Computational Physics Lectures:

Introduction to the course

Morten Hjorth-Jensen'?

!Department of Physics, University of Oslo

2Department of Physics and Astronomy and National Superconducting Cyclotron Laboratory, Michigan State University

Aug 20, 2020

Overview of first week

Thursday: First lecture: Presentation of the course, aims and content

Thursday: Second Lecture: Introduction to C++ programming (chapters
2 and 3 of lecture notes) and start discussion of project 1.

Friday: Numerical precision and C++ programming, continued and dis-
cussion of project 1 (chapter 2 and 3 of lecture notes)

e Numerical differentiation and loss of numerical precision (chapter 3 lecture
notes)

e Computer lab: Thursday and Friday. First time: Thursday and Friday
this week, Presentation of hardware and software The first two weeks we
focus on simple programming exercises, start with project 1 and to set up
GitHub/GitLab (with git as version control software) and QTcreator as
IDE (integrated Development Environment). This week we discuss how
to set up git and obtain a GitHub/GitLab account and look at simple
programming exercises and for those interested start with project 1. We
discuss also how to install C++ compilers.

e The recommended programming exercises for the first week: Exercises 3.1,
2.1 and 2.2 in Lecture notes. Exercise 3.1 is the most relevant for
project 1.

© 1999-2020, Morten Hjorth-Jensen. Released under CC Attribution-NonCommercial 4.0

license

https://github.com/CompPhysics/ComputationalPhysics/blob/master/doc/Lectures/lectures2015.pdf

Reading suggestions and exercises

e Introduction to C++ programming
e Numerical precision and C++ programming (chapter 2 of lecture notes)

e Numerical differentiation and loss of numerical precision (chapter 3 lecture
notes)

Lectures and ComputerLab

e Lectures: Thursday (8.15am-10am) and Friday (8.15am-10am), Store Fys
Aud, but due to Covid-19 all lectures, unless announced, will be fully online
and in a flipped style. The lecture hall has now a reduced capacity of 60
attendees only.

o Weekly reading assignments needed to solve projects. This includes written
material and videos as well

e Detailed lecture notes, exercises, all programs presented, projects etc can
be found at the homepage of the course.

e Computerlab: Thursday (10am-6pm, room F?397, Dept of Physics) and
Friday (10am-6pm, room F@434, Dept of Physics). Depending on the
number of participants, we may extend to more lab sessions. Please bring
your own laptops to the lab sessions. We may also organize online lab
sessions.

e Weekly plans and all other information are on the official webpage.

e No final exam, the last three projects are graded. In total five projects
which all have to be approved.

Course Format

e Five compulsory projects. Electronic reports only using Canvas to hand in
projects and git as version control software and GitHub (or GitLab) for
repository and all your material.

e Evaluation and grading: The last three projects are graded and each counts
1/3 of the final mark. No final written or oral exam.

https://www.uio.no/studier/emner/matnat/fys/FYS3150/h20/index.html
https://www.uio.no/english/services/it/education/canvas/
https://git-scm.com/
https://github.com/
https://about.gitlab.com/

e C/C++ is the default programming language during lectures, but Fortran
and Python are also used. All source codes discussed during the lectures can
be found at the webpage and github address of the course. We recommend
either C/C++, Fortran or Python as programming languages. You can
also try Julia or other languages but at the Lab and during the lectures
we will focus on the first languages.

Teachers and ComputerLab

Teachers:

e Morten Hjorth-Jensen

Email: morten.hjorth-jensen@fys.uio.no
Phone: +47-48257387

Office: Department of Physics, University of Oslo, Eastern wing
room 470

Office hours: Anytime! In Fall Semester 2020 (FS20), as a rule of
thumb office hours are planned via computer or telephone. Individual
or group office hours will be performed via zoom. Feel free to send
an email for planning. In person meetings may also be possible if
allowed by the University of Oslo’s COVID-19 instructions.

e Anders Kvellestad

Email: anders.kvellestad@fys.uio.no

Office: Department of Physics, University of Oslo, Eastern wing
room 447

Teaching Assistants FS20:

e Sebastian G. Wither-Larsen, s.g.winther-larsen@fys.uio.no

Office: Department of Physics, University of Oslo, Eastern wing
room 454

René Alexander Ask, r.a.ask@fys.uio.no

Kaspara Gésveer, k.s.gasvar@fys.uio.no

Maria Linea Horgen, m.l.horgen@fys.uio.no

Aksel Graneng, akselgraneng@gmail.com

https://github.com/CompPhysics/ComputationalPhysics1/tree/master/doc/Programs

Thursday Friday
Group 1: 10am-12pm Group 5: 10am-12pm
Group 2: 12pm-2pm Group 6: 12pm-2pm
Group 3: 2pm-4pm Group 7: 2pm-4pm
Group 4: 4pm-6pm Group 8: 4pm-6pm

Groups are in person but we are also planning fully online groups if needed.

Deadlines for projects (end of day, tentative deadlines)

1. Project 1: September 9 (not graded, only feedback)
2. Project 2: September 30 (not graded, only feedback)
3. Project 3: October 21 (graded with feedback)

4. Project 4: November 18 (graded with feedback)

5. Project 5: December 9 (graded with feedback)

Projects are handed in using canvas. We use Github or GitLab (eventually
Bitbucket) as repository for codes, benchmark calculations etc. Comments and
feedback on projects only via canvas.

