
Computational Physics Lectures:
Introduction to programming (C++

and Fortran)

Morten Hjorth-Jensen1,2

1Department of Physics, University of Oslo
2Department of Physics and Astronomy and National Superconducting Cyclotron Laboratory, Michigan State University

Aug 19, 2020

Extremely useful tools, strongly recommended
and discussed at the lab sessions the first two weeks.
• GIT for version control, discussed at the lab this week (and next week as
well)

• ipython notebook, mentioned this week

• QTcreator for editing and mastering computational projects

• Armadillo as a useful numerical library for C++, highly recommended

• Unit tests

A structured programming approach

• Before writing a single line, have the algorithm clarified and understood.
It is crucial to have a logical structure of e.g., the flow and organization of
data before one starts writing.

• Always try to choose the simplest algorithm. Computational speed can be
improved upon later.

• Try to write a as clear program as possible. Such programs are easier to
debug, and although it may take more time, in the long run it may save
you time. If you collaborate with other people, it reduces spending time
on debuging and trying to understand what the codes do. A clear program
will also allow you to remember better what the program really does!

c© 1999-2020, Morten Hjorth-Jensen. Released under CC Attribution-NonCommercial 4.0
license

A structured programming approach

• The planning of the program should be from top down to bottom, trying
to keep the flow as linear as possible. Avoid jumping back and forth in the
program. First you need to arrange the major tasks to be achieved. Then
try to break the major tasks into subtasks. These can be represented by
functions or subprograms. They should accomplish limited tasks and as
far as possible be independent of each other. That will allow you to use
them in other programs as well.

• Try always to find some cases where an analytical solution exists or where
simple test cases can be applied. If possible, devise different algorithms
for solving the same problem. If you get the same answers, you may have
coded things correctly or made the same error twice or more.

Getting Started
Compiling and linking, without QTcreator. In order to obtain an exe-
cutable file for a C++ program, the following instructions under Linux/Unix
can be used

c++ -c -Wall myprogram.cpp c++ -o myprogram myprogram.o where the
compiler is called through the command c++/g++. The compiler option -Wall
means that a warning is issued in case of non-standard language. The executable
file is in this case myprogram. The option -c is for compilation only, where the
program is translated into machine code, while the -o option links the produced
object file myprogram.o and produces the executable myprogram .

For Fortran2008 we use the Intel compiler, replace c++ with ifort. Also, to
speed up the code use compile options like

c++ -O3 -c -Wall myprogram.cpp

Makefiles and simple scripts
Under Linux/Unix it is often convenient to create a so-called makefile, which is
a script which includes possible compiling commands. More about this later.

Hello world
The C encounter. Here we present first the C version.

/* comments in C begin like this and end with */ include <stdlib.h> /* atof
function */ include <math.h> /* sine function */ include <stdio.h> /* printf
function */ int main (int argc, char* argv[]) double r, s; /* declare variables */ r
= atof(argv[1]); /* convert the text argv[1] to double */ s = sin(r); printf("Hello,
World! sin(return 0; /* success execution of the program */

2

https://github.com/CompPhysics/ComputationalPhysicsMSU/blob/master/doc/Programs/LecturePrograms/programs/IntroProgramming/cpp/program1.cpp

Hello World, dissecting the code
Dissection I. The compiler must see a declaration of a function before you
can call it (the compiler checks the argument and return types). The declaration
of library functions appears in so-called “header files” that must be included in
the program, e.g.,

include <stdlib.h> /* atof function */ We call three functions (atof, sin,
printf) and these are declared in three different header files. The main program
is a function called main with a return value set to an integer, int (0 if success).
The operating system stores the return value, and other programs/utilities can
check whether the execution was successful or not. The command-line arguments
are transferred to the main function through

int main (int argc, char* argv[])

Hello World, more dissection
Dissection II. The command-line arguments are transferred to the main
function through

int main (int argc, char* argv[]) The integer argc is the no of command-line
arguments, set to one in our case, while argv is a vector of strings containing
the command-line arguments with argv[0] containing the name of the program
and argv[1], argv[2], ... are the command-line args, i.e., the number of lines
of input to the program. Here we define floating points, see also below, through
the keywords float for single precision real numbers and double for double
precision. The function atof transforms a text (argv[1]) to a float. The sine
function is declared in math.h, a library which is not automatically included and
needs to be linked when computing an executable file.

With the command printf we obtain a formatted printout. The printf
syntax is used for formatting output in many C-inspired languages (Perl, Python,
Awk, partly C++).

