
Computational Physics Lectures: How
to optimize codes, from vectorization to

parallelization

Morten Hjorth-Jensen1,2

1Department of Physics, University of Oslo
2Department of Physics and Astronomy and National Superconducting Cyclotron Laboratory, Michigan State University

Aug 6, 2018

Content
• Simple compiler options

• Tools to benchmark your code

• Machine architectures

• What is vectorization?

• Parallelization with OpenMP

• Parallelization with MPI

• Vectorization and parallelization, examples

Optimization and profiling
Till now we have not paid much attention to speed and possible optimization

possibilities inherent in the various compilers. We have compiled and linked as
c++ -c mycode.cpp
c++ -o mycode.exe mycode.o

For Fortran replace with for example gfortran or ifort. This is what we call a
flat compiler option and should be used when we develop the code. It produces
normally a very large and slow code when translated to machine instructions.
We use this option for debugging and for establishing the correct program output
because every operation is done precisely as the user specified it.

It is instructive to look up the compiler manual for further instructions by
writing

man c++

c© 1999-2018, Morten Hjorth-Jensen. Released under CC Attribution-NonCommercial 4.0
license

More on optimization
We have additional compiler options for optimization. These may include

procedure inlining where performance may be improved, moving constants
inside loops outside the loop, identify potential parallelism, include automatic
vectorization or replace a division with a reciprocal and a multiplication if this
speeds up the code.

c++ -O3 -c mycode.cpp
c++ -O3 -o mycode.exe mycode.o

This (other options are -O2 or -Ofast) is the recommended option.

Optimization and profiling
It is also useful to profile your program under the development stage. You

would then compile with
c++ -pg -O3 -c mycode.cpp
c++ -pg -O3 -o mycode.exe mycode.o

After you have run the code you can obtain the profiling information via
gprof mycode.exe > ProfileOutput

When you have profiled properly your code, you must take out this option
as it slows down performance. For memory tests use valgrind. An excellent
environment for all these aspects, and much more, is Qt creator.

Optimization and debugging
Adding debugging options is a very useful alternative under the development

stage of a program. You would then compile with
c++ -g -O0 -c mycode.cpp
c++ -g -O0 -o mycode.exe mycode.o

This option generates debugging information allowing you to trace for example if
an array is properly allocated. Some compilers work best with the no optimization
option -O0.

Other optimization flags. Depending on the compiler, one can add flags
which generate code that catches integer overflow errors. The flag -ftrapv does
this for the CLANG compiler on OS X operating systems.

Other hints
In general, irrespective of compiler options, it is useful to

• avoid if tests or call to functions inside loops, if possible.

• avoid multiplication with constants inside loops if possible

2

http://www.valgrind.org

Here is an example of a part of a program where specific operations lead to a
slower code

k = n-1;
for (i = 0; i < n; i++){

a[i] = b[i] +c*d;
e = g[k];

}

A better code is
temp = c*d;
for (i = 0; i < n; i++){

a[i] = b[i] + temp;
}
e = g[n-1];

Here we avoid a repeated multiplication inside a loop. Most compilers, depending
on compiler flags, identify and optimize such bottlenecks on their own, without
requiring any particular action by the programmer. However, it is always useful
to single out and avoid code examples like the first one discussed here.

Vectorization and the basic idea behind parallel computing
Present CPUs are highly parallel processors with varying levels of parallelism.

The typical situation can be described via the following three statements.

• Pursuit of shorter computation time and larger simulation size gives rise
to parallel computing.

• Multiple processors are involved to solve a global problem.

• The essence is to divide the entire computation evenly among collaborative
processors. Divide and conquer.

Before we proceed with a more detailed discussion of topics like vectorization
and parallelization, we need to remind ourselves about some basic features of
different hardware models.

A rough classification of hardware models

• Conventional single-processor computers are named SISD (single-instruction-
single-data) machines.

• SIMD (single-instruction-multiple-data) machines incorporate the idea of
parallel processing, using a large number of processing units to execute the
same instruction on different data.

• Modern parallel computers are so-called MIMD (multiple-instruction-
multiple-data) machines and can execute different instruction streams
in parallel on different data.

3

Shared memory and distributed memory
One way of categorizing modern parallel computers is to look at the memory

configuration.

• In shared memory systems the CPUs share the same address space. Any
CPU can access any data in the global memory.

• In distributed memory systems each CPU has its own memory.

The CPUs are connected by some network and may exchange messages.

Different parallel programming paradigms

• Task parallelism: the work of a global problem can be divided into a
number of independent tasks, which rarely need to synchronize. Monte
Carlo simulations represent a typical situation. Integration is another.
However this paradigm is of limited use.

• Data parallelism: use of multiple threads (e.g. one or more threads
per processor) to dissect loops over arrays etc. Communication and syn-
chronization between processors are often hidden, thus easy to program.
However, the user surrenders much control to a specialized compiler. Ex-
amples of data parallelism are compiler-based parallelization and OpenMP
directives.

Different parallel programming paradigms

• Message passing: all involved processors have an independent memory
address space. The user is responsible for partitioning the data/work
of a global problem and distributing the subproblems to the processors.
Collaboration between processors is achieved by explicit message passing,
which is used for data transfer plus synchronization.

• This paradigm is the most general one where the user has full control.
Better parallel efficiency is usually achieved by explicit message passing.
However, message-passing programming is more difficult.

What is vectorization?
Vectorization is a special case of Single Instructions Multiple Data (SIMD)
to denote a single instruction stream capable of operating on multiple data
elements in parallel. We can think of vectorization as the unrolling of loops
accompanied with SIMD instructions.

4

Vectorization is the process of converting an algorithm that performs scalar
operations (typically one operation at the time) to vector operations where
a single operation can refer to many simultaneous operations. Consider the
following example

for (i = 0; i < n; i++){
a[i] = b[i] + c[i];

}

If the code is not vectorized, the compiler will simply start with the first element
and then perform subsequent additions operating on one address in memory at
the time.

Number of elements that can acted upon
A SIMD instruction can operate on multiple data elements in one single in-
struction. It uses the so-called 128-bit SIMD floating-point register. In this
sense,vectorization adds some form of parallelism since one instruction is applied
to many parts of say a vector.

The number of elements which can be operated on in parallel range from
four single-precision floating point data elements in so-called Streaming SIMD
Extensions and two double-precision floating-point data elements in Streaming
SIMD Extensions 2 to sixteen byte operations in a 128-bit register in Streaming
SIMD Extensions 2. Thus, vector-length ranges from 2 to 16, depending on the
instruction extensions used and on the data type.

Number of elements that can acted upon, examples
We start with the simple scalar operations given by

for (i = 0; i < n; i++){
a[i] = b[i] + c[i];

}

If the code is not vectorized and we have a 128-bit register to store a 32 bits
floating point number, it means that we have 3 × 32 bits that are not used. For
the first element we have

0 1 2 3
a[0]= not used not used not used
b[0]+ not used not used not used
c[0] not used not used not used

We have thus unused space in our SIMD registers. These registers could hold
three additional integers.

Number of elements that can acted upon, examples
If we vectorize the code, we can perform, with a 128-bit register four simultaneous
operations, that is we have

5

for (i = 0; i < n; i+=4){
a[i] = b[i] + c[i];
a[i+1] = b[i+1] + c[i+1];
a[i+2] = b[i+2] + c[i+2];
a[i+3] = b[i+3] + c[i+3];

}

displayed here as

0 1 2 3
a[0]= a[1]= a[2]= a[3]=
b[0]+ b[1]+ b[2]+ b[3]+
c[0] c[1] c[2] c[3]

Four additions are now done in a single step.

