Project 2 CompSci program, deadline
May 31

CompSci program

Department of Physics, University of Oslo, Norway

Feb 21, 2023

Paths for project 2

Possible paths for project 2. We discuss here several paths as well as data
sets for the second project.

1. The computational path: Here we propose a path where you develop your
own code for a neural networks (or CNNs or RNNs) and apply this to data
of your own selection. The code should be object oriented and flexible
allowing for eventual extensions by including different Loss/Cost functions
and other functionalities. Feel free to select data sets from those suggested
below here. This code can also be extended upon by adding for example
autoencoders. You can compare your own codes with implementations
using TensorFlow(Keras)/PyTorch or other libraries.

2. The differential equation path: Here we propose a set of differential equa-
tions (ordinary and/or partial) to be solved first using neural networks
(using either your own code or TensorFlow/Pytorch or similar libraries).
Thereafter we plan to extend the set of methods for solving these equations
to recurrent neural networks and autoencoders. All these approaches can
be expanded into one large project. This project can also be extended
into including Physics informed machine learning. Here we can discuss
neural networks that are trained to solve supervised learning tasks while
respecting any given law of physics described by general nonlinear partial
differential equations.

3. The application path: Here you can use the most relevant method(s) (say
neural networks, convolutional neural networks for images) and apply
this(these) to data sets relevant for your own research.

4. And finally we propose also a partial differential equation path.

https://github.com/maziarraissi/PINNs

You can propose own data sets that relate to your research interests or just use
existing data sets from say

1.
2.

5.

Kaggle

The University of California at Irvine (UCI) with its machine learning
repository.

For the differential equation problems, you can generate your own datasets,
as described below.

. If possible, you should link the data sets with existing research and analyses

thereof. Scientific articles which have used Machine Learning algorithms
to analyze the data are highly welcome. Perhaps you can improve previous
analyses and even publish a new article?

A critical assessment of the methods with ditto perspectives and recom-
mendations is also something you need to include.

The approach to the analysis of these new data sets should follow to a large
extent what you did in project 1. That is:

1.

Whether you end up with a regression or a classification problem, you
should employ at least two of the methods we have discussed among
linear regression (including Ridge and Lasso), Logistic Regres-
sion, Neural Networks, Convolution Neural Networks, Recurrent
Neural Networks, Adversarial Neural Networks, Support Vec-
tor Machines and Decision Trees, Random Forests, Bagging and
Boosting.

The estimates you used and tested in project 1 should also be included,
that is the R2-score, MSE, confusion matrix, accuracy score, information
gain, ROC and Cumulative gains curves and other, cross-validation and/or
bootstrap if these are relevant.

. Similarly, feel free to explore various activations functions in deep learning

and various approachs to stochastic gradient descent approaches.

All in all; the report should follow the same pattern as project 1, with abstract,
introduction, methods, code, results, conclusions etc.

Solving differential equations with neural networks

Here we describe the possible differential equations we can study first with neural
networks and thereafter with recurrent neural networks and/or AE and/or GANs.

The differential equations are given by the so-called Lorenz attractor model,
and read

dx

E:U(y_x%

https://www.kaggle.com/datasets
https://archive.ics.uci.edu/ml/index.php
https://archive.ics.uci.edu/ml/index.php
https://encyclopediaofmath.org/index.php?title=Lorenz_attractor

where o = 10 is a constant

with p = 28 and

with 8 = 8/3 as our final constant.

The following function is a simple function which sets up the solution using
the ordinary differential library which follows NumPy. Here we have fixed the
time sted At = 0.01 and the final time ¢y = 8.

The program sets 100 random initial values and produces inputs and outputs
for a neural network calculations. The inputs are given by the values of the
array « (which contains z,y, z as functions of time) for the time step x;. The
other array defined by ;41 contains the outputs (or targets) which we want the
neural network to reproduce.