Hello World with namespace
Now in C++. Here we present the C++ version using namespace. //
A comment line begins like this in C++ programs // Standard ANSI-C++
include files include <iostream> // input and output include <cmath> // math
functions using namespace std; int main (int argc, char* argv[]) // convert the
text argv[1] to double using atof: double r = atof(argv[1]); // convert the text
argv[1] to double double s = sin(r); cout « "Hello, World! sin(" « r « ") =" « s «
endl; return 0; // success execution of the program

Hello World without namespace
Without namespace. Namespaces provide a method for preventing name
conflicts in large projects. Symbols declared inside a namespace block are placed
in a named scope that prevents them from being mistaken for identically-named

3

https://github.com/CompPhysics/ComputationalPhysicsMSU/blob/master/doc/Programs/LecturePrograms/programs/IntroProgramming/cpp/hellow.cpp
https://github.com/CompPhysics/ComputationalPhysicsMSU/blob/master/doc/Programs/LecturePrograms/programs/IntroProgramming/cpp/hellownonamespace.cpp

symbols in other scopes. Multiple namespace blocks with the same name are
allowed. All declarations within those blocks are declared in the named scope.

Here we present the C++ version without using namespace. // A comment
line begins like this in C++ programs // Standard ANSI-C++ include files
include <iostream> // input and output include <cmath> // math functions
using namespace std; int main (int argc, char* argv[]) // convert the text argv[1]
to double using atof: double r = atof(argv[1]); // convert the text argv[1] to
double double s = sin(r); // Note std::cout and std::endl std::cout « "Hello,
World! sin(" « r « ") =" « s « std::endl; return 0; // success execution of the
program

C++ Hello World
Dissection I. We have replaced the call to printf with the standard C++
function cout. The header file <iostream.h> is then needed. In addition, we
don’t need to declare variables like r and s at the beginning of the program. I
personally prefer however to declare all variables at the beginning of a function,
as this gives me a feeling of greater readability.

Brief summary
C/C++ program.

• A C/C++ program begins with include statements of header files (li-
braries,intrinsic functions etc)

• Functions which are used are normally defined at top (details next week)

• The main program is set up as an integer, it returns 0 (everything correct)
or 1 (something went wrong)

• Standard if, while and for statements as in Java, Fortran, Python...

• Integers have a very limited range.

Brief summary
Arrays.

• A C/C++ array begins by indexing at 0!

• Array allocations are done by size, not by the final index value.If you
allocate an array with 10 elements, you should index them from 0, 1, . . . , 9.

• Initialize always an array before a computation.

4

Serious problems and representation of numbers
Integer and Real Numbers.

• Overflow

• Underflow

• Roundoff errors

• Loss of precision

Limits, you must declare variables
C++ and Fortran declarations.

type in C/C++ and Fortran2008 bits range
int/INTEGER (2) 16 -32768 to 32767
unsigned int 16 0 to 65535
signed int 16 -32768 to 32767
short int 16 -32768 to 32767
unsigned short int 16 0 to 65535
signed short int 16 −32768 to 32767
int/long int/INTEGER (4) 32 -2147483648 to 2147483647
signed long int 32 -2147483648 to 2147483647
float/REAL(4) 32 3.4× 10−44 to 3.4× 10+38

double/REAL(8) 64 1.7× 10−322 to 1.7× 10+308

long double 64 1.7× 10−322 to 1.7× 10+308

From decimal to binary representation
How to do it.

an2n + an−12n−1 + an−22n−2 + · · ·+ a020.

In binary notation we have thus (417)10 = (110110001)2 since we have

(110100001)2 = 1× 28 + 1× 27 + 0× 26 + 1× 25 + 0× 24 + 0× 23

+ 0× 22 + 0× 22 + 0× 21 + 1× 20.

From decimal to binary representation, the actual opera-
tion
To see this, we have performed the following divisions by 2

5

417/2=208 remainder 1 coefficient of 20 is 1
208/2=104 remainder 0 coefficient of 21 is 0
104/2=52 remainder 0 coefficient of 22 is 0
52/2=26 remainder 0 coefficient of 23 is 0
26/2=13 remainder 1 coefficient of 24 is 0
13/2= 6 remainder 1 coefficient of 25 is 1
6/2= 3 remainder 0 coefficient of 26 is 0
3/2= 1 remainder 1 coefficient of 27 is 1
1/2= 0 remainder 1 coefficient of 28 is 1

