
Project 3, deadline October 26
(Monday)

Computational Physics I FYS3150/FYS4150

Department of Physics, University of Oslo, Norway

Fall semester 2020

Building a model for the solar system using ordinary differ-
ential equations
This project counts one third of the final grade. Projects 4 and 5 give the
final two thirds. The total score is 100 out of 100 points. How the projects
are graded and evaluated is described at https://github.com/CompPhysics/
ComputationalPhysics/blob/master/doc/Projects/EvaluationGrading/EvaluationForm.
md.

Introduction. The aim of this project is to develop a code for simulating
the solar system using a widely popular algorithm for solving coupled ordinary
differential equations, the so-called velocity Verlet algorithm. An important
aspect of this project is to be able to object orient your code. There are several
coupled ordinary differenatial equations where the basic equations, except for
various physical constants and variables, are rather similar. Thus, write once
and run many times, one of the central points of object orientation, is something
which makes our program easier to extend and build upon when we add more
planets or moons or other astronomical objects. The basic equations which
govern the system are rather simple, a set of coupled equations that codify
Newton’s law of motion due the gravitational force.

In the first part however, we will limit ourselves (in order to test the algorithm)
to a hypothetical solar system with the Earth only orbiting around the sun. The
only force in the problem is gravity. Newton’s law of gravitation is given by a
force FG

FG = GM�MEarth

r2 ,

where M� is the mass of the Sun and MEarth is the mass of the Earth. The
gravitational constant is G and r is the distance between the Earth and the Sun.
We assume that the Sun has a mass which is much larger than that of the Earth.

c© 1999-2020, "Computational Physics I
FYS3150/FYS4150":"http://www.uio.no/studier/emner/matnat/fys/FYS3150/index-

eng.html". Released under CC Attribution-NonCommercial 4.0
license

http://www.uio.no/studier/emner/matnat/fys/FYS3150/index-eng.html
https://github.com/CompPhysics/ComputationalPhysics/blob/master/doc/Projects/EvaluationGrading/EvaluationForm.md
https://github.com/CompPhysics/ComputationalPhysics/blob/master/doc/Projects/EvaluationGrading/EvaluationForm.md
https://github.com/CompPhysics/ComputationalPhysics/blob/master/doc/Projects/EvaluationGrading/EvaluationForm.md

We can therefore safely neglect the motion of the Sun in this problem. In the
first part of this project, your aim is to compute the motion of the the Earth
using different methods for solving ordinary differential equations.

We assume that the orbit of the Earth around the Sun is co-planar, and we
take this to be the xy-plane. Using Newton’s second law of motion we get the
following equations

d2x

dt2
= FG,x
MEarth

,

and
d2y

dt2
= FG,y
MEarth

,

where FG,x and FG,y are the x and y components of the gravitational force.
We will use so-called astronomical units when rewriting our equations. Using

astronomical units (AU as abbreviation)it means that one astronomical unit of
length, known as 1 AU, is the average distance between the Sun and Earth, that
is 1 AU = 1.5× 1011 m. It can also be convenient to use years instead of seconds
since years match better the time evolution of the solar system. The mass of the
Sun is Msun = M� = 2× 1030 kg. The masses of all relevant planets and their
distances from the sun are listed in the table here in kg and AU.

Planet Mass in kg Distance to sun in AU
Earth MEarth = 6× 1024 kg 1AU
Jupiter MJupiter = 1.9× 1027 kg 5.20 AU
Mars MMars = 6.6× 1023 kg 1.52 AU
Venus MVenus = 4.9× 1024 kg 0.72 AU
Saturn MSaturn = 5.5× 1026 kg 9.54 AU
Mercury MMercury = 3.3× 1023 kg 0.39 AU
Uranus MUranus = 8.8× 1025 kg 19.19 AU
Neptun MNeptun = 1.03× 1026 kg 30.06 AU
Pluto MPluto = 1.31× 1022 kg 39.53 AU

Pluto is no longer considered a planet, but we add it here for historical reasons.
It is optional in this project to include Pluto and eventual moons.

In setting up the equations we can limit ourselves to a co-planar motion
and use only the x and y coordinates. But you should feel free to extend your
equations to three dimensions, it is not very difficult and the data from NASA
are all in three dimensions.

NASA has an excellent site at http://ssd.jpl.nasa.gov/horizons.cgi#
top. From there you can extract initial conditions in order to start your differen-
tial equation solver. At the above website you need to change from OBSERVER
to VECTOR and then write in the planet you are interested in. The generated
data contain the x, y and z values as well as their corresponding velocities. The
velocities are in units of AU per day. Alternatively they can be obtained in
terms of km and km/s.

For the first system below involving only the Earth and the Sun, you could
just initialize the position with say x = 1 AU and y = 0 AU.

2

http://www.nasa.gov/index.html
http://ssd.jpl.nasa.gov/horizons.cgi#top
http://ssd.jpl.nasa.gov/horizons.cgi#top

For this project you can hand in collaborative reports and pro-
grams.