A simple test case with and without vectorization
We implement these operations in a simple c++ program as
#include <cstdlib>
#include <iostream>
#include <cmath>
#include <iomanip>
#include "time.h"

using namespace std; // note use of namespace
int main (int argc, char* argv[])
{

int i = atoi(argv[1]);
double *a, *b, *c;
a = new double[i];
b = new double[i];
c = new double[i];
for (int j = 0; j < i; j++) {

a[j] = 0.0;
b[j] = cos(j*1.0);
c[j] = sin(j*3.0);

}
clock_t start, finish;
start = clock();
for (int j = 0; j < i; j++) {

a[j] = b[j]+b[j]*c[j];
}
finish = clock();
double timeused = (double) (finish - start)/(CLOCKS_PER_SEC);
cout << setiosflags(ios::showpoint | ios::uppercase);
cout << setprecision(10) << setw(20) << "Time used for vector addition and multiplication=" << timeused << endl;
delete [] a;
delete [] b;
delete [] c;
return 0;

}

Compiling with and without vectorization
We can compile and link without vectorization

c++ -o novec.x vecexample.cpp

6

https://github.com/CompPhysics/ComputationalPhysicsMSU/blob/master/doc/Programs/LecturePrograms/programs/Classes/cpp/program7.cpp

and with vectorization (and additional optimizations)
c++ -O3 -o vec.x vecexample.cpp

The speedup depends on the size of the vectors. In the example here we have
run with 107 elements. The example here was run on a PC with ubuntu 14.04
as operating system and an Intel i7-4790 CPU running at 3.60 GHz.

Compphys:~ hjensen$./vec.x 10000000
Time used for vector addition = 0.0100000
Compphys:~ hjensen$./novec.x 10000000
Time used for vector addition = 0.03000000000

This particular C++ compiler speeds up the above loop operations with a factor
of 3. Performing the same operations for 108 elements results only in a factor 1.4.
The result will however vary from compiler to compiler. In general however, with
optimization flags like −O3 or −Ofast, we gain a considerable speedup if our
code can be vectorized. Many of these operations can be done automatically by
your compiler. These automatic or near automatic compiler techniques improve
performance considerably.

Automatic vectorization and vectorization inhibitors, crite-
ria
Not all loops can be vectorized, as discussed in Intel’s guide to vectorization

An important criteria is that the loop counter n is known at the entry of the
loop.

for (int j = 0; j < n; j++) {
a[j] = cos(j*1.0);

}

The variable n does need to be known at compile time. However, this variable
must stay the same for the entire duration of the loop. It implies that an exit
statement inside the loop cannot be data dependent.

Automatic vectorization and vectorization inhibitors, exit
criteria
An exit statement should in general be avoided. If the exit statement contains
data-dependent conditions, the loop cannot be vectorized. The following is an
example of a non-vectorizable loop

for (int j = 0; j < n; j++) {
a[j] = cos(j*1.0);
if (a[j] < 0) break;

}

Avoid loop termination conditions and opt for a single entry loop variable n.
The lower and upper bounds have to be kept fixed within the loop.

7

https://software.intel.com/en-us/articles/a-guide-to-auto-vectorization-with-intel-c-compilers

Automatic vectorization and vectorization inhibitors, straight-
line code
SIMD instructions perform the same type of operations multiple times. A switch
statement leads thus to a non-vectorizable loop since different statemens cannot
branch. The following code can however be vectorized since the if statement is
implemented as a masked assignment.

for (int j = 0; j < n; j++) {
double x = cos(j*1.0);
if (x > 0) {

a[j] = x*sin(j*2.0);
}
else {

a[j] = 0.0;
}

}

These operations can be performed for all data elements but only those elements
which the mask evaluates as true are stored. In general, one should avoid
branches such as switch, go to, or return statements or if constructs that
cannot be treated as masked assignments.

Automatic vectorization and vectorization inhibitors, nested
loops
Only the innermost loop of the following example is vectorized

for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {

a[i][j] += b[i][j];
}

}

The exception is if an original outer loop is transformed into an inner loop as
the result of compiler optimizations.

Automatic vectorization and vectorization inhibitors, func-
tion calls
Calls to programmer defined functions ruin vectorization. However, calls to
intrinsic functions like sin x, cosx, expx etc are allowed since they are normally
efficiently vectorized. The following example is fully vectorizable

for (int i = 0; i < n; i++) {
a[i] = log10(i)*cos(i);

}

Similarly, inline functions defined by the programmer, allow for vectorization
since the function statements are glued into the actual place where the function
is called.

8

Automatic vectorization and vectorization inhibitors, data
dependencies
One has to keep in mind that vectorization changes the order of operations inside
a loop. A so-called read-after-write statement with an explicit flow dependency
cannot be vectorized. The following code

double b = 15.;
for (int i = 1; i < n; i++) {

a[i] = a[i-1] + b;
}

is an example of flow dependency and results in wrong numerical results if
vectorized. For a scalar operation, the value a[i − 1] computed during the
iteration is loaded into the right-hand side and the results are fine. In vector
mode however, with a vector length of four, the values a[0], a[1], a[2] and a[3]
from the previous loop will be loaded into the right-hand side and produce wrong
results. That is, we have

a[1] = a[0] + b;
a[2] = a[1] + b;
a[3] = a[2] + b;
a[4] = a[3] + b;

and if the two first iterations are executed at the same by the SIMD instruction,
the value of say a[1] could be used by the second iteration before it has been
calculated by the first iteration, leading thereby to wrong results.

Automatic vectorization and vectorization inhibitors, more
data dependencies
On the other hand, a so-called write-after-read statement can be vectorized. The
following code

double b = 15.;
for (int i = 1; i < n; i++) {

a[i-1] = a[i] + b;
}

is an example of flow dependency that can be vectorized since no iteration with
a higher value of i can complete before an iteration with a lower value of i.
However, such code leads to problems with parallelization.

Automatic vectorization and vectorization inhibitors, mem-
ory stride
For C++ programmers it is also worth keeping in mind that an array notation
is preferred to the more compact use of pointers to access array elements. The
compiler can often not tell if it is safe to vectorize the code.

When dealing with arrays, you should also avoid memory stride, since this
slows down considerably vectorization. When you access array element, write for

9

example the inner loop to vectorize using unit stride, that is, access successively
the next array element in memory, as shown here

for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {

a[i][j] += b[i][j];
}

}

Compiling with and without vectorization
We can compile and link without vectorization using the clang c++ compiler

clang -o novec.x vecexample.cpp

and with vectorization (and additional optimizations)
clang++ -O3 -Rpass=loop-vectorize -o vec.x vecexample.cpp

The speedup depends on the size of the vectors. In the example here we have
run with 107 elements. The example here was run on an IMac17.1 with OSX El
Capitan (10.11.4) as operating system and an Intel i5 3.3 GHz CPU.

Compphys:~ hjensen$./vec.x 10000000
Time used for norm computation=0.04720500000
Compphys:~ hjensen$./novec.x 10000000
Time used for norm computation=0.03311700000

This particular C++ compiler speeds up the above loop operations with a factor
of 1.5 Performing the same operations for 109 elements results in a smaller
speedup since reading from main memory is required. The non-vectorized code
is seemingly faster.

Compphys:~ hjensen$./vec.x 1000000000
Time used for norm computation=58.41391100
Compphys:~ hjensen$./novec.x 1000000000
Time used for norm computation=46.51295300

We will discuss these issues further in the next slides.