From decimal to binary representation
Integer numbers. include <iostream> include <cmath> include <cstdio>
include <cstdlib> using namespace std; int main (int argc, char* argv[]) int
i; int terms[32]; // storage of a0, a1, etc, up to 32 bits int save; int number =
atoi(argv[1]); save = number; // initialise the term a0, a1 etc for (i=0; i < 32 ;
i++) terms[i] = 0; for (i=0; i < 32 ; i++) terms[i] = numbernumber /= 2; //
write out results cout « "Number of bytes used= " « sizeof(number) « endl; for
(i=0; i < 32 ; i++) cout « " Term nr: " « i « "Value= " « terms[i]; cout « endl;
return 0;

From decimal to binary representation
Integer numbers, Fortran. PROGRAM binaryintegerIMPLICITNONEINTEGERi, number, terms(0 :
31)!storageofa0, a1, etc, upto32bits

WRITE(*,*) ’Give a number to transform to binary notation’ READ(*,*)
number ! Initialise the terms a0, a1 etc terms = 0 ! Fortran takes only integer
loop variables DO i=0, 31 terms(i) = MOD(number,2) number = number/2
ENDDO ! write out results WRITE(*,*) ’Binary representation ’ DO i=0, 31
WRITE(*,*)’ Term nr and value’, i, terms(i) ENDDO

END PROGRAM binaryinteger

Representing Integer Numbers
Possible Overflow for Integers. // A comment line begins like this in
C++ programs // Program to calculate 2**n // Standard ANSI-C++ in-
clude files */ include <iostream> include <cmath> using namespace std
int main() int int1, int2, int3; // print to screen cout « "Read in the ex-
ponential N for 2N = ” << endl; //readfromscreencin >> int2; int1 =
(int)pow(2., (double)int2); cout << ”2N ∗2N = ” << int1∗int1 << endl; int3 =
int1−1; cout << ”2N ∗(2N −1) = ” << int1∗ int3 << endl; cout << ”2N −1 =
” << int3 << endl; return0;

// End: program main()

6

https://github.com/CompPhysics/ComputationalPhysicsMSU/blob/master/doc/Programs/LecturePrograms/programs/IntroProgramming/cpp/program2.cpp
https://github.com/CompPhysics/ComputationalPhysicsMSU/blob/master/doc/Programs/LecturePrograms/programs/IntroProgramming/Fortran/program2.f90
https://github.com/CompPhysics/ComputationalPhysicsMSU/blob/master/doc/Programs/LecturePrograms/programs/IntroProgramming/cpp/program3.cpp

Loss of Precision
Machine Numbers. In the decimal system we would write a number like
9.90625 in what is called the normalized scientific notation.

9.90625 = 0.990625× 101,

and a real non-zero number could be generalized as

x = ±r × 10n, (1)
with r a number in the range 1/10 ≤ r < 1. In a similar way we can use represent
a binary number in scientific notation as

x = ±q × 2m, (2)
with q a number in the range 1/2 ≤ q < 1. This means that the mantissa of a
binary number would be represented by the general formula

(0.a−1a−2 . . . a−n)2 = a−1 × 2−1 + a−2 × 2−2 + · · ·+ a−n × 2−n. (3)

Loss of Precision
Machine Numbers. In a typical computer, floating-point numbers are rep-
resented in the way described above, but with certain restrictions on q and
m imposed by the available word length. In the machine, our number x is
represented as

x = (−1)s ×mantissa× 2exponent, (4)
where s is the sign bit, and the exponent gives the available range. With a

single-precision word, 32 bits, 8 bits would typically be reserved for the exponent,
1 bit for the sign and 23 for the mantissa.

Loss of Precision
Machine Numbers. A modification of the scientific notation for binary num-
bers is to require that the leading binary digit 1 appears to the left of the binary
point. In this case the representation of the mantissa q would be (1.f)2 and
1 ≤ q < 2. This form is rather useful when storing binary numbers in a computer
word, since we can always assume that the leading bit 1 is there. One bit of
space can then be saved meaning that a 23 bits mantissa has actually 24 bits.
This means explicitely that a binary number with 23 bits for the mantissa reads

(1.a−1a−2 . . . a−23)2 = 1×20 +a−1×2−1 ++a−2×2−2 + · · ·+a−23×2−23. (5)

Loss of Precision, example
As an example, consider the 32 bits binary number

7

(10111110111101000000000000000000)2,

where the first bit is reserved for the sign, 1 in this case yielding a negative sign.
The exponent m is given by the next 8 binary numbers 01111101 resulting in
125 in the decimal system.

Loss of Precision
Machine Numbers. However, since the exponent has eight bits, this means
it has 28 − 1 = 255 possible numbers in the interval −128 ≤ m ≤ 127, our final
exponent is 125− 127 = −2 resulting in 2−2. Inserting the sign and the mantissa
yields the final number in the decimal representation as

−2−2 (1× 20 + 1× 2−1 + 1× 2−2 + 1× 2−3 + 0× 2−4 + 1× 2−5) =

(−0.4765625)10.