Common imports

import numpy as np

from scipy.integrate import odeint
import matplotlib.pyplot as plt
import os

Where to save the figures and data files
PROJECT_ROOT_DIR = "Results"

FIGURE_ID = "Results/FigureFiles"

DATA_ID = "DataFiles/"

if not os.path.exists(PROJECT_ROOT_DIR):
os.mkdir (PROJECT_ROOT_DIR)

if not os.path.exists(FIGURE_ID):
os.makedirs (FIGURE_ID)

if not os.path.exists(DATA_ID):
os.makedirs (DATA_ID)

def image_path(fig_id):
return os.path.join(FIGURE_ID, fig_id)

def data_path(dat_id):
return os.path.join(DATA_ID, dat_id)

def save_fig(fig_id):
plt.savefig(image_path(fig_id) + ".png", format=’png’)

Selection of parameter values and setting array for time
dt =0.01; tfinal = 8

t = np.arange(0,tfinal+dt, dt)

beta =8.0/3.0; rho = 28.0; sigma = 10.0

define the inputs and outputs for the neural networks
nninput = np.zeros((100*len(t)-1,3))
nnoutput = np.zeros((100xlen(t)-1,3))
Define the equations to integrate
def lorenz_derivative(xyz, tO, sigma=sigma,beta=beta,rho=rho):
X, ¥, 2 = Xyz
return [sigma*(x-y), x*(rho-z)-y, x*y-betaxz]

generate 100 random initial values
x0 = -15.0+30.0*np.random.random((100,3))

Use odeint functionality by sending in derivative function
Feel free to change the choice of integrator
x_t = np.asarray([odeint(lorenz_derivative, x0_j, t)

for x0_j in x0])

define the inputs and outputs for the neural networks
for j in range(100):
nninput [j*(len(t)-1): (j+1)*(len(t)-1),:]1 = x_t[j,:-1,:]
nnoutput [j*(len(t)-1): (j+1)*(len(t)-1),:]1 = x_t[j,1:,:]

The input and output variables are those we will start trying our network
with. Your first taks is to set up a neural code (either using your own code or
TensorFlow /PyTorch or similar libraries)) and use the above data to a prediction
for the time evolution of Lorenz system for various values of the randomly chosen
initial values. Study the dependence of the fit as function of the architecture of
the network (number of nodes, hidden layers and types of activation functions)
and various regularization schemes and optimization methods like standard
gradient descent with momentum, stochastic gradient descent with batches and
with and without momentum and various schedulers for the learning rate.

Feel free to change the above differential equations. As an example, consider
the following harmonic oscillator equations solved with the Runge-Kutta to
fourth order method. This is a one-dimensional problem and it produces a
position x; and velocity v;. You could now try to fit both the velocities and
positions using much of the same recipe as for Lorenz attractor. You will find
it convenient to analyze one set of initial conditions first. The code is included
here.

This code is an example code that solves Newton’s equations of motion with
a given force and produces an output which in turn can be used to train a neural
network

Common imports

import numpy as np

import pandas as pd

from math import *

import matplotlib.pyplot as plt
import os

Where to save the figures and data files
PROJECT_ROOT_DIR = "Results"

FIGURE_ID = "Results/FigureFiles"

DATA_ID = "DataFiles/"

if not os.path.exists(PROJECT_ROOT_DIR):
os.mkdir (PROJECT _ROOT_DIR)

if not os.path.exists(FIGURE_ID):
os.makedirs (FIGURE_ID)

if not os.path.exists(DATA_ID):
os.makedirs (DATA_ID)

def image_path(fig_id):
return os.path.join(FIGURE_ID, fig_id)

def data_path(dat_id):
return os.path.join(DATA_ID, dat_id)

def save_fig(fig_id):
plt.savefig(image_path(fig_id) + ".png", format=’png’)

def SpringForce(v,x,t):
note here that we have divided by mass and we return the acceleration
return -2*gamma*v-x+Ftilde*cos(t*Omegatilde)

def RK4(v,x,t,n,Force):
for i in range(n-1):
Setting up ki
kix = DeltaT*v[i]
kiv = DeltaT*Force(vI[il,x[il,t[il)
Setting up k2

