.11 of Hastie, Tibshirani, and Friedman.
Figure 2.11 of this reference displays only the test and training MSEs. The test



MSE can be used to indicate possible regions of low/high bias and variance. You
will most likely not get an equally smooth curve!
With this result we move on to the bias-variance trade-off analysis.
Consider a dataset £ consisting of the data X, = {(y;,z;),7 =0...n—1}.
Let us assume that the true data is generated from a noisy model

y=f(z)+e

Here ¢ is normally distributed with mean zero and standard deviation o?2.

In our derivation of the ordinary least squares method we defined then an
approximation to the function f in terms of the parameters 8 and the design
matrix X which embody our model, that is y = X 3.

The parameters 3 are in turn found by optimizing the means squared error
via the so-called cost function

n—1
1
C(X,B) =~ i — ) =E[(y—9)?].
(X,8) nz;y )’ =E[(y - 9)°]
Here the expected value E is the sample value.
The mean squared error can be rewritten as

Ely 97 =~ S~ E@) + - (@~ E[@) + 0>

4 %

Explain what the terms mean, which one is the bias and which one is the
variance and discuss their interpretations.

Perform then a bias-variance analysis of the Franke function by studying the
MSE value as function of the complexity of your model.

Discuss the bias and variance trade-off as function of your model complexity
(the degree of the polynomial) and the number of data points, and possibly also
your training and test data using the bootstrap resampling method.

Part c) Cross-validation as resampling techniques, adding more com-
plexity. The aim here is to write your own code for another widely popular
resampling technique, the so-called cross-validation method. Again, before you
start with cross-validation approach, you should consider to scale your data.
You can use also folding splitting provided by Scikit-Learn.

Implement the k-fold cross-validation algorithm and evaluate again the MSE
function resulting from the test folds. You can compare your own code with that
from Scikit-Learn if needed.

Compare the MSE you get from your cross-validation code with the one
you got from your bootstrap code. Comment your results. Try 5 — 10 folds.
You can also compare your own cross-validation code with the one provided by
Scikit-Learn.



Part d): Ridge Regression on the Franke function with resampling.
Write your own code for the Ridge method, either using matrix inversion or the
singular value decomposition as done in the previous exercise or howework 2
(see also chapter 3.4 of Hastie et al., equations (3.43) and (3.44)). Perform the
same bootstrap analysis as in the part b) (for the same polynomials) and the
cross-validation part in part ¢) but now for different values of A. Compare and
analyze your results with those obtained in parts a-c). Study the dependence on
A

Study also the bias-variance trade-off as function of various values of the
parameter A. For the bias-variance trade-off, use the bootstrap resampling
method. Comment your results.

Part e): Lasso Regression on the Franke function with resampling.
This part is essentially a repeat of the previous two ones, but now with Lasso
regression. Write either your own code (difficult and optional) or, in this case,
you can also use the functionalities of Scikit-Learn (recommended). Give a
critical discussion of the three methods and a judgement of which model fits the
data best. Perform here as well an analysis of the bias-variance trade-off using
the bootstrap resampling technique and an analysis of the mean squared error
using cross-validation.

Part f): Write your own Stochastic Gradient Descent code, first step.
In order to get started, we will now replace in our standard ordinary least
squares (OLS) and Ridge regression codes (from project 1) the matrix inversion
algorithm with our own gradient descent (GD) and SGD codes. You can use the
Franke function or other data of your choice. However, we recommend using a
simpler function like f(z) = ag + a17 + agz? or higher-order one-dimensional
polynomials. You can obviously test your final codes against for example the
Franke function.

You should include in your analysis of the GD and SGD codes the following
elements

1. A plain gradient descent with a fixed learning rate (you will need to tune
it).

2. Add momentum to the plain GD code and compare convergence with a
fixed learning rate (you may need to tune the learning rate).

3. Repeat these steps for stochastic gradient descent with mini batches and
a given number of epochs. Use a tunable learning rate as discussed in
the lectures from week 50. Discuss the results as functions of the various
parameters (size of batches, number of epochs etc)

4. Implement the Adagrad method in order to tune the learning rate. Do
this with and without momentum for plain gradient descent and SGD.

5. Add RMSprop and Adam to your library of methods for tuning the learning
rate.



In summary, you should perform an analysis of the results for OLS and Ridge
regression as function of the chosen learning rates, the number of mini-batches
and epochs as well as algorithm for scaling the learning rate. You can also
compare your own results with those that can be obtained using for example
Scikit-Learn’s various SGD options. Discuss your results. For Ridge regression
you need now to study the results as functions of the hyper-parameter \ and
the learning rate 7. Discuss your results.

You will need your SGD code for the setup of the and Logistic Regression
code. You will find the Python Seaborn package useful when plotting the results
as function of the learning rate n and the hyper-parameter A when you use Ridge
regression.

We recommend reading chapter 8 on optimization from the textbook of
Goodfellow, Bengio and Courville. This chapter contains many useful insights
and discussions on the optimization part of machine learning.

Part g): Write your Logistic Regression code, final step. We will now
study a classification problem (using the Wisconsin breast cancer data as possible
data set) with Logistic regression.