In this case we have an exact machine representation with 32 bits (actually, we
need less than 23 bits for the mantissa).

Loss of Precision, consequences
If our number x can be exactly represented in the machine, we call x a

machine number. Unfortunately, most numbers cannot and are thereby only
approximated in the machine. When such a number occurs as the result of
reading some input data or of a computation, an inevitable error will arise in
representing it as accurately as possible by a machine number.

Loss of Precision
Machine Numbers. A floating number x, labelled fl(x) will therefore always
be represented as

fl(x) = x(1± εx), (6)
with x the exact number and the error |εx| ≤ |εM |, where εM is the precision
assigned. A number like 1/10 has no exact binary representation with single or
double precision. Since the mantissa

(1.a−1a−2 . . . a−n)2

is always truncated at some stage n due to its limited number of bits, there is
only a limited number of real binary numbers. The spacing between every real
binary number is given by the chosen machine precision. For a 32 bit words this
number is approximately εM ∼ 10−7 and for double precision (64 bits) we have
εM ∼ 10−16, or in terms of a binary base as 2−23 and 2−52 for single and double
precision, respectively.

8

Loss of Precision
Machine Numbers. In the machine a number is represented as

fl(x) = x(1 + ε) (7)

where |ε| ≤ εM and ε is given by the specified precision, 10−7 for single and
10−16 for double precision, respectively. εM is the given precision. In case of a
subtraction a = b− c, we have

fl(a) = fl(b)− fl(c) = a(1 + εa), (8)

or
fl(a) = b(1 + εb)− c(1 + εc), (9)

Loss of Precision
The above means that

fl(a)/a = 1 + εb
b

a
− εc

c

a
, (10)

and if b ≈ c we see that there is a potential for an increased error in fl(a).

Loss of Precision
Machine Numbers. Define the absolute error as

|fl(a)− a|, (11)

whereas the relative error is

|fl(a)− a|
a

≤ εa. (12)

Loss of Precision
The above subraction is thus

|fl(a)− a|
a

= |fl(b)− fl(c)− (b− c)|
a

, (13)

yielding

|fl(a)− a|
a

= |bεb − cεc|
a

. (14)

The relative error is the quantity of interest in scientific work. Information about
the absolute error is normally of little use in the absence of the magnitude of
the quantity being measured.

9

Loss of numerical precision
Suppose we wish to evaluate the function

f(x) = 1− cos(x)
sin(x) ,

for small values of x. Five leading digits. If we multiply the denominator and
numerator with 1 + cos(x) we obtain the equivalent expression

f(x) = sin(x)
1 + cos(x) .

If we now choose x = 0.007 (in radians) our choice of precision results in

sin(0.007) ≈ 0.69999× 10−2,

and

cos(0.007) ≈ 0.99998.

Loss of numerical precision
The first expression for f(x) results in

f(x) = 1− 0.99998
0.69999× 10−2 = 0.2× 10−4

0.69999× 10−2 = 0.28572× 10−2,

while the second expression results in

f(x) = 0.69999× 10−2

1 + 0.99998 = 0.69999× 10−2

1.99998 = 0.35000× 10−2,

which is also the exact result. In the first expression, due to our choice of
precision, we have only one relevant digit in the numerator, after the subtraction.
This leads to a loss of precision and a wrong result due to a cancellation of two
nearly equal numbers. If we had chosen a precision of six leading digits, both
expressions yield the same answer.

Loss of numerical precision
If we were to evaluate x ∼ π, then the second expression for f(x) can lead to
potential losses of precision due to cancellations of nearly equal numbers.

This simple example demonstrates the loss of numerical precision due to
roundoff errors, where the number of leading digits is lost in a subtraction of two
near equal numbers. The lesson to be drawn is that we cannot blindly compute
a function. We will always need to carefully analyze our algorithm in the search
for potential pitfalls. There is no magic recipe however, the only guideline is an
understanding of the fact that a machine cannot represent correctly all numbers.

10

Loss of precision can cause serious problems
Real Numbers.

• Overflow: When the positive exponent exceeds the max value, e.g., 308
for DOUBLE PRECISION (64 bits). Under such circumstances the program
will terminate and some compilers may give you the warning OVERFLOW.

• Underflow: When the negative exponent becomes smaller than the min
value, e.g., -308 for DOUBLE PRECISION. Normally, the variable is then set
to zero and the program continues. Other compilers (or compiler options)
may warn you with the UNDERFLOW message and the program terminates.