Compiling with and without vectorization using clang
We can compile and link without vectorization with clang compiler

clang++ -o -fno-vectorize novec.x vecexample.cpp

and with vectorization
clang++ -O3 -Rpass=loop-vectorize -o vec.x vecexample.cpp

We can also add vectorization analysis, see for example
clang++ -O3 -Rpass-analysis=loop-vectorize -o vec.x vecexample.cpp

or figure out if vectorization was missed
clang++ -O3 -Rpass-missed=loop-vectorize -o vec.x vecexample.cpp

10

Memory management
The main memory contains the program data

• Cache memory contains a copy of the main memory data

• Cache is faster but consumes more space and power. It is normally assumed
to be much faster than main memory

• Registers contain working data only

– Modern CPUs perform most or all operations only on data in register

• Multiple Cache memories contain a copy of the main memory data

– Cache items accessed by their address in main memory
– L1 cache is the fastest but has the least capacity
– L2, L3 provide intermediate performance/size tradeoffs

Loads and stores to memory can be as important as floating point operations
when we measure performance.

Memory and communication
• Most communication in a computer is carried out in chunks, blocks of
bytes of data that move together

• In the memory hierarchy, data moves between memory and cache, and
between different levels of cache, in groups called lines

– Lines are typically 64-128 bytes, or 8-16 double precision words
– Even if you do not use the data, it is moved and occupies space in

the cache

• This performance feature is not captured in most programming languages

Measuring performance
How do we measure erformance? What is wrong with this code to time a loop?

clock_t start, finish;
start = clock();
for (int j = 0; j < i; j++) {

a[j] = b[j]+b[j]*c[j];
}
finish = clock();
double timeused = (double) (finish - start)/(CLOCKS_PER_SEC);

11

Problems with measuring time
1. Timers are not infinitely accurate

2. All clocks have a granularity, the minimum time that they can measure

3. The error in a time measurement, even if everything is perfect, may be the
size of this granularity (sometimes called a clock tick)

4. Always know what your clock granularity is

5. Ensure that your measurement is for a long enough duration (say 100 times
the tick)

Problems with cold start
What happens when the code is executed? The assumption is that the code is
ready to execute. But

1. Code may still be on disk, and not even read into memory.

2. Data may be in slow memory rather than fast (which may be wrong or
right for what you are measuring)

3. Multiple tests often necessary to ensure that cold start effects are not
present

4. Special effort often required to ensure data in the intended part of the
memory hierarchy.

Problems with smart compilers
1. If the result of the computation is not used, the compiler may eliminate

the code

2. Performance will look impossibly fantastic

3. Even worse, eliminate some of the code so the performance looks plausible

4. Ensure that the results are (or may be) used.

12

Problems with interference
1. Other activities are sharing your processor

• Operating system, system demons, other users
– Some parts of the hardware do not always perform with exactly

the same performance

2. Make multiple tests and report

3. Easy choices include

• Average tests represent what users might observe over time

Problems with measuring performance
1. Accurate, reproducible performance measurement is hard

2. Think carefully about your experiment:

3. What is it, precisely, that you want to measure

4. How representative is your test to the situation that you are trying to
measure?

Thomas algorithm for tridiagonal linear algebra equations

b0 c0
a0 b1 c1

. . .
am−3 bm−2 cm−2

am−2 bm−1

x0
x1
...

xm−2
xm−1

 =

f0
f1
...

fm−2
fm−1

Thomas algorithm, forward substitution
The first step is to multiply the first row by a0/b0 and subtract it from the

second row. This is known as the forward substitution step. We obtain then

ai = 0,

bi = bi − ai−1

bi−1
ci−1,

and
fi = fi − ai−1

bi−1
fi−1.

13

At this point the simplified equation, with only an upper triangular matrix takes
the form

b0 c0
b1 c1

. . .
bm−2 cm−2

bm−1

x0
x1
...

xm−2
xm−1

 =

f0
f1
...

fm−2
fm−1

Thomas algorithm, backward substitution

The next step is the backward substitution step. The last row is multiplied by
cN−3/bN−2 and subtracted from the second to last row, thus eliminating cN−3
from the last row. The general backward substitution procedure is

ci = 0,

and
fi−1 = fi−1 − ci−1

bi
fi

All that remains to be computed is the solution, which is the very straight
forward process of

xi = fi

bi

Thomas algorithm and counting of operations (floating point
and memory)

Operation Floating Point
Memory Reads 14(N − 2)
Memory Writes 4(N − 2)
Subtractions 3(N − 2)

Multiplications 3(N − 2)
Divisions 4(N − 2)

An inefficient code.
// Forward substitution
// Note that we can simplify by precalculating a[i-1]/b[i-1]

for (int i=1; i < n; i++) {
b[i] = b[i] - (a[i-1]*c[i-1])/b[i-1];
f[i] = g[i] - (a[i-1]*f[i-1])/b[i-1];

}
x[n-1] = f[n-1] / b[n-1];
// Backwards substitution
for (int i = n-2; i >= 0; i--) {

f[i] = f[i] - c[i]*f[i+1]/b[i+1];
x[i] = f[i]/b[i];

}

14

The specialized Thomas algorithm (Project 1)

Operation Floating Point
Memory Reads 6(N − 2)
Memory Writes 2(N − 2)

Additions 2(N − 2)
Divisions 2(N − 2)

// Forward substitution cannot be vectorized
for (int i = 2; i < n; i++) b[i] = b[i] + b[i-1]/d[i-1];
// Backward substitution cannot be vectorized
solution[n-1] = b[n-1]/d[n-1];
for (int i = n-2; i > 0; i--) solution[i] = (b[i]+solution[i+1])/d[i];

Example: Transpose of a matrix
#include <cstdlib>
#include <iostream>
#include <cmath>
#include <iomanip>
#include "time.h"

using namespace std; // note use of namespace
int main (int argc, char* argv[])
{

// read in dimension of square matrix
int n = atoi(argv[1]);
double **A, **B;
// Allocate space for the two matrices
A = new double*[n]; B = new double*[n];
for (int i = 0; i < n; i++){

A[i] = new double[n];
B[i] = new double[n];

}
// Set up values for matrix A
for (int i = 0; i < n; i++){

for (int j = 0; j < n; j++) {
A[i][j] = cos(i*1.0)*sin(j*3.0);

}
}
clock_t start, finish;
start = clock();
// Then compute the transpose
for (int i = 0; i < n; i++){

for (int j = 0; j < n; j++) {
B[i][j]= A[j][i];

}
}

finish = clock();
double timeused = (double) (finish - start)/(CLOCKS_PER_SEC);
cout << setiosflags(ios::showpoint | ios::uppercase);
cout << setprecision(10) << setw(20) << "Time used for setting up transpose of matrix=" << timeused << endl;

// Free up space
for (int i = 0; i < n; i++){

15

https://github.com/CompPhysics/ComputationalPhysics/blob/master/doc/Projects/2016/Project1/Examples/TridiagonalTiming.cpp
https://github.com/CompPhysics/ComputationalPhysicsMSU/blob/master/doc/Programs/LecturePrograms/programs/Classes/cpp/program8.cpp

delete[] A[i];
delete[] B[i];

}
delete[] A;
delete[] B;
return 0;

}

Matrix-matrix multiplication
This the matrix-matrix multiplication code with plain c++ memory allocation.
It computes at the end the Frobenius norm.