Define your cost function and the design matrix before you start writing your
code. Write thereafter a Logistic regression code using your SGD algorithm.
You can also use standard gradient descent in this case, with a learning rate as
hyper-parameter. Study the results as functions of the chosen learning rates.
Add also an [ regularization parameter A. Compare your results with those
obtained using Scikit-Learn’s logistic regression functionality. You should
consider scaling/normalizing your data and include cross-validation.

Part h): Support Vector Machines (optional). For the classification
problem, we include now support vector machines. Feel free to use Scikit-
Learn’s functionality here and compare your results with those obtained from
logistic regression. This part will be discussed during our first lectures in January.

Part i) Critical evaluation of the various algorithms. After all these
glorious calculations, you should now summarize the various algorithms and
come with a critical evaluation of their pros and cons. Which algorithm works
best for the regression case and which is best for the classification case. These
codes can also be part of your final project 3, but now applied to other data sets.

Background literature

1. For a discussion and derivation of the variances and mean squared errors
using linear regression, see the Lecture notes on ridge regression by Wessel
N. van Wieringen

2. The textbook of Trevor Hastie, Robert Tibshirani, Jerome H. Friedman,
The Elements of Statistical Learning, Springer, chapters 3 and 7 are the
most relevant ones for the analysis here.


https://seaborn.pydata.org/generated/seaborn.heatmap.html
https://www.deeplearningbook.org/
https://arxiv.org/abs/1509.09169
https://arxiv.org/abs/1509.09169
https://www.springer.com/gp/book/9780387848570
https://www.springer.com/gp/book/9780387848570

(a) Mehta et al, arXiv 1803.08823, A high-bias, low-variance introduction
to Machine Learning for physicists, ArXiv:1803.08823.

Introduction to numerical projects

Here follows a brief recipe and recommendation on how to write a report for
each project.

e Give a short description of the nature of the problem and the eventual
numerical methods you have used.

¢ Describe the algorithm you have used and/or developed. Here you may
find it convenient to use pseudocoding. In many cases you can describe
the algorithm in the program itself.

¢ Include the source code of your program. Comment your program properly.

o If possible, try to find analytic solutions, or known limits in order to test
your program when developing the code.

e Include your results either in figure form or in a table. Remember to label
your results. All tables and figures should have relevant captions and labels
on the axes.

e Try to evaluate the reliabilty and numerical stability /precision of your
results. If possible, include a qualitative and/or quantitative discussion of
the numerical stability, eventual loss of precision etc.

o Try to give an interpretation of you results in your answers to the problems.

e Critique: if possible include your comments and reflections about the
exercise, whether you felt you learnt something, ideas for improvements
and other thoughts you’ve made when solving the exercise. We wish to
keep this course at the interactive level and your comments can help us
improve it.

o Try to establish a practice where you log your work at the computerlab.
You may find such a logbook very handy at later stages in your work,
especially when you don’t properly remember what a previous test version
of your program did. Here you could also record the time spent on solving
the exercise, various algorithms you may have tested or other topics which
you feel worthy of mentioning.


https://arxiv.org/abs/1803.08823

Format for electronic delivery of report and programs

The preferred format for the report is a PDF file. You can also use DOC or
postscript formats or as an ipython notebook file. As programming language we
prefer that you choose between C/C++, Fortran2008, Julia, Rust or Python. For
the machine learning topics, Python is recommended. The following prescription
should be followed when preparing the report:

o Upload only the report file or the link to your GitHub/GitLab or similar
typo of repos! For the source code file(s) you have developed please provide
us with your link to your GitHub/GitLab or similar domain. The report
file should include all of your discussions and a list of the codes you have
developed. Do not include library files which are available at the course
homepage, unless you have made specific changes to them.

e In your GitHub/GitLab or similar repository, please include a folder which
contains selected results. These can be in the form of output from your
code for a selected set of runs and input parameters.

Software and needed installations

If you have Python installed (we recommend Python3) and you feel pretty
familiar with installing different packages, we recommend that you install the
following Python packages via pip as

1. pip install numpy scipy matplotlib ipython scikit-learn tensorflow sympy
pandas pillow

For Python3, replace pip with pip3.

See below for a discussion of tensorflow and scikit-learn.

For OSX users we recommend also, after having installed Xcode, to install
brew. Brew allows for a seamless installation of additional software via for
example

1. brew install python3

For Linux users, with its variety of distributions like for example the widely
popular Ubuntu distribution you can use pip as well and simply install Python
as

1. sudo apt-get install python3 (or python for python2.7)

etc etc.

If you don’t want to install various Python packages with their dependencies
separately, we recommend two widely used distrubutions which set up all relevant
dependencies for Python, namely



1. Anaconda Anaconda is an open source distribution of the Python and R
programming languages for large-scale data processing, predictive analytics,
and scientific computing, that aims to simplify package management and
deployment. Package versions are managed by the package management
system conda

2. Enthought canopy is a Python distribution for scientific and analytic
computing distribution and analysis environment, available for free and
under a commercial license.

Popular software packages written in Python for ML are
e Scikit-learn,
¢ Tensorflow,
e PyTorch and

o Keras.

These are all freely available at their respective GitHub sites. They encompass
communities of developers in the thousands or more. And the number of code
developers and contributors keeps increasing.

10


https://docs.anaconda.com/
https://www.enthought.com/product/canopy/
http://scikit-learn.org/stable/
https://www.tensorflow.org/
http://pytorch.org/
https://keras.io/