Loss of precision, real numbers
Roundoff errors. A floating point number like

x = 1.234567891112131468 = 0.1234567891112131468× 101 (15)

may be stored in the following way. The exponent is small and is stored in full
precision. However, the mantissa is not stored fully. In double precision (64
bits), digits beyond the 15th are lost since the mantissa is normally stored in
two words, one which is the most significant one representing 123456 and the
least significant one containing 789111213. The digits beyond 3 are lost. Clearly,
if we are summing alternating series with large numbers, subtractions between
two large numbers may lead to roundoff errors, since not all relevant digits are
kept. This leads eventually to the next problem, namely

More on loss of precision
Real Numbers.

• Loss of precision: When one has to e.g., multiply two large numbers
where one suspects that the outcome may be beyond the bonds imposed by
the variable declaration, one could represent the numbers by logarithms,
or rewrite the equations to be solved in terms of dimensionless variables.
When dealing with problems in e.g., particle physics or nuclear physics
where distance is measured in fm (10−15 m), it can be quite convenient
to redefine the variables for distance in terms of a dimensionless variable
of the order of unity. To give an example, suppose you work with single
precision and wish to perform the addition 1 + 10−8. In this case, the
information containing in 10−8 is simply lost in the addition. Typically,
when performing the addition, the computer equates first the exponents
of the two numbers to be added. For 10−8 this has however catastrophic
consequences since in order to obtain an exponent equal to 100, bits in the
mantissa are shifted to the right. At the end, all bits in the mantissa are
zeros.

11

A problematic case
Three ways of computing e−x. Brute force:

exp (−x) =
∞∑

n=0
(−1)nx

n

n!

Recursion relation for

exp (−x) =
∞∑

n=0
sn =

∞∑
n=0

(−1)nx
n

n!

sn = −sn−1
x

n
,

exp (x) =
∞∑

n=0
sn

exp (−x) = 1
exp (x)

Program to compute exp (−x)
Brute Force. // Program to calculate function exp(-x) // using straightfor-
ward summation with differing precision using namespace std include <iostream>
include <cmath> // type float: 32 bits precision // type double: 64 bits precision
define TYPE double define PHASE(a) (1 - 2 * (abs(a) define TRUNCATION
1.0E-10 // function declaration TYPE factorial(int);

Program to compute exp (−x)
Still Brute Force. int main() int n; TYPE x, term, sum; for(x = 0.0; x <
100.0; x += 10.0) sum = 0.0; //initialization n = 0; term = 1; while(fabs(term)
> TRUNCATION) term = PHASE(n) * (TYPE) pow((TYPE) x,(TYPE) n) /
factorial(n); sum += term; n++; // end of while() loop

Program to compute exp (−x)
Oh, it never ends! printf("= number of terms = x, exp(-x), sum, n); // end
of for() loop

printf(""); // a final line shift on output return 0; // End: function main()
// The function factorial() // calculates and returns n! TYPE factorial(int n)
int loop; TYPE fac; for(loop = 1, fac = 1.0; loop <= n; loop++) fac *= loop;

return fac; // End: function factorial()

12

https://github.com/CompPhysics/ComputationalPhysicsMSU/blob/master/doc/Programs/LecturePrograms/programs/IntroProgramming/cpp/program4.cpp

Results exp (−x)
What is going on?

x exp (−x) Series Number of terms in series
0.0 0.100000E+01 0.100000E+01 1
10.0 0.453999E-04 0.453999E-04 44
20.0 0.206115E-08 0.487460E-08 72
30.0 0.935762E-13 -0.342134E-04 100
40.0 0.424835E-17 -0.221033E+01 127
50.0 0.192875E-21 -0.833851E+05 155
60.0 0.875651E-26 -0.850381E+09 171
70.0 0.397545E-30 NaN 171
80.0 0.180485E-34 NaN 171
90.0 0.819401E-39 NaN 171
100.0 0.372008E-43 NaN 171

Program to compute exp (−x)
// program to compute exp(-x) without exponentials using namespace std

include <iostream> include <cmath> define TRUNCATION 1.0E-10
int main() int loop, n; double x, term, sum; for(loop = 0; loop <= 100; loop

+= 10) x = (double) loop; // initialization sum = 1.0; term = 1; n = 1;

Program to compute exp (−x)
Last statements. while(fabs(term) > TRUNCATION) term *= -x/((double)
n); sum += term; n++; // end while loop cout « "x = " « x « " exp = " «
exp(-x) «"series = " « sum « " number of terms =" « n « endl; // end of for()
loop

cout « endl; // a final line shift on output
/* End: function main() */

Results exp (−x)
More Problems.