#include <cstdlib>
#include <iostream>
#include <cmath>
#include <iomanip>
#include "time.h"

using namespace std; // note use of namespace
int main (int argc, char* argv[])
{

// read in dimension of square matrix
int n = atoi(argv[1]);
double s = 1.0/sqrt((double) n);
double **A, **B, **C;
// Start timing
clock_t start, finish;
start = clock();
// Allocate space for the two matrices
A = new double*[n]; B = new double*[n]; C = new double*[n];
for (int i = 0; i < n; i++){

A[i] = new double[n];
B[i] = new double[n];
C[i] = new double[n];

}
// Set up values for matrix A and B and zero matrix C
for (int i = 0; i < n; i++){

for (int j = 0; j < n; j++) {
double angle = 2.0*M_PI*i*j/ ((double) n);
A[i][j] = s * (sin (angle) + cos (angle));
B[j][i] = A[i][j];

}
}
// Then perform the matrix-matrix multiplication
for (int i = 0; i < n; i++){

for (int j = 0; j < n; j++) {
double sum = 0.0;
for (int k = 0; k < n; k++) {

sum += B[i][k]*A[k][j];
}
C[i][j] = sum;

}
}
// Compute now the Frobenius norm
double Fsum = 0.0;
for (int i = 0; i < n; i++){

for (int j = 0; j < n; j++) {
Fsum += C[i][j]*C[i][j];

}
}

16

https://github.com/CompPhysics/ComputationalPhysicsMSU/blob/master/doc/Programs/LecturePrograms/programs/Classes/cpp/program9.cpp

Fsum = sqrt(Fsum);
finish = clock();
double timeused = (double) (finish - start)/(CLOCKS_PER_SEC);
cout << setiosflags(ios::showpoint | ios::uppercase);
cout << setprecision(10) << setw(20) << "Time used for matrix-matrix multiplication=" << timeused << endl;
cout << " Frobenius norm = " << Fsum << endl;
// Free up space
for (int i = 0; i < n; i++){

delete[] A[i];
delete[] B[i];
delete[] C[i];

}
delete[] A;
delete[] B;
delete[] C;
return 0;

}

How do we define speedup? Simplest form

• Speedup(code,sys,p) = Tb/Tp

• Speedup measures the ratio of performance between two objects

• Versions of same code, with different number of processors

• Serial and vector versions

• Try different programing languages, c++ and Fortran

• Two algorithms computing the same result

How do we define speedup? Correct baseline
The key is choosing the correct baseline for comparison

• For our serial vs. vectorization examples, using compiler-provided vector-
ization, the baseline is simple; the same code, with vectorization turned
off

– For parallel applications, this is much harder:
∗ Choice of algorithm, decomposition, performance of baseline case
etc.

17

Parallel speedup
For parallel applications, speedup is typically defined as

• Speedup(code,sys,p) = T1/Tp

Here T1 is the time on one processor and Tp is the time using p processors.

• Can Speedup(code,sys,p) become larger than p?

That means using p processors is more than p times faster than using one
processor.

Speedup and memory
The speedup on p processors can be greater than p if memory usage is optimal!

Consider the case of a memorybound computation with M words of memory

• If M/p fits into cache while M does not, the time to access memory will
be different in the two cases:

• T1 uses the main memory bandwidth

• Tp uses the appropriate cache bandwidth

Upper bounds on speedup
Assume that almost all parts of a code are perfectly parallelizable (fraction

f). The remainder, fraction (1 − f) cannot be parallelized at all.
That is, there is work that takes time W on one process; a fraction f of that

work will take time Wf/p on p processors.

• What is the maximum possible speedup as a function of f?

Amdahl’s law
On one processor we have

T1 = (1 − f)W + fW = W

On p processors we have

Tp = (1 − f)W + fW

p
,

resulting in a speedup of

T1

Tp
= W

(1 − f)W + fW/p

18

As p goes to infinity, fW/p goes to zero, and the maximum speedup is

1
1 − f

,

meaning that if if f = 0.99 (all but 1% parallelizable), the maximum speedup is
1/(1 − .99) = 100!

How much is parallelizable
If any non-parallel code slips into the application, the parallel performance is

limited.
In many simulations, however, the fraction of non-parallelizable work is 10−6

or less due to large arrays or objects that are perfectly parallelizable.

Today’s situation of parallel computing

• Distributed memory is the dominant hardware configuration. There is a
large diversity in these machines, from MPP (massively parallel processing)
systems to clusters of off-the-shelf PCs, which are very cost-effective.

• Message-passing is a mature programming paradigm and widely accepted.
It often provides an efficient match to the hardware. It is primarily used for
the distributed memory systems, but can also be used on shared memory
systems.

• Modern nodes have nowadays several cores, which makes it interesting to
use both shared memory (the given node) and distributed memory (several
nodes with communication). This leads often to codes which use both MPI
and OpenMP.

Our lectures will focus on both MPI and OpenMP.

Overhead present in parallel computing

• Uneven load balance: not all the processors can perform useful work at
all time.

• Overhead of synchronization

• Overhead of communication

• Extra computation due to parallelization

Due to the above overhead and that certain parts of a sequential algorithm
cannot be parallelized we may not achieve an optimal parallelization.

19

Parallelizing a sequential algorithm

• Identify the part(s) of a sequential algorithm that can be executed in
parallel. This is the difficult part,

• Distribute the global work and data among P processors.

Strategies

• Develop codes locally, run with some few processes and test your codes.
Do benchmarking, timing and so forth on local nodes, for example your
laptop or PC.

• When you are convinced that your codes run correctly, you can start your
production runs on available supercomputers.

How do I run MPI on a PC/Laptop? MPI
To install MPI is rather easy on hardware running unix/linux as operating

systems, follow simply the instructions from the OpenMPI website. See also
subsequent slides. When you have made sure you have installed MPI on your
PC/laptop,

• Compile with mpicxx/mpic++ or mpif90

Compile and link
mpic++ -O3 -o nameofprog.x nameofprog.cpp
run code with for example 8 processes using mpirun/mpiexec
mpiexec -n 8 ./nameofprog.x

Can I do it on my own PC/laptop? OpenMP installation
If you wish to install MPI and OpenMP on your laptop/PC, we recommend

the following:

• For OpenMP, the compile option -fopenmp is included automatically in
recent versions of the C++ compiler and Fortran compilers. For users
of different Linux distributions, siply use the available C++ or Fortran
compilers and add the above compiler instructions, see also code examples
below.

• For OS X users however, use for example

brew install clang-omp

20

https://www.open-mpi.org/

Installing MPI
For linux/ubuntu users, you need to install two packages (alternatively use

the synaptic package manager)
sudo apt-get install libopenmpi-dev
sudo apt-get install openmpi-bin

For OS X users, install brew (after having installed xcode and gcc, needed for
the gfortran compiler of openmpi) and then install with brew

brew install openmpi

When running an executable (code.x), run as
mpirun -n 10 ./code.x

where we indicate that we want the number of processes to be 10.

Installing MPI and using Qt
With openmpi installed, when using Qt, add to your .pro file the instructions

here
You may need to tell Qt where openmpi is stored.
For the machines at the computer lab, openmpi is located at

/usr/lib64/openmpi/bin

Add to your .bashrc file the following
export PATH=/usr/lib64/openmpi/bin:$PATH

Using Smaug, the CompPhys computing cluster
For running on SMAUG, go to http://comp-phys.net/ and click on the

link internals and click on computing cluster. To get access to Smaug, you
will need to send us an e-mail with your name, UiO username, phone number,
room number and affiliation to the research group. In return, you will receive a
password you may use to access the cluster.