Topics covered in this course

e Numerical precision and intro to C++ programming
e Numerical derivation and integration

e Random numbers and Monte Carlo integration

e Monte Carlo methods in statistical physics

e Quantum Monte Carlo methods

e Linear algebra and eigenvalue problems

e Non-linear equations and roots of polynomials

e Ordinary differential equations

e Partial differential equations

e Parallelization of codes

e High-performance computing aspects and optimization of codes

Syllabus

Linear algebra and eigenvalue problems, chapters 6 and 7.

e Know Gaussian elimination and LU decomposition
e How to solve linear equations

e How to obtain the inverse and the determinant of a real symmetric matrix

Cholesky and tridiagonal matrix decomposition

Syllabus

Linear algebra and eigenvalue problems, chapters 6 and 7.

e Householder’s tridiagonalization technique and finding eigenvalues based
on this

e Jacobi’s method for finding eigenvalues
e Singular value decomposition

e Cubic Spline interpolation

Syllabus

Numerical integration, standard methods and Monte Carlo methods
(chapters 4 and 11).

e Trapezoidal, rectangle and Simpson’s rules

e Gaussian quadrature, emphasis on Legendre polynomials, but you need to
know about other polynomials as well.

e Brute force Monte Carlo integration

e Random numbers (simplest algo, ran0) and probability distribution func-
tions, expectation values

e Improved Monte Carlo integration and importance sampling.

Syllabus
Monte Carlo methods in physics (chapters 12, 13, and 14).

e Random walks and Markov chains and relation with diffusion equation
e Metropolis algorithm, detailed balance and ergodicity
e Simple spin systems and phase transitions

Variational Monte Carlo

How to construct trial wave functions for quantum systems

Syllabus
Ordinary differential equations (chapters 8 and 9).

e Euler’s method and improved Euler’s method, truncation errors
e Runge Kutta methods, 2nd and 4th order, truncation errors

e How to implement a second-order differential equation, both linear and
non-linear. How to make your equations dimensionless.

e Boundary value problems, shooting and matching method (chap 9).

Syllabus

Partial differential equations, chapter 10.

e Set up diffusion, Poisson and wave equations up to 2 spatial dimensions
and time

e Set up the mathematical model and algorithms for these equations, with
boundary and initial conditions. Their stability conditions.

e Explicit, implicit and Crank-Nicolson schemes, and how to solve them.
Remember that they result in triangular matrices.

e How to compute the Laplacian in Poisson’s equation.

e How to solve the wave equation in one and two dimensions.

Overarching aims of this course

e Develop a critical approach to all steps in a project, which methods are
most relevant, which natural laws and physical processes are important.
Sort out initial conditions and boundary conditions etc.

e This means to teach you structured scientific computing, learn to structure
a project.

e A critical understanding of central mathematical algorithms and methods
from numerical analysis. In particular their limits and stability criteria.

e Always try to find good checks of your codes (like solutions on closed form)

e To enable you to develop a critical view on the mathematical model and
the physics.

Additional learning outcomes

e has a thorough understanding of how computing is used to solve scientific
problems

e knows some central algorithms used in science

e has knowledge of high-performance computing elements: memory usage,
vectorization and parallel algorithms

e understands approximation errors and what can go wrong with algorithms

e has experience with programming in a compiled language (Fortran, C,
C++)

e has experience with debugging software
e has experience with test frameworks and procedures
e can critically evaluate results and errors

e understands how to increase the efficiency of numerical algorithms and
pertinent software

e understands tools to make science reproducible and has a sound ethical
approach to scientific problems

e Is able to write a scientific report with software like Latex

Computing knowledge

Our ideal about knowledge on computational science
Hopefully this is not what you will feel towards the end of the semester!

©fits Partnership

http://hplgit.github.io/edu/py_vs_m/computing_competence.html

And, there is nothing like a code which gives correct re-
sults!!

Other courses in Computational Science at UiO

Bachelor /Master /PhD Courses.

FYS-STK3155/4155 Applied data analysis and machine learning, fall
semester

FYS4411 Computational physics II (Parallelization (MPI), object orienta-
tion, quantum mechanical systems with many interacting particles), spring
semester

FYS4460 Computational physics III (Parallelization (MPI), object orien-
tation, classical statistical physics, simulation of phase transitions, spring
semester

MAT4110 Introduction to Numerical Analysis

MAT3360 - Introduction to Partial Differential Equations

IN5270 Numerical methods for PDEs, finite element method

IN3110 Problem solving with high-level languages (Python), fall semester

IN3200/4200 Parallel computing for problems in the Natural Sciences
(mostly PDEs), spring semester

Extremely useful tools, strongly recommended

and discussed at the lab sessions.

GIT for version control (see webpage), this week at lab

ipython notebook

http://www.uio.no/studier/emner/matnat/fys/FYS-STK3150/
http://www.uio.no/studier/emner/matnat/fys/FYS4411/
http://www.uio.no/studier/emner/matnat/fys/FYS4460/
http://www.uio.no/studier/emner/matnat/math/MAT4110/index-eng.html
https://www.uio.no/studier/emner/matnat/math/MAT3360/index.html
http://www.uio.no/studier/emner/matnat/ifi/IN5270/index-eng.html
https://www.uio.no/studier/emner/matnat/ifi/IN3110/index.html
http://www.uio.no/studier/emner/matnat/ifi/IN3200/index-eng.html

e QTcreator for editing and mastering computational projects (for C++
codes, see webpage of course), discussed during second week

e Armadillo or Eigen as a useful numerical libraries for C++4, highly recom-
mended, week 36 and rest of semester

e Unit tests, week 37 and later