vv = v[i]+k1v*0.5

xx = x[i]+k1x*0.5

k2x = DeltaT*vv

k2v = DeltaT*Force(vv,xx,t[i]+DeltaT*0.5)
Setting up k3

vv = v[i]+k2v*0.5

xx = x[1]+k2x*0.5

k3x = DeltaT*vv

k3v = DeltaT*Force(vv,xx,t[i]+DeltaT*0.5)
Setting up k4

vv = v[i]+k3v

xx = x[i]+k3x

k4x = DeltaT*vv
kdv = DeltaT*Force(vv,xx,t[i]+DeltaT)
Final result

x[i+1] = x[i]+(k1x+2*k2x+2*xk3x+k4x) /6.
v[i+1] = v[i]+(klv+2xk2v+2*xk3v+k4v) /6.
t[i+1] = t[i] + DeltaT

Main part begins here

DeltaT = 0.001

#set up arrays

tfinal = 20 # in dimensionless time

n = ceil(tfinal/DeltaT)

set up arrays for t, v, and x

t = np.zeros(n)

v = np.zeros(n)

x = np.zeros(n)

Initial conditions (can change to more than one dim)
x0 = 1.0

vo = 0.0
x[0] = x0
v[0] = vO

gamma = 0.2

Omegatilde = 0.5

Ftilde = 1.0

Start integrating using Euler’s method

Note that we define the force function as a SpringForce
RK4(v,x,t,n,SpringForce)

Plot position as function of time
fig, ax = plt.subplots()
ax.set_ylabel(’x[m]’)
ax.set_xlabel(’t[s]’)

ax.plot(t, x)
fig.tight_layout()
save_fig("ForcedBlockRK4")
plt.show()

The next step is to include recurrent neural networks. These will be discussed
in connection with coming lectures.
Finally we add a so-called differential equation path as well.

Solving partial differential equations with neural networks

For this variant of project 2, we will assume that you have some background in
the solution of partial differential equations using finite difference schemes. In
the lecture slides from weeks 6 and 7 you may find additional material. We will
study the solution of the diffusion equation in one dimension using a standard
explicit or implicit scheme and neural networks to solve the same equations.

For the explicit and/or implicit schemes, you can study for example chapter
10 of the lecture notes in Computational Physics or alternative sources.

For the machine learning part you can use the functionality of for example
Tensorflow /Keras.

Part a), setting up the problem. The physical problem can be that of the
temperature gradient in a rod of length L = 1 at z = 0 and « = 1. We are
looking at a one-dimensional problem

O*u(x,t) Ou(x,t)
ox2 Ot

>0,z €0, L]

or
Ugy = Ut,
with initial conditions, i.e., the conditions at ¢ = 0,
u(z,0) =sin(mz) O0<z <L,
with L = 1 the length of the z-region of interest. The boundary conditions are

u(0,t) =0 t>0,

and

w(L,t)=0 t>0.

The function u(z,t) can be the temperature gradient of a rod. As time increases,
the velocity approaches a linear variation with x.

https://github.com/CompPhysics/ComputationalPhysics/blob/master/doc/Lectures/lectures2015.pdf

We will limit ourselves to the so-called explicit forward Euler algorithm with
discretized versions of time given by a forward formula and a centered difference
in space resulting in

u(z, t + At) —u(z,t) u(z,t; + At) —u(ax;, tj)

e At - At
and
u(x + Az, t) — 2u(x,t) + u(x — Az, t)
Ugy < A2 ,
or
u(z; + Az, t;) — 2u(x;, t;) + u(z; — Az, t;)
Upy &)

Az?
Write down the algorithm and the equations you need to implement. Find
also the analytical solution to the problem.

Part b). Implement the explicit scheme algorithm and perform tests of the
solution for Az =1/10, Az = 1/100 using At as dictated by the stability limit
of the explicit scheme. The stability criterion for the explicit scheme requires
that At/Ax? < 1/2.

Study the solutions at two time points ¢; and t2 where u(x,t;) is smooth
but still significantly curved and u(z,t2) is almost linear, close to the stationary
state.