13

https://github.com/CompPhysics/ComputationalPhysicsMSU/blob/master/doc/Programs/LecturePrograms/programs/IntroProgramming/cpp/program5.cpp

x exp (−x) Series Number of terms in series
0.000000 0.10000000E+01 0.10000000E+01 1
10.000000 0.45399900E-04 0.45399900E-04 44
20.000000 0.20611536E-08 0.56385075E-08 72
30.000000 0.93576230E-13 -0.30668111E-04 100
40.000000 0.42483543E-17 -0.31657319E+01 127
50.000000 0.19287498E-21 0.11072933E+05 155
60.000000 0.87565108E-26 -0.33516811E+09 182
70.000000 0.39754497E-30 -0.32979605E+14 209
80.000000 0.18048514E-34 0.91805682E+17 237
90.000000 0.81940126E-39 -0.50516254E+22 264
100.000000 0.37200760E-43 -0.29137556E+26 291

Most used formula for derivatives
3 point formulae. First derivative (f0 = f(x0), f−h = f(x0 − h) and f+h =
f(x0 + h)

fh − f−h

2h = f ′0 +
∞∑

j=1

f
(2j+1)
0

(2j + 1)!h
2j .

Second derivative

fh − 2f0 + f−h

h2 = f ′′0 + 2
∞∑

j=1

f
(2j+2)
0

(2j + 2)!h
2j .

Error Analysis

ε = log10

(∣∣∣∣∣f
′′
computed − f

′′
exact

f ′′exact

∣∣∣∣∣
)
,

εtot = εapprox + εro.

For the computed second derivative we have

f ′′0 = fh − 2f0 + f−h

h2 − 2
∞∑

j=1

f
(2j+2)
0

(2j + 2)!h
2j ,

and the truncation or approximation error goes like

εapprox ≈
f

(4)
0
12 h2.

14

Error Analysis
If we were not to worry about loss of precision, we could in principle make

h as small as possible. However, due to the computed expression in the above
program example

f ′′0 = fh − 2f0 + f−h

h2 = (fh − f0) + (f−h − f0)
h2 ,

we reach fairly quickly a limit for where loss of precision due to the subtraction
of two nearly equal numbers becomes crucial.

If (f±h− f0) are very close, we have (f±h− f0) ≈ εM , where |εM | ≤ 10−7 for
single and |εM | ≤ 10−15 for double precision, respectively.

We have then

|f ′′0 | =
∣∣∣∣ (fh − f0) + (f−h − f0)

h2

∣∣∣∣ ≤ 2εM
h2 .

Error Analysis
Our total error becomes

|εtot| ≤
2εM
h2 + f

(4)
0
12 h2.

It is then natural to ask which value of h yields the smallest total error. Taking
the derivative of |εtot| with respect to h results in

h =
(

24εM
f

(4)
0

)1/4

.

With double precision and x = 10 we obtain

h ≈ 10−4.

Beyond this value, it is essentially the loss of numerical precision which takes
over.

Error Analysis
Due to the subtractive cancellation in the expression for f ′′ there is a pro-

nounced detoriation in accuracy as h is made smaller and smaller.
It is instructive in this analysis to rewrite the numerator of the computed

derivative as

(fh − f0) + (f−h − f0) = (ex+h − ex) + (ex−h − ex),

as

(fh − f0) + (f−h − f0) = ex(eh + e−h − 2),

15

since it is the difference (eh + e−h − 2) which causes the loss of precision.

Error Analysis

x h = 0.01 h = 0.001 h = 0.0001 h = 0.0000001 Exact
0.0 1.000008 1.000000 1.000000 1.010303 1.000000
1.0 2.718304 2.718282 2.718282 2.753353 2.718282
2.0 7.389118 7.389057 7.389056 7.283063 7.389056
3.0 20.085704 20.085539 20.085537 20.250467 20.085537
4.0 54.598605 54.598155 54.598151 54.711789 54.598150
5.0 148.414396 148.413172 148.413161 150.635056 148.413159