Here follows a simple recipe
log in as ssh -username tid.uio.no
ssh username@fyslab-compphys

In the folder
shared/guides/starting_jobs

you will find a simple example on how to set up a job and compile and run. This
files are write protected. Copy them to your own folder and compile and run
there. For more information see the readme file under the program folder.

21

http://dragly.org/2012/03/14/developing-mpi-applications-in-qt-creator/
http://comp-phys.net/cluster-info/using-smaug/
http://comp-phys.net/
https://github.com/CompPhysics/ComputationalPhysics2/tree/gh-pages/doc/Programs/ParallelizationMPI

What is OpenMP

• OpenMP provides high-level thread programming

• Multiple cooperating threads are allowed to run simultaneously

• Threads are created and destroyed dynamically in a fork-join pattern

– An OpenMP program consists of a number of parallel regions
– Between two parallel regions there is only one master thread
– In the beginning of a parallel region, a team of new threads is spawned

• The newly spawned threads work simultaneously with the master thread

• At the end of a parallel region, the new threads are destroyed

Many good tutorials online and excellent textbook

1. Using OpenMP, by B. Chapman, G. Jost, and A. van der Pas

2. Many tutorials online like OpenMP official site

Getting started, things to remember

• Remember the header file

#include <omp.h>

• Insert compiler directives in C++ syntax as

#pragma omp...

• Compile with for example c++ -fopenmp code.cpp

• Execute

– Remember to assign the environment variableOMPNUMTHREADS
– It specifies the total number of threads inside a parallel region, if not

otherwise overwritten

22

http://mitpress.mit.edu/books/using-openmp
http://www.openmp.org

OpenMP syntax
• Mostly directives

#pragma omp construct [clause ...]

• Some functions and types

#include <omp.h>

• Most apply to a block of code

• Specifically, a structured block

• Enter at top, exit at bottom only, exit(), abort() permitted

Different OpenMP styles of parallelism
OpenMP supports several different ways to specify thread parallelism

• General parallel regions: All threads execute the code, roughly as if you
made a routine of that region and created a thread to run that code

• Parallel loops: Special case for loops, simplifies data parallel code

• Task parallelism, new in OpenMP 3

• Several ways to manage thread coordination, including Master regions and
Locks

• Memory model for shared data

General code structure

#include <omp.h>
main ()
{
int var1, var2, var3;
/* serial code */
/* ... */
/* start of a parallel region */
#pragma omp parallel private(var1, var2) shared(var3)
{
/* ... */
}
/* more serial code */
/* ... */
/* another parallel region */
#pragma omp parallel
{
/* ... */
}
}

23

Parallel region

• A parallel region is a block of code that is executed by a team of threads

• The following compiler directive creates a parallel region

#pragma omp parallel { ... }

• Clauses can be added at the end of the directive

• Most often used clauses:

– default(shared) or default(none)
– public(list of variables)
– private(list of variables)

Hello world, not again, please!

#include <omp.h>
#include <cstdio>
int main (int argc, char *argv[])
{
int th_id, nthreads;
#pragma omp parallel private(th_id) shared(nthreads)
{
th_id = omp_get_thread_num();
printf("Hello World from thread %d\n", th_id);
#pragma omp barrier
if (th_id == 0) {
nthreads = omp_get_num_threads();
printf("There are %d threads\n",nthreads);
}
}
return 0;
}

Hello world, yet another variant

#include <cstdio>
#include <omp.h>
int main(int argc, char *argv[])
{
omp_set_num_threads(4);

#pragma omp parallel
{

int id = omp_get_thread_num();
int nproc = omp_get_num_threads();
cout << "Hello world with id number and processes " << id << nproc << endl;

}
return 0;
}

24

Variables declared outside of the parallel region are shared by all threads If a
variable like id is declared outside of the

#pragma omp parallel,

it would have been shared by various the threads, possibly causing erroneous
output

• Why? What would go wrong? Why do we add possibly?

Important OpenMP library routines

• int omp get num threads (), returns the number of threads inside a
parallel region

• int omp get thread num (), returns the a thread for each thread inside
a parallel region

• void omp set num threads (int), sets the number of threads to be used

• void omp set nested (int), turns nested parallelism on/off

Private variables
Private clause can be used to make thread- private versions of such variables:

#pragma omp parallel private(id)
{
int id = omp_get_thread_num();
cout << "My thread num" << id << endl;

}

• What is their value on entry? Exit?

• OpenMP provides ways to control that

• Can use default(none) to require the sharing of each variable to be described

Master region
It is often useful to have only one thread execute some of the code in a parallel

region. I/O statements are a common example
#pragma omp parallel
{

#pragma omp master
{

int id = omp_get_thread_num();
cout << "My thread num" << id << endl;

}
}

25

Parallel for loop

• Inside a parallel region, the following compiler directive can be used to
parallelize a for-loop:

#pragma omp for

• Clauses can be added, such as

– schedule(static, chunk size)
– schedule(dynamic, chunk size)
– schedule(guided, chunk size) (non-deterministic allocation)
– schedule(runtime)
– private(list of variables)
– reduction(operator:variable)
– nowait

Parallel computations and loops
OpenMP provides an easy way to parallelize a loop

#pragma omp parallel for
for (i=0; i<n; i++) c[i] = a[i];

OpenMP handles index variable (no need to declare in for loop or make private)
Which thread does which values? Several options.

Scheduling of loop computations
We can let the OpenMP runtime decide. The decision is about how the loop

iterates are scheduled and OpenMP defines three choices of loop scheduling:

1. Static: Predefined at compile time. Lowest overhead, predictable

2. Dynamic: Selection made at runtime

3. Guided: Special case of dynamic; attempts to reduce overhead

26

Example code for loop scheduling

#include <omp.h>
#define CHUNKSIZE 100
#define N 1000
int main (int argc, char *argv[])
{
int i, chunk;
float a[N], b[N], c[N];
for (i=0; i < N; i++) a[i] = b[i] = i * 1.0;
chunk = CHUNKSIZE;
#pragma omp parallel shared(a,b,c,chunk) private(i)
{
#pragma omp for schedule(dynamic,chunk)
for (i=0; i < N; i++) c[i] = a[i] + b[i];
} /* end of parallel region */
}

Example code for loop scheduling, guided instead of dy-
namic

#include <omp.h>
#define CHUNKSIZE 100
#define N 1000
int main (int argc, char *argv[])
{
int i, chunk;
float a[N], b[N], c[N];
for (i=0; i < N; i++) a[i] = b[i] = i * 1.0;
chunk = CHUNKSIZE;
#pragma omp parallel shared(a,b,c,chunk) private(i)
{
#pragma omp for schedule(guided,chunk)
for (i=0; i < N; i++) c[i] = a[i] + b[i];
} /* end of parallel region */
}

More on Parallel for loop

• The number of loop iterations cannot be non-deterministic; break, return,
exit, goto not allowed inside the for-loop

• The loop index is private to each thread

• A reduction variable is special

– During the for-loop there is a local private copy in each thread
– At the end of the for-loop, all the local copies are combined together

by the reduction operation

27

• Unless the nowait clause is used, an implicit barrier synchronization will
be added at the end by the compiler

// #pragma omp parallel and #pragma omp for

can be combined into
#pragma omp parallel for

What can happen with this loop?
What happens with code like this

#pragma omp parallel for
for (i=0; i<n; i++) sum += a[i]*a[i];

All threads can access the sum variable, but the addition is not atomic! It is
important to avoid race between threads. So-called reductions in OpenMP are
thus important for performance and for obtaining correct results. OpenMP lets
us indicate that a variable is used for a reduction with a particular operator.
The above code becomes

sum = 0.0;
#pragma omp parallel for reduction(+:sum)
for (i=0; i<n; i++) sum += a[i]*a[i];

Inner product

n−1∑
i=0

aibi

int i;
double sum = 0.;
/* allocating and initializing arrays */
/* ... */
#pragma omp parallel for default(shared) private(i) reduction(+:sum)
for (i=0; i<N; i++) sum += a[i]*b[i];

}

Different threads do different tasks
Different threads do different tasks independently, each section is executed by

one thread.
#pragma omp parallel
{
#pragma omp sections
{
#pragma omp section
funcA ();
#pragma omp section
funcB ();
#pragma omp section
funcC ();
}
}

28

Single execution

#pragma omp single { ... }

The code is executed by one thread only, no guarantee which thread
Can introduce an implicit barrier at the end
#pragma omp master { ... }

Code executed by the master thread, guaranteed and no implicit barrier at the
end.

