Project 5, deadline December 16, 2020

Disease Modeling

Fall semester 2020

Theoretical background and description of the system

The goal of this project is to develop a Monte Carlo simulation of the spread
of an infectious disease. We will use the classical SIRS model of to develop the
necessary transition probabilities for the simulation. Interpreting the simulation
requires a thorough understanding of the SIRS model, so a deterministic approach
is used in conjunction with Monte Carlo methods.

The main purpose of creating such a simulation is to investigate how a disease
spreads throughout a given population over time. Then we can make predictions
about whether or not a certain disease has the capacity to establish itself within
the population, i.e. a fraction of the population remains infected after the system
reaches equilibrium.

The SIRS model considers an isolated population of N people which are
divided into three separate groups:

e Susceptible (S): those without immunity to the disease,
e Infected (I): those who are currently infected with the disease,

o Recovered (R): those who have been infected in the past and have developed
an immunity to the disease.

A person can move from one group to another only in the cyclic order suggested
by the name of the model S — I — R — S. The rate of transmission a, the
rate of recovery b and the rate of immunity loss ¢ help describe the flow of
people moving between the three groups. The population is assumed to mix
homogeneously and total population is assumed to remain constant so that

N = S(t) + I(t) + R(%). (1)

For the simple case, we will assume that the dynamics of the epidemic occur
during a time scale much smaller than the average person’s lifetime. Hence the
effect of the birth and death rate of the population is ignored.

From these assumptions, a set of coupled differential equations can be con-
structed to form the classical SIRS model:

https://en.wikipedia.org/wiki/Compartmental_models_in_epidemiology

I— —_— —
S"=cR i
ST (2)
=22 1
N b
R =bl —cR

Note that for small populations, one may choose to write aSI instead of
“TSI since the number of susceptibles which become infected depend more on
the absolute number of infected people rather than the infected fraction of the
population.

Though this set does not have analytic solutions like the closely-related SIR
model, the equilibrium solutions are simple to obtain. The constraint in (1)
reduces this three dimensional system into a two dimensional one so that the

equation for R’ can just be omitted:

S’:c(N—S—I)—ﬂ
N (3)
I’—a—Sl—bI
- N

The steady state is found by setting both equations in (3) equal to zero. Let
s, 1, and r denote the fractions of people in S, I, and R, respectively. Then the
fractions of people in each group at equilibrium are:

cl+ g

Here, the asterisk (*) signifies that these fractions are at equilibrium. Notice
that each fraction must be a number between 0 and 1, and that the three fractions
must add up to 1. Thus the equations in (4) suggest that the rate of recovery b
must be less than the rate of transmission a for the number of infected people at
equilibrium to be greater than zero. In other words, the disease establishes itself
in the population only if b < a.

For this project you can collaborate with fellow students and you
can hand in a common report. This project (together with projects 3 and
4) counts 1/3 of the final mark.

Part a) setting up the differential equations. We will create four different
populations to investigate the effect of increasing the rate of recovery b and

crossing the "threshold". Each population consists of 400 people, 100 of which
were initially infected and 300 of which were initially susceptible. We fix the
rate of transmission a and the rate of immunity loss ¢ between populations, but
let the rate of recovery b be varied because it is the one parameter which can
be reasonably controlled by the actions of human society (access to health care,
development of new medicines, etc). Note that the rates have units of inverse
time. The table here lists a possible set of parameters for the four different
populations.

a
b
c 05 05 05 0.5

Rate A B
4 4
1 2

w =0

D
4
4

The rates of transmission are given by the parameter a, recovery by b, and
immunity loss ¢ for populations A, B, C, and D.

We treat the population as a continuous variable. Develop a Runge-Kutta
fourth order code to solve the above equations.

Discuss your results and present your interpreations.

Part b), moving to a Monte Carlo simulation. The set of differential
equations in (2) inherently assume that S, I, and R are continuous variables,
when they are discrete in reality. We can use the idea of randomness to remedy
this issue by defining a set of transition probabilities for the possible moves a
person can take from one state to another: S — I, I — R, and R — S. To
obtain the specific values for each probability, we first notice from (2) that in a
small time step At, the number of people moving from S to [is approximately
“TSIAt. Likewise, about bIAt move from I to R and cRAt move from R to S.

Now we let At be small enough so that at most one person moves from a
given group to another. Since

I N\? N
max{%At} = % (2) At = %At,

max {bIAt} — bNAL, (5)
max {cRAt} = cNAt,

the time step is then given by
4 1 1
NI N 6
P GN BN eN (©)
This construction allows us to reinterpret the values C‘TSIAL bIAt, and cRAt as
transition probabilties:

aST
P(I — R) = bIAt, (7)
P(R — S) = cRAL

For each possible move, a random number between 0 and 1 is generated. If the
number is less than the probability for the move, the move is taken.