Error Analysis
The results for x = 10 are shown in the Table

h eh + e−h eh + e−h − 2
10−1 2.0100083361116070 1.0008336111607230× 10−2

10−2 2.0001000008333358 1.0000083333605581× 10−4

10−3 2.0000010000000836 1.0000000834065048× 10−6

10−5 2.0000000099999999 1.0000000050247593× 10−8

10−5 2.0000000001000000 9.9999897251734637× 10−11

10−6 2.0000000000010001 9.9997787827987850× 10−13

10−7 2.0000000000000098 9.9920072216264089× 10−15

10−8 2.0000000000000000 0.0000000000000000× 100

10−9 2.0000000000000000 1.1102230246251565× 10−16

10−10 2.0000000000000000 0.0000000000000000× 100

Program to compute derivative
We list here the program to compute the above derivative include <iostream>
include <cmath> include <fstream> include <iomanip> // Note: not using
namespace for std // output file as global variable

std::ofstream ofile;
// Begin of main program
int main(int argc, char* argv[]) char *outfilename; // Read in output file,

abort if there are too few command-line arguments if(argc <= 3) std::cout «
"Bad Usage: " « argv[0] « " read also output file and number of elements on same
line" « std::endl; exit(1); else outfilename=argv[1]; // opening a file for the
program ofile.open(outfilename); // extracting number of mesh points int i =
atoi(argv[2]); double x = atof(argv[3]); // reading x-value double h = 1.0/((dou-
ble) i); // setting up step size double Derivative = (exp(x+h)-2.*exp(x)+exp(x-
h))/(h*h); double RelativeError = log10(fabs(Derivative-exp(x))/exp(x)); ofile «
std::setw(15) « std::setprecision(8) « "relative error=" « RelativeError « std::endl;
ofile.close(); // close output file return 0;

16

https://github.com/CompPhysics/ComputationalPhysics/blob/master/doc/Programs/LecturePrograms/programs/IntroProgramming/cpp/derivative.cpp

Technical Matter in C/C++: Pointers
A pointer specifies where a value resides in the computer’s memory (like a

house number specifies where a particular family resides on a street).
A pointer points to an address not to a data container of any kind!
Simple example declarations:
using namespace std; // note use of namespace int main() // what are the

differences? int var; cin » var; int *p, q; int *s, *t; int * a new[var]; // dynamic
memory allocation delete [] a;

Technical Matter in C/C++: Pointer example I
using namespace std; // note use of namespace int main() int var; int *p;

p = var; var = 421; printf("Address of integer variable var : printf("Its value:
printf("Value of integer pointer p : printf("The value p points at : printf("Address
of the pointer p : return 0;

Dissection: Pointer example I
Discussion. int main() int var; // Define an integer variable var int *p; //
Define a pointer to an integer p = var; // Extract the address of var var = 421;
// Change content of var printf("Address of integer variable var : printf("Its
value: printf("Value of integer pointer p : // The content of the variable pointed
to by p is *p printf("The value p points at : // Address where the pointer is
stored in memory printf("Address of the pointer p : return 0;

Pointer example II
int matr[2]; int *p; p = matr[0]; matr[0] = 321; matr[1] = 322; printf("of

matrix element matr[1]: printf("of the matrix element matr[1]; printf("of matrix
element matr[2]: printf("of the matrix element matr[2]: printf("of the pointer p:
printf("value p points to: printf("value that (p+1) points to printf("of pointer p
:

Dissection: Pointer example II
int matr[2]; // Define integer array with two elements int *p; // Define pointer

to integer p = matr[0]; // Point to the address of the first element in matr
matr[0] = 321; // Change the first element matr[1] = 322; // Change the
second element printf("of matrix element matr[1]: printf("of the matrix element
matr[1]; printf("of matrix element matr[2]: printf("of the matrix element matr[2]:
printf("of the pointer p: printf("value p points to: printf("value that (p+1) points
to printf("of pointer p :

17

https://github.com/CompPhysics/ComputationalPhysicsMSU/blob/master/doc/Programs/LecturePrograms/programs/IntroProgramming/cpp/program7.cpp
https://github.com/CompPhysics/ComputationalPhysicsMSU/blob/master/doc/Programs/LecturePrograms/programs/IntroProgramming/cpp/program8.cpp

Output of Pointer example II
Address of the matrix element matr[1]: 0xbfffef70 Value of the matrix element

matr[1]; 321 Address of the matrix element matr[2]: 0xbfffef74 Value of the
matrix element matr[2]: 322 Value of the pointer: 0xbfffef70 The value pointer
points at: 321 The value that (pointer+1) points at: 322 Address of the pointer
variable : 0xbfffef6c

File handling; C-way
using namespace std; include <iostream> int main(int argc, char *argv[]) FILE
*inf ile, ∗outf ile; if(argc < 3)printf(”Theprogramshasthefollowingstructure : ”); printf(”writeinthenameoftheinputandoutputfiles”); exit(0);inf ile =
fopen(argv[1], ”r”); //returnspointertotheinputfileif(inf ile == NULL)//NULLmeansthatthefileismissingprintf(”Can′tfindtheinputfileexit(0);