Coordination and synchronization

#pragma omp barrier

Synchronization, must be encountered by all threads in a team (or none)
#pragma omp ordered { a block of codes }

is another form of synchronization (in sequential order). The form
#pragma omp critical { a block of codes }

and
#pragma omp atomic { single assignment statement }

is more efficient than
#pragma omp critical

Data scope

• OpenMP data scope attribute clauses:

– shared
– private
– firstprivate
– lastprivate
– reduction

What are the purposes of these attributes

• define how and which variables are transferred to a parallel region (and
back)

• define which variables are visible to all threads in a parallel region, and
which variables are privately allocated to each thread

29

Some remarks

• When entering a parallel region, the private clause ensures each thread
having its own new variable instances. The new variables are assumed to
be uninitialized.

• A shared variable exists in only one memory location and all threads can
read and write to that address. It is the programmer’s responsibility to
ensure that multiple threads properly access a shared variable.

• The firstprivate clause combines the behavior of the private clause with
automatic initialization.

• The lastprivate clause combines the behavior of the private clause with a
copy back (from the last loop iteration or section) to the original variable
outside the parallel region.

Parallelizing nested for-loops

• Serial code

for (i=0; i<100; i++)
for (j=0; j<100; j++)

a[i][j] = b[i][j] + c[i][j];
}

}

• Parallelization

#pragma omp parallel for private(j)
for (i=0; i<100; i++)

for (j=0; j<100; j++)
a[i][j] = b[i][j] + c[i][j];

}
}

• Why not parallelize the inner loop? to save overhead of repeated thread
forks-joins

• Why must j be private? To avoid race condition among the threads

30

Nested parallelism
When a thread in a parallel region encounters another parallel construct, it

may create a new team of threads and become the master of the new team.
#pragma omp parallel num_threads(4)
{
/* */
#pragma omp parallel num_threads(2)
{
//
}
}

Parallel tasks

#pragma omp task
#pragma omp parallel shared(p_vec) private(i)
{
#pragma omp single
{
for (i=0; i<N; i++) {

double r = random_number();
if (p_vec[i] > r) {

#pragma omp task
do_work (p_vec[i]);

Common mistakes
Race condition

int nthreads;
#pragma omp parallel shared(nthreads)
{
nthreads = omp_get_num_threads();
}

Deadlock
#pragma omp parallel
{
...
#pragma omp critical
{
...
#pragma omp barrier
}
}

Not all computations are simple
Not all computations are simple loops where the data can be evenly divided

among threads without any dependencies between threads
An example is finding the location and value of the largest element in an

array

31

for (i=0; i<n; i++) {
if (x[i] > maxval) {

maxval = x[i];
maxloc = i;

}
}

Not all computations are simple, competing threads
All threads are potentially accessing and changing the same values, maxloc

and maxval.

1. OpenMP provides several ways to coordinate access to shared values

#pragma omp atomic

1. Only one thread at a time can execute the following statement (not block).
We can use the critical option

#pragma omp critical

1. Only one thread at a time can execute the following block

Atomic may be faster than critical but depends on hardware

How to find the max value using OpenMP
Write down the simplest algorithm and look carefully for race conditions. How

would you handle them? The first step would be to parallelize as
#pragma omp parallel for
for (i=0; i<n; i++) {

if (x[i] > maxval) {
maxval = x[i];
maxloc = i;

}
}

Then deal with the race conditions
Write down the simplest algorithm and look carefully for race conditions. How

would you handle them? The first step would be to parallelize as
#pragma omp parallel for
for (i=0; i<n; i++) {

#pragma omp critical
{

if (x[i] > maxval) {
maxval = x[i];
maxloc = i;

}
}

}

32

Exercise: write a code which implements this and give an estimate on
performance. Perform several runs, with a serial code only with and without
vectorization and compare the serial code with the one that uses OpenMP. Run
on different archictectures if you can.

What can slow down OpenMP performance?
Give it a thought!

What can slow down OpenMP performance?
Performance poor because we insisted on keeping track of the maxval and

location during the execution of the loop.

• We do not care about the value during the execution of the loop, just the
value at the end.

This is a common source of performance issues, namely the description of the
method used to compute a value imposes additional, unnecessary requirements
or properties

Idea: Have each thread find the maxloc in its own data, then
combine and use temporary arrays indexed by thread number to hold
the values found by each thread

Find the max location for each thread

int maxloc[MAX_THREADS], mloc;
double maxval[MAX_THREADS], mval;
#pragma omp parallel shared(maxval,maxloc)
{

int id = omp_get_thread_num();
maxval[id] = -1.0e30;

#pragma omp for
for (int i=0; i<n; i++) {

if (x[i] > maxval[id]) {
maxloc[id] = i;
maxval[id] = x[i];

}
}

}

Combine the values from each thread

#pragma omp flush (maxloc,maxval)
#pragma omp master

{
int nt = omp_get_num_threads();
mloc = maxloc[0];
mval = maxval[0];

33

for (int i=1; i<nt; i++) {
if (maxval[i] > mval) {

mval = maxval[i];
mloc = maxloc[i];

}
}

}

Note that we let the master process perform the last operation.

Matrix-matrix multiplication
This code computes the norm of a vector using OpenMp
// OpenMP program to compute vector norm by adding two other vectors
#include <cstdlib>
#include <iostream>
#include <cmath>
#include <iomanip>
#include <omp.h>
include <ctime>

using namespace std; // note use of namespace
int main (int argc, char* argv[])
{

// read in dimension of vector
int n = atoi(argv[1]);
double *a, *b, *c;
int i;
int thread_num;
double wtime, Norm2, s, angle;
cout << " Perform addition of two vectors and compute the norm-2." << endl;
omp_set_num_threads(4);
thread_num = omp_get_max_threads ();
cout << " The number of processors available = " << omp_get_num_procs () << endl ;
cout << " The number of threads available = " << thread_num << endl;
cout << " The matrix order n = " << n << endl;

s = 1.0/sqrt((double) n);
wtime = omp_get_wtime ();
// Allocate space for the vectors to be used
a = new double [n]; b = new double [n]; c = new double [n];
// Define parallel region

pragma omp parallel for default(shared) private (angle, i) reduction(+:Norm2)
// Set up values for vectors a and b
for (i = 0; i < n; i++){

angle = 2.0*M_PI*i/ ((double) n);
a[i] = s*(sin(angle) + cos(angle));
b[i] = s*sin(2.0*angle);
c[i] = 0.0;

