
Project 3, CompSci course

CompSci program

Department of Physics, University of Oslo, Norway

Bayesian analysis / Gaussian processes regression
For this project you can choose whether to focus on (1) Bayesian parameter
estimation and model comparison, or (2) Gaussian process (GP) regression. If
you want you are of course welcome to study both topics — since GP regression
is a Bayesian approach there is clearly much overlap here.

We encourage you to find (or generate/simulate!) a dataset that is relevant
to your own work, or that you simply find interesting, and use this for your
project. However, we will also provide some example datasets below.

1) Bayesian parameter estimation and model comparison
Here the main goal is to perform a Bayesian data analysis (both parameter
estimation and model comparison) using different parameterised models, and
study how different modelling assumptions affect the final result. Some key
questions you should investigate and/or comment on are:

• What is the likelihood function you use, and why?

• Prior dependence: how sensitive are your analysis results to changes in
your priors?

• Which (if any) of the models you consider is favored in Bayesian model
comparison?1 How are your model comparison results related to model
complexity?

• Are your posteriors multimodal?

• Would a max-likelihood approach (non-Bayesian) to parameter estimation
yield similar or different results in your case?

• How can the results be best presented and summarised?

• Any numerical/computational challenges?
1Also, note that you can of course use the model comparison framework to compare any

sorts of hypotheses you can evaluate posterior beliefs for — it doesn’t have to be a comparison
of posterior probabilities on the form P (model|data). For instance, you can consider comparing
separate regions within the parameter space of a single model, if this seems interesting for your
problem.



The parameterised models you consider should have at least a few (≥ 3)
free parameters, to make sure the problem isn’t completely trivial. You can use
any numerical tool(s) you prefer, but we recommend trying out the pymultinest
package (Python interface to the MultiNest package):

• Documentation: http://johannesbuchner.github.io/PyMultiNest/ and
https://github.com/JohannesBuchner/MultiNest

• Tutorial: http://johannesbuchner.github.io/pymultinest-tutorial/
example2.html

• We recommend not relying on the scripts that pymultinest provide for
the final analysis of your posterior results, but to rather use the set of
generated posterior samples toegether with your own analysis/visualisation
code.

• The documentation above contains information on the content of all
the output files generated by MultiNest. The most important is the
post_equal_weights.dat file.

• Note: The function referred to in pymultinest examples as prior is not
a function representing the actual prior pdf, but rather a function where
you must transform samples drawn uniformly from a unit hypercube, to
samples from your chosen prior.

• If needed, we can provide an annotated simple example of how to use
pymultinest.

Possible example dataset

We recommend finding a dataset that interests you. But as an alternative, we
provide a simple example dataset here:
https://www.dropbox.com/s/vxlt4dqnniyauiu/example_data.txt?dl=0
We assume that these are data from an experiment where the background com-
ponent of the data is expected to follow a falling spectrum, while any interesting
signals in the data can appear as peaks on top of this falling background. Com-
mon question when faced with such a dataset are: Is there evidence for any
signal peaks in the data? If so, where are these signal peaks and what are the
parameters describing them? How many such peaks are there?

2) Gaussian process regression
Here the main goal is to explore various aspects of GP regression. Here are some
questions you can investigate and/or comment on:

• How does your regression results depend on your choice of covariance
function (kernel), i.e. your choice of prior on function space?

2

http://johannesbuchner.github.io/PyMultiNest/
https://github.com/JohannesBuchner/MultiNest
http://johannesbuchner.github.io/pymultinest-tutorial/example2.html
http://johannesbuchner.github.io/pymultinest-tutorial/example2.html
https://www.dropbox.com/s/vxlt4dqnniyauiu/example_data.txt?dl=0


• Is a “standard” few-parameter covariance function sufficient? Can you get
better / more reasonable results by constructing a more problem-specific
covariance function?

• Are your GP models “overconfident”, i.e. are there cases where the regres-
sion uncertainty is severely underestimated?

• Is there noise in the data, and what impact does this have on your results?
And what exactly is your GP giving predictions for — a true (noiseless)
function or noisy data points?

• What approach is used for training the GP(s)? Why this approach?

• How do your GPs tackle the limit of large number of data points (if
available)? What approaches could you take to overcome problems with
large datasets?

• Can your GPs extrapolate beyond the region of training data? Should
they be able to?

We again advice you to find/generate datasets that are relevant for your
own field of research. An alternative is to use some of the test functions
given here https://www.sfu.ca/~ssurjano (e.g. some of the functions from
the emulation/prediction category), and generate your own test and training
datasets from these functions. While one-dimensional test functions are useful to
build intuition and provide easy-to-visualise examples, we advice you to explore
test functions with many-dimensional input spaces to make the problem more
challenging/realistic.

You are free to use any numerical GP software you prefer, or write your own
GP code. A fairly user-friendly option is the scikit-learn package:
https://scikit-learn.org/stable/modules/gaussian_process.html

3

https://www.sfu.ca/~ssurjano
https://scikit-learn.org/stable/modules/gaussian_process.html