Project 3a): The Earth-Sun system. We assume that mass units can be
obtained by using the fact that Earth’s orbit is almost circular around the Sun.
For circular motion we know that the force must obey the following relation

FG = MEarthv
2

r
= GM�MEarth

r2 ,

where v is the velocity of Earth. The latter equation can be used to show that

v2r = GM� = 4π2AU3/yr2.

Discretize the above differential equations and set up an algorithm for solving
these equations using Euler’s forward algorithm and the so-called velocity Verlet
method discussed in the lecture notes and lecture slides.

You can choose if you wish to study the systems in this project in two or
three dimensions.

Project 3b): Writing an object oriented code for the Earth-Sun sys-
tem. Write then a program which solves the above differential equations for the
Earth-Sun system using Euler’s method and the velocity Verlet method. Write
these codes without object orientation first in order to make sure everything is
running correctly. Thereafter you should start planning to object orient your
code. Try to figure out which parts and operations could be written as classes
and generalized. Your task here is to think of the program flow and figure out
which parts can be abstracted and reused for many types of operations.

For those of you who will focus on the Molecular Dynamics version of Project
5, much of the structures developed here as well as the implementation of the
Verlet algorithm, can be used in that project as well.

Project 3c): Tests of the algorithms. Find out which initial value for the
velocity that gives a circular orbit and test the stability of your algorithm as
function of different time steps ∆t. Make a plot of the results you obtain for the
position of the Earth (plot the x and y values and/or if you prefer to use three
dimensions the z-value as well) orbiting the Sun.

Check also for the case of a circular orbit that both the kinetic and the po-
tential energies are conserved. Explain why these quantities should be conserved
for circular motion.

Discuss eventual differences between the Verlet algorithm and the Euler
algorithm. Consider also the number of FLOPs involved and perform a timing
of the two algorithms for equal final times.

We will use the velocity Verlet algorithm in the remaining part of the project.

Project 3d): Conservation of angular momentum. Use Kepler’s second
law to show that angular momentum is conserved. Discuss your results with
circular and elliptical orbits for the Earth-Sun system.

3

http://compphysics.github.io/ComputationalPhysics/doc/pub/ode/html/ode-reveal.html

Project 3e): Testing forms of the force. Till now we have assumed that
we have an inverse-square force

FG = GM�MEarth

r2 .

We replace our inverse-square force with

FG = GM�MEarth

rβ
,

with β ∈ [2, 3]. Rerun your Earth-Sun system using the Velocity Verlet algorithm
where you let β ∈ [2, 3]. What happens to the Earth-Sun system when β creeps
towards 3? Comment your results. Can you use the observations of planetary
motion to determine by what amount Nature deviates from a perfect inverse-
square law?

Consider also an elliptical orbit with an initial position 1 AU from the Sun
and an initial velocity of 5 AU/yr. Show that the total energy is a constant (the
kinetic and potential energies will vary). Show also that the angular momentum
is a constant. If you change the parameter β in F (r) ∝ −1/rβ from β = 2 to
β = 3, are these quantities conserved ? Discuss your results. (Hint: relate your
results to Kepler’s laws).

Project 3f): Escape velocity. Consider then a planet which begins at a
distance of 1 AU from the sun. Find out by trial and error what the initial
velocity must be in order for the planet to escape from the sun. Can you find an
exact answer? How does that match your numerical results?

Project 3g): The three-body problem. We will now study the three-body
problem, still with the Sun kept fixed as the center of mass of the system but
including Jupiter (the most massive planet in the solar system, having a mass
that is approximately 1000 times smaller than that of the Sun) together with
the Earth. This leads to a three-body problem. Without Jupiter, the Earth’s
motion is stable and unchanging with time. The aim here is to find out how
much Jupiter alters the Earth’s motion.

The program you have developed can easily be modified by simply adding
the magnitude of the force betweem the Earth and Jupiter.

This force is given again by

FEarth−Jupiter = GMJupiterMEarth

r2
Earth−Jupiter

,

where MJupiter is the mass of the sun and MEarth is the mass of Earth. The
gravitational constant is G and rEarth−Jupiter is the distance between Earth and
Jupiter.

We assume again that the orbits of the two planets are co-planar, and we take
this to be the xy-plane (you can easily extend the equations to three dimensions).
Modify your first-order differential equations in order to accomodate both the

4

motion of the Earth and Jupiter by taking into account the distance in x and y
between the Earth and Jupiter. Set up the algorithm and plot the positions of
the Earth and Jupiter using the velocity Verlet algorithm. Discuss the stability
of the solutions using your Verlet solver.

Repeat the calculations by increasing the mass of Jupiter by a factor of 10
and 1000 and plot the position of the Earth. Study again the stability of the
Verlet solver.