}
// Then perform the vector addition
for (i = 0; i < n; i++){

c[i] += a[i]+b[i];
}
// Compute now the norm-2
Norm2 = 0.0;
for (i = 0; i < n; i++){

Norm2 += c[i]*c[i];
}

// end parallel region
wtime = omp_get_wtime () - wtime;

34

https://github.com/CompPhysics/ComputationalPhysicsMSU/blob/master/doc/Programs/ParallelizationOpenMP/OpenMPvectornorm.cpp

cout << setiosflags(ios::showpoint | ios::uppercase);
cout << setprecision(10) << setw(20) << "Time used for norm-2 computation=" << wtime << endl;
cout << " Norm-2 = " << Norm2 << endl;
// Free up space
delete[] a;
delete[] b;
delete[] c;
return 0;

}

Matrix-matrix multiplication
This the matrix-matrix multiplication code with plain c++ memory allocation
using OpenMP

// Matrix-matrix multiplication and Frobenius norm of a matrix with OpenMP
#include <cstdlib>
#include <iostream>
#include <cmath>
#include <iomanip>
#include <omp.h>
include <ctime>

using namespace std; // note use of namespace
int main (int argc, char* argv[])
{

// read in dimension of square matrix
int n = atoi(argv[1]);
double **A, **B, **C;
int i, j, k;
int thread_num;
double wtime, Fsum, s, angle;
cout << " Compute matrix product C = A * B and Frobenius norm." << endl;
omp_set_num_threads(4);
thread_num = omp_get_max_threads ();
cout << " The number of processors available = " << omp_get_num_procs () << endl ;
cout << " The number of threads available = " << thread_num << endl;
cout << " The matrix order n = " << n << endl;

s = 1.0/sqrt((double) n);
wtime = omp_get_wtime ();
// Allocate space for the two matrices
A = new double*[n]; B = new double*[n]; C = new double*[n];
for (i = 0; i < n; i++){

A[i] = new double[n];
B[i] = new double[n];
C[i] = new double[n];

}
// Define parallel region

pragma omp parallel for default(shared) private (angle, i, j, k) reduction(+:Fsum)
// Set up values for matrix A and B and zero matrix C
for (i = 0; i < n; i++){

for (j = 0; j < n; j++) {
angle = 2.0*M_PI*i*j/ ((double) n);
A[i][j] = s * (sin (angle) + cos (angle));
B[j][i] = A[i][j];

}
}
// Then perform the matrix-matrix multiplication
for (i = 0; i < n; i++){

for (j = 0; j < n; j++) {
C[i][j] = 0.0;

35

https://github.com/CompPhysics/ComputationalPhysicsMSU/blob/master/doc/Programs/ParallelizationOpenMP/OpenMPmatrixmatrixmult.cpp

for (k = 0; k < n; k++) {
C[i][j] += A[i][k]*B[k][j];

}
}

}
// Compute now the Frobenius norm
Fsum = 0.0;
for (i = 0; i < n; i++){

for (j = 0; j < n; j++) {
Fsum += C[i][j]*C[i][j];

}
}
Fsum = sqrt(Fsum);

// end parallel region and letting only one thread perform I/O
wtime = omp_get_wtime () - wtime;
cout << setiosflags(ios::showpoint | ios::uppercase);
cout << setprecision(10) << setw(20) << "Time used for matrix-matrix multiplication=" << wtime << endl;
cout << " Frobenius norm = " << Fsum << endl;
// Free up space
for (int i = 0; i < n; i++){

delete[] A[i];
delete[] B[i];
delete[] C[i];

}
delete[] A;
delete[] B;
delete[] C;
return 0;

}

What is Message Passing Interface (MPI)?
MPI is a library, not a language. It specifies the names, calling sequences

and results of functions or subroutines to be called from C/C++ or Fortran
programs, and the classes and methods that make up the MPI C++ library.
The programs that users write in Fortran, C or C++ are compiled with ordinary
compilers and linked with the MPI library.

MPI programs should be able to run on all possible machines and run all
MPI implementetations without change.

An MPI computation is a collection of processes communicating with mes-
sages.

Going Parallel with MPI
Task parallelism: the work of a global problem can be divided into a number

of independent tasks, which rarely need to synchronize. Monte Carlo simulations
or numerical integration are examples of this.

MPI is a message-passing library where all the routines have corresponding
C/C++-binding

MPI_Command_name

and Fortran-binding (routine names are in uppercase, but can also be in lower
case)

36

MPI_COMMAND_NAME

MPI is a library
MPI is a library specification for the message passing interface, proposed as a

standard.

• independent of hardware;

• not a language or compiler specification;

• not a specific implementation or product.

A message passing standard for portability and ease-of-use. Designed for high
performance.

Insert communication and synchronization functions where necessary.

Bindings to MPI routines
MPI is a message-passing library where all the routines have corresponding

C/C++-binding
MPI_Command_name

and Fortran-binding (routine names are in uppercase, but can also be in lower
case)

MPI_COMMAND_NAME

The discussion in these slides focuses on the C++ binding.

Communicator

• A group of MPI processes with a name (context).

• Any process is identified by its rank. The rank is only meaningful within a
particular communicator.

• By default the communicator contains all the MPI processes.

MPI_COMM_WORLD

• Mechanism to identify subset of processes.

• Promotes modular design of parallel libraries.

37

Some of the most important MPI functions

• MPI_Init - initiate an MPI computation

• MPI_Finalize - terminate the MPI computation and clean up

• MPI_Comm_size - how many processes participate in a given MPI
communicator?

• MPI_Comm_rank - which one am I? (A number between 0 and size-1.)

• MPI_Send - send a message to a particular process within an MPI
communicator

• MPI_Recv - receive a message from a particular process within an MPI
communicator

• MPI_reduce or MPI_Allreduce, send and receive messages

The first MPI C/C++ program
Let every process write "Hello world" (oh not this program again!!) on the

standard output.
using namespace std;
#include <mpi.h>
#include <iostream>
int main (int nargs, char* args[])
{
int numprocs, my_rank;
// MPI initializations
MPI_Init (&nargs, &args);
MPI_Comm_size (MPI_COMM_WORLD, &numprocs);
MPI_Comm_rank (MPI_COMM_WORLD, &my_rank);
cout << "Hello world, I have rank " << my_rank << " out of "

<< numprocs << endl;
// End MPI
MPI_Finalize ();

The Fortran program

PROGRAM hello
INCLUDE "mpif.h"
INTEGER:: size, my_rank, ierr

CALL MPI_INIT(ierr)
CALL MPI_COMM_SIZE(MPI_COMM_WORLD, size, ierr)
CALL MPI_COMM_RANK(MPI_COMM_WORLD, my_rank, ierr)
WRITE(*,*)"Hello world, I’ve rank ",my_rank," out of ",size
CALL MPI_FINALIZE(ierr)

END PROGRAM hello

38

https://github.com/CompPhysics/ComputationalPhysics2/blob/gh-pages/doc/Programs/LecturePrograms/programs/MPI/chapter07/program2.cpp

Note 1

• The output to screen is not ordered since all processes are trying to write
to screen simultaneously.

• It is the operating system which opts for an ordering.

• If we wish to have an organized output, starting from the first process, we
may rewrite our program as in the next example.