Part c¢) Neural networks. Study now the lecture notes on solving ODEs and
PDEs with neural network and use either your own code or the functionality of
tensorflow /keras to solve the same equation as in part b). Discuss your results
and compare them with the standard explicit or implicit scheme. Include also
the analytical solution and compare with that.

Part d). Finally, present a critical assessment of the methods you have studied
and discuss the potential for the solving differential equations and eigenvalue
problems with machine learning methods.

Introduction to numerical projects

Here follows a brief recipe and recommendation on how to write a report for
each project.

e Give a short description of the nature of the problem and the eventual
numerical methods you have used.

e Describe the algorithm you have used and/or developed. Here you may
find it convenient to use pseudocoding. In many cases you can describe
the algorithm in the program itself.

¢ Include the source code of your program. Comment your program properly.

o If possible, try to find analytic solutions, or known limits in order to test
your program when developing the code.

e Include your results either in figure form or in a table. Remember to label
your results. All tables and figures should have relevant captions and labels
on the axes.

o Try to evaluate the reliabilty and numerical stability /precision of your
results. If possible, include a qualitative and/or quantitative discussion of
the numerical stability, eventual loss of precision etc.

e Try to give an interpretation of you results in your answers to the problems.

e Critique: if possible include your comments and reflections about the
exercise, whether you felt you learnt something, ideas for improvements
and other thoughts you’ve made when solving the exercise. We wish to
keep this course at the interactive level and your comments can help us
improve it.

o Try to establish a practice where you log your work at the computerlab.
You may find such a logbook very handy at later stages in your work,
especially when you don’t properly remember what a previous test version
of your program did. Here you could also record the time spent on solving
the exercise, various algorithms you may have tested or other topics which
you feel worthy of mentioning.

Format for electronic delivery of report and programs

The preferred format for the report is a PDF file. You can also use DOC or
postscript formats or as an ipython notebook file. As programming language we
prefer that you choose between C/C++, Fortran2008 or Python. The following
prescription should be followed when preparing the report:

e Send us an email in order to hand in your projects with a link to your
GitHub/Gitlab repository.

e In your GitHub/GitLab or similar repository, please include a folder which
contains selected results. These can be in the form of output from your
code for a selected set of runs and input parameters.

Finally, we encourage you to collaborate. Optimal working groups consist of 2-3
students. You can then hand in a common report.

Software and needed installations

If you have Python installed (we recommend Python3) and you feel pretty
familiar with installing different packages, we recommend that you install the
following Python packages via pip as

1. pip install numpy scipy matplotlib ipython scikit-learn tensorflow sympy
pandas pillow

For Python3, replace pip with pip3.

See below for a discussion of tensorflow and scikit-learn.

For OSX users we recommend also, after having installed Xcode, to install
brew. Brew allows for a seamless installation of additional software via for
example

1. brew install python3

For Linux users, with its variety of distributions like for example the widely
popular Ubuntu distribution you can use pip as well and simply install Python
as

1. sudo apt-get install python3 (or python for python2.7)

etc etc.

If you don’t want to install various Python packages with their dependencies
separately, we recommend two widely used distrubutions which set up all relevant
dependencies for Python, namely

1. Anaconda Anaconda is an open source distribution of the Python and R
programming languages for large-scale data processing, predictive analytics,
and scientific computing, that aims to simplify package management and
deployment. Package versions are managed by the package management
system conda

2. Enthought canopy is a Python distribution for scientific and analytic
computing distribution and analysis environment, available for free and
under a commercial license.

Popular software packages written in Python for ML are
o Scikit-learn,
o Tensorflow,
e PyTorch and
o Keras.

These are all freely available at their respective GitHub sites. They encompass
communities of developers in the thousands or more. And the number of code
developers and contributors keeps increasing.

10

https://docs.anaconda.com/
https://www.enthought.com/product/canopy/
http://scikit-learn.org/stable/
https://www.tensorflow.org/
http://pytorch.org/
https://keras.io/