Project 3h): Final model for all planets of the solar system. Finally,
using our Verlet solver, we carry out a real three-body calculation where all
three systems, the Earth, Jupiter and the Sun are in motion. To do this, choose
the center-of-mass position of the three-body system as the origin rather than
the position of the sun. Give the Sun an initial velocity which makes the total
momentum of the system exactly zero (the center-of-mass will remain fixed).
Compare these results with those from the previous exercise and comment your
results. Extend your program to include all planets in the solar system (if you
have time, you can also include the various moons, but it is not required) and
discuss your results. Use the above NASA link to set up the initial positions
and velocities for all planets.

Project 3i): The perihelion precession of Mercury. An important test
of the general theory of relativity was to compare its prediction for the perihelion
precession of Mercury to the observed value. The observed value of the perihelion
precession, when all classical effects (such as the perturbation of the orbit due
to gravitational attraction from the other planets) are subtracted, is 43′′ (43 arc
seconds) per century.

Closed elliptical orbits are a special feature of the Newtonian 1/r2 force. In
general, any correction to the pure 1/r2 behaviour will lead to an orbit which is
not closed, i.e. after one complete orbit around the Sun, the planet will not be
at exactly the same position as it started. If the correction is small, then each
orbit around the Sun will be almost the same as the classical ellipse, and the
orbit can be thought of as an ellipse whose orientation in space slowly rotates.
In other words, the perihelion of the ellipse slowly precesses around the Sun.

You will now study the orbit of Mercury around the Sun, adding a general
relativistic correction to the Newtonian gravitational force, so that the force
becomes

FG = GMSunMMercury

r2

[
1 + 3l2

r2c2

]
where MMercury is the mass of Mercury, r is the distance between Mercury and
the Sun, l = |~r × ~v| is the magnitude of Mercury’s orbital angular momentum
per unit mass, and c is the speed of light in vacuum. Run a simulation over
one century of Mercury’s orbit around the Sun with no other planets present,
starting with Mercury at perihelion on the x axis. Check then the value of the
perihelion angle θp, using

tan θp = yp

xp

5

where xp (yp) is the x (y) position of Mercury at perihelion, i.e. at the point
where Mercury is at its closest to the Sun. You may use that the speed of Mercury
at perihelion is 12.44 AU/yr, and that the distance to the Sun at perihelion
is 0.3075 AU. You need to make sure that the time resolution used in your
simulation is sufficient, for example by checking that the perihelion precession
you get with a pure Newtonian force is at least a few orders of magnitude smaller
than the observed perihelion precession of Mercury. Can the observed perihelion
precession of Mercury be explained by the general theory of relativity?

Introduction to numerical projects
Here follows a brief recipe and recommendation on how to write a report for
each project.

• Give a short description of the nature of the problem and the eventual
numerical methods you have used.

• Describe the algorithm you have used and/or developed. Here you may
find it convenient to use pseudocoding. In many cases you can describe
the algorithm in the program itself.

• Include the source code of your program. Comment your program properly.

• If possible, try to find analytic solutions, or known limits in order to test
your program when developing the code.

• Include your results either in figure form or in a table. Remember to label
your results. All tables and figures should have relevant captions and labels
on the axes.

• Try to evaluate the reliabilty and numerical stability/precision of your
results. If possible, include a qualitative and/or quantitative discussion of
the numerical stability, eventual loss of precision etc.

• Try to give an interpretation of you results in your answers to the problems.

• Critique: if possible include your comments and reflections about the
exercise, whether you felt you learnt something, ideas for improvements
and other thoughts you’ve made when solving the exercise. We wish to
keep this course at the interactive level and your comments can help us
improve it.

• Try to establish a practice where you log your work at the computerlab.
You may find such a logbook very handy at later stages in your work,
especially when you don’t properly remember what a previous test version
of your program did. Here you could also record the time spent on solving
the exercise, various algorithms you may have tested or other topics which
you feel worthy of mentioning.

6

Format for electronic delivery of report and programs
The preferred format for the report is a PDF file. You can also use DOC or
postscript formats or as an ipython notebook file. As programming language we
prefer that you choose between C/C++, Fortran2008 or Python. The following
prescription should be followed when preparing the report:

• Use Canvas to hand in your projects, log in at https://www.uio.no/
english/services/it/education/canvas/ with your normal UiO user-
name and password.

• Upload only the report file! For the source code file(s) you have developed
please provide us with your link to your github domain. The report file
should include all of your discussions and a list of the codes you have
developed. Do not include library files which are available at the course
homepage, unless you have made specific changes to them. Alternatively,
you can just upload the address to your GitHub or GitLab repository.

• In your git repository, please include a folder which contains selected results.
These can be in the form of output from your code for a selected set of
runs and input parameters.

• In this and all later projects, you should include tests (for example unit
tests) of your code(s).

• Comments from us on your projects, approval or not, corrections to be
made etc can be found under your Canvas domain and are only visible to
you and the teachers of the course.

Finally, we encourage you to work two and two together. Optimal working
groups consist of 2-3 students. You can then hand in a common report.

7

https://www.uio.no/english/services/it/education/canvas/
https://www.uio.no/english/services/it/education/canvas/