Ordered output with MPIBarrier

int main (int nargs, char* args[])
{
int numprocs, my_rank, i;
MPI_Init (&nargs, &args);
MPI_Comm_size (MPI_COMM_WORLD, &numprocs);
MPI_Comm_rank (MPI_COMM_WORLD, &my_rank);
for (i = 0; i < numprocs; i++) {}
MPI_Barrier (MPI_COMM_WORLD);
if (i == my_rank) {
cout << "Hello world, I have rank " << my_rank <<

" out of " << numprocs << endl;}
MPI_Finalize ();

Note 2

• Here we have used the MPI_Barrier function to ensure that that every
process has completed its set of instructions in a particular order.

• A barrier is a special collective operation that does not allow the processes to
continue until all processes in the communicator (hereMPI_COMM_WORLD)
have called MPI_Barrier.

• The barriers make sure that all processes have reached the same point in
the code. Many of the collective operations like MPI_ALLREDUCE to
be discussed later, have the same property; that is, no process can exit the
operation until all processes have started.

However, this is slightly more time-consuming since the processes synchronize
between themselves as many times as there are processes. In the next Hello world
example we use the send and receive functions in order to a have a synchronized
action.

39

https://github.com/CompPhysics/ComputationalPhysics2/blob/gh-pages/doc/Programs/LecturePrograms/programs/MPI/chapter07/program3.cpp

Ordered output

.....
int numprocs, my_rank, flag;
MPI_Status status;
MPI_Init (&nargs, &args);
MPI_Comm_size (MPI_COMM_WORLD, &numprocs);
MPI_Comm_rank (MPI_COMM_WORLD, &my_rank);
if (my_rank > 0)
MPI_Recv (&flag, 1, MPI_INT, my_rank-1, 100,

MPI_COMM_WORLD, &status);
cout << "Hello world, I have rank " << my_rank << " out of "
<< numprocs << endl;
if (my_rank < numprocs-1)
MPI_Send (&my_rank, 1, MPI_INT, my_rank+1,

100, MPI_COMM_WORLD);
MPI_Finalize ();

Note 3
The basic sending of messages is given by the function MPI_SEND, which

in C/C++ is defined as
int MPI_Send(void *buf, int count,

MPI_Datatype datatype,
int dest, int tag, MPI_Comm comm)}

This single command allows the passing of any kind of variable, even a large
array, to any group of tasks. The variable buf is the variable we wish to send
while count is the number of variables we are passing. If we are passing only a
single value, this should be 1.

If we transfer an array, it is the overall size of the array. For example, if
we want to send a 10 by 10 array, count would be 10 × 10 = 100 since we are
actually passing 100 values.

Note 4
Once you have sent a message, you must receive it on another task. The

function MPI_RECV is similar to the send call.
int MPI_Recv(void *buf, int count, MPI_Datatype datatype,

int source,
int tag, MPI_Comm comm, MPI_Status *status)

The arguments that are different from those in MPI_SEND are buf which
is the name of the variable where you will be storing the received data, source
which replaces the destination in the send command. This is the return ID of
the sender.

Finally, we have used MPI_Status_status, where one can check if the
receive was completed.

The output of this code is the same as the previous example, but now process
0 sends a message to process 1, which forwards it further to process 2, and so
forth.

40

https://github.com/CompPhysics/ComputationalPhysics2/blob/gh-pages/doc/Programs/LecturePrograms/programs/MPI/chapter07/program4.cpp

Numerical integration in parallel
Integrating π.

• The code example computes π using the trapezoidal rules.

• The trapezoidal rule

I =
∫ b

a

f(x)dx ≈ h (f(a)/2 + f(a+ h) + f(a+ 2h) + · · · + f(b− h) + f(b)/2) .

Click on this link for the full program.

Dissection of trapezoidal rule with MPI_reduce

// Trapezoidal rule and numerical integration usign MPI
using namespace std;
#include <mpi.h>
#include <iostream>

// Here we define various functions called by the main program

double int_function(double);
double trapezoidal_rule(double , double , int , double (*)(double));

// Main function begins here
int main (int nargs, char* args[])
{

int n, local_n, numprocs, my_rank;
double a, b, h, local_a, local_b, total_sum, local_sum;
double time_start, time_end, total_time;

Dissection of trapezoidal rule

// MPI initializations
MPI_Init (&nargs, &args);
MPI_Comm_size (MPI_COMM_WORLD, &numprocs);
MPI_Comm_rank (MPI_COMM_WORLD, &my_rank);
time_start = MPI_Wtime();
// Fixed values for a, b and n
a = 0.0 ; b = 1.0; n = 1000;
h = (b-a)/n; // h is the same for all processes
local_n = n/numprocs;
// make sure n > numprocs, else integer division gives zero
// Length of each process’ interval of
// integration = local_n*h.
local_a = a + my_rank*local_n*h;
local_b = local_a + local_n*h;

Integrating with MPI

41

https://github.com/CompPhysics/ComputationalPhysics2/blob/gh-pages/doc/Programs/LecturePrograms/programs/MPI/chapter07/program6.cpp
https://github.com/CompPhysics/ComputationalPhysics2/blob/gh-pages/doc/Programs/LecturePrograms/programs/MPI/chapter07/program6.cpp

total_sum = 0.0;
local_sum = trapezoidal_rule(local_a, local_b, local_n,

&int_function);
MPI_Reduce(&local_sum, &total_sum, 1, MPI_DOUBLE,

MPI_SUM, 0, MPI_COMM_WORLD);
time_end = MPI_Wtime();
total_time = time_end-time_start;
if (my_rank == 0) {

cout << "Trapezoidal rule = " << total_sum << endl;
cout << "Time = " << total_time

<< " on number of processors: " << numprocs << endl;
}
// End MPI
MPI_Finalize ();
return 0;

} // end of main program

How do I use MPI_reduce?
Here we have used

MPI_reduce(void *senddata, void* resultdata, int count,
MPI_Datatype datatype, MPI_Op, int root, MPI_Comm comm)

The two variables senddata and resultdata are obvious, besides the fact that
one sends the address of the variable or the first element of an array. If they are
arrays they need to have the same size. The variable count represents the total
dimensionality, 1 in case of just one variable, while MPI_Datatype defines the
type of variable which is sent and received.

The new feature is MPI_Op. It defines the type of operation we want to
do.

More on MPI_Reduce

In our case, since we are summing the rectangle contributions from every
process we define MPI_Op = MPI_SUM . If we have an array or matrix we
can search for the largest og smallest element by sending either MPI_MAX or
MPI_MIN . If we want the location as well (which array element) we simply
transferMPI_MAXLOC orMPI_MINOC. If we want the product we write
MPI_PROD.

MPI_Allreduce is defined as
MPI_Allreduce(void *senddata, void* resultdata, int count,

MPI_Datatype datatype, MPI_Op, MPI_Comm comm)

Dissection of trapezoidal rule
We use MPI_reduce to collect data from each process. Note also the use of

the function MPI_Wtime.
// this function defines the function to integrate
double int_function(double x)
{

42

double value = 4./(1.+x*x);
return value;

} // end of function to evaluate

Dissection of trapezoidal rule

// this function defines the trapezoidal rule
double trapezoidal_rule(double a, double b, int n,

double (*func)(double))
{

double trapez_sum;
double fa, fb, x, step;
int j;
step=(b-a)/((double) n);
fa=(*func)(a)/2. ;
fb=(*func)(b)/2. ;
trapez_sum=0.;
for (j=1; j <= n-1; j++){

x=j*step+a;
trapez_sum+=(*func)(x);

}
trapez_sum=(trapez_sum+fb+fa)*step;
return trapez_sum;

} // end trapezoidal_rule

43