Develop now a Monte Carlo algorithm which implements the last equations
using the same parameters N, a, b, and ¢ for each population. Compare your
results to those obtained with the deterministic differential equation solver and
discuss your findings.

You will need to find the fraction of people when the system has been
equilibrated. You will need to find the equlibrium expectation values and
corresonding standard deviations.

Part ¢) Improvements, vital dynamics. The same principles used in this
simple model can be extended to include more details about the population and
disease.

For instance, vital dynamics can be easily added to the system so that the
model can describe the spread of diseases which occur over longer stretches of
time. If e is the birth rate, d is the death rate, and dj is the death rate of
infected people due to the disease, then the modified differential equations are
given by:

S':chaTSI—dSJreN

ST (8)
=27 pr—dr—d;1

b —dl—ds
R =bl —cR—dR

Here, we have assumed that all the babies born into the population are initially
susceptible.

Add now these additions to your ODE solver and Monte Carlo solver and
discuss the results.

Part d) Seasonal Variation. For diseases such as influenza, the rate of
transmission depends largely on the time of year. During the colder months,
individuals are more likely to spend time in closer proximity to one another,
resulting in a rate of transmission which oscillates. So we can let a be given by

a(t) = Acos(wt) + ag, (9)

where ag is the average transmission rate, A is the maximum deviation

from ag, and w is the frequency of oscillation. Study the the effect of seasonal

variations as well, with both the ODE and Monte Carlo solver. Try different
values of the above new parameters and discuss your results.

Part e) Vaccination. Diseases with available vaccinations allow people to
move directly from S to R, breaking the cyclic structure of the SIRS model.
We assume that a susceptible individual’s choice to become vaccinated does
not depend on how many other susceptibles are vaccinated. We may, however,
assume that the rate of vaccination f can depend on the time, since this rate may
oscillate during the course of a year and/or increase as awareness and medical
research increases. Then the system of differential equations become

' _op_ 95T
S"=cR i
I’:%Sl—bl (10)

R =bl —cR+f

Add now the effect of vaccination via the parameter f and discuss again your
results. Play around with different values of the parameter f.

Introduction to numerical projects

Here follows a brief recipe and recommendation on how to write a report for
each project.

e Give a short description of the nature of the problem and the eventual
numerical methods you have used.

e Describe the algorithm you have used and/or developed. Here you may
find it convenient to use pseudocoding. In many cases you can describe
the algorithm in the program itself.

e Include the source code of your program. Comment your program properly.

e If possible, try to find analytic solutions, or known limits in order to test
your program when developing the code.

e Include your results either in figure form or in a table. Remember to label
your results. All tables and figures should have relevant captions and labels
on the axes.

e Try to evaluate the reliabilty and numerical stability /precision of your
results. If possible, include a qualitative and/or quantitative discussion of
the numerical stability, eventual loss of precision etc.

e Try to give an interpretation of you results in your answers to the problems.

e Critique: if possible include your comments and reflections about the
exercise, whether you felt you learnt something, ideas for improvements
and other thoughts you’ve made when solving the exercise. We wish to
keep this course at the interactive level and your comments can help us
improve it.

Try to establish a practice where you log your work at the computerlab.
You may find such a logbook very handy at later stages in your work,
especially when you don’t properly remember what a previous test version
of your program did. Here you could also record the time spent on solving
the exercise, various algorithms you may have tested or other topics which
you feel worthy of mentioning.

Format for electronic delivery of report and programs

The preferred format for the report is a PDF file. You can also use DOC or
postscript formats or as an ipython notebook file. As programming language we
prefer that you choose between C/C++4, Fortran2008 or Python. The following
prescription should be followed when preparing the report:

Use Canvas to hand in your projects, log in at https://www.uio.no/
english/services/it/education/canvas/ with your normal UiO user-
name and password.

Upload only the report file! For the source code file(s) you have developed
please provide us with your link to your github domain. The report file
should include all of your discussions and a list of the codes you have
developed. Do not include library files which are available at the course
homepage, unless you have made specific changes to them. Alternatively,
you can just upload the address to your GitHub or GitLab repository.

In your git repository, please include a folder which contains selected results.
These can be in the form of output from your code for a selected set of
runs and input parameters.

In this and all later projects, you should include tests (for example unit
tests) of your code(s).

Comments from us on your projects, approval or not, corrections to be
made etc can be found under your Canvas domain and are only visible to
you and the teachers of the course.

Finally, we encourage you to work two and two together. Optimal working
groups consist of 2-3 students. You can then hand in a common report.

https://www.uio.no/english/services/it/education/canvas/
https://www.uio.no/english/services/it/education/canvas/