File handling; C way cont.
outf ile = fopen(argv[2], ”w”); //returnsapointertotheoutputfileif(outf ile ==
NULL)//can′tfindthefileprintf(”Can′tfindtheoutputfileexit(0);fclose(inf ile); fclose(outf ile); return0;

File handling, C++-way
include <fstream>

// input and output file as global variable ofstream ofile; ifstream ifile;

File handling, C++-way
int main(int argc, char* argv[]) char *outfilename; //Read in output file, abort
if there are too //few command-line arguments if(argc <= 1) cout « "Bad
Usage: " « argv[0] « " read also output file on same line" « endl; exit(1); else
outfilename=argv[1]; ofile.open(outfilename); ofile.close(); // close output
file

File handling, C++-way
void output(double rmin, doublermax, intmaxstep, double∗d)inti; ofile << ”RESULTS : ” << endl; ofile << setiosflags(ios :: showpoint|ios :: uppercase); ofile << ”Rmin = ” << setw(15) << setprecision(8) << rmin << endl; ofile << ”Rmax = ” << setw(15) << setprecision(8) << rmax << endl; ofile << ”Numberofsteps = ” << setw(15) << maxstep << endl; ofile << ”Fivelowesteigenvalues : ” << endl; for(i = 0; i < 5; i+ +)ofile << setw(15) << setprecision(8) << d[i] << endl;

// end of function output

File handling, C++-way
int main(int argc, char* argv[]) char *infilename; // Read in input file, abort
if there are too // few command-line arguments if(argc <= 1) cout « "Bad
Usage: " « argv[0] « " read also input file on same line" « endl; exit(1); else
infilename=argv[1]; ifile.open(infilename); ifile.close(); // close input file

18

File handling, C++-way
const char* filename1 = "myfile"; ifstream ifile(filename1); string filename2
= filename1 + ".out" ofstream ofile(filename2); // new output file ofstream
ofile(filename2, iosbase :: app); //append

// Read something from the file:
double a; int b; char c[200]; ifile » a » b » c; // skips white space in between
// Can test on success of reading:
if (!(ifile » a » b » c)) ok = 0;

Call by value or reference
C++ allows the programmer to use solely call by reference (note that call by
reference is implemented as pointers). To see the difference between C and C++,
consider the following simple examples. In C we would write

int n; n =8; func(n); /* n is a pointer to n */ void func(int *i) *i = 10;
/* n is changed to 10 */ whereas in C++ we would write int n; n =8;
func(n); // just transfer n itself void func(int i) i = 10; // n is changed to
10

Call by value or reference
The reason why we emphasize the difference between call by value and call by
reference is that it allows the programmer to avoid pitfalls like unwanted changes
of variables. However, many people feel that this reduces the readability of the
code.

Call by value and reference, F90/95
In Fortran we can use INTENT(IN), INTENT(OUT), INTENT(INOUT) to let the
program know which values should or should not be changed.

SUBROUTINE coulombintegral(np, lp, n, l, coulomb)USEeffectiveinteractiondeclarUSEenergyvariablesUSEwavefunctionsIMPLICITNONEINTEGER, INTENT (IN) ::
n, l, np, lpINTEGER :: iREAL(KIND = 8), INTENT (INOUT) :: coulombREAL(KIND =
8) :: zrel, osclr, sumcoulomb... This hinders unwanted changes and increases
readability.

Example codes in c++, dynamic memory allocation
include <iostream> include <cmath> using namespace std; // note use of
namespace int main (int argc, char* argv[]) int i = atoi(argv[1]); // Dynamic
memory allocation: need tp declare -a- as a pointer // You can use double *a =
new double[i]; or double *a; a = new double[i]; // the first of element of a, a[0],
and its address is the // value of the pointer. /* This is a longer comment if we
want a static memory allocation this is the way to do it */ cout « " bytes for
i=" « sizeof(i) « endl; for (int j = 0; j < i; j++) a[j] = j*exp(2.0); cout « "a=" «
a[j] « endl; // freeing memory delete [] a; // to check for memory leaks, use the
software called -valgrind- return 0; /* success execution of the program */

19

https://github.com/CompPhysics/ComputationalPhysicsMSU/blob/master/doc/Programs/LecturePrograms/programs/Classes/cpp/program4.cpp

Example codes in c++, writing to file and dynamic alloca-
tion for arrays
include <iostream> include <cmath> include <fstream> include <iomanip>
using namespace std; // note use of namespace

// output file as global variable
ofstream ofile;
// Begin of main program
int main(int argc, char* argv[]) char *outfilename; // Read in output file,

abort if there are too few command-line arguments if(argc <= 2) cout « "Bad
Usage: " « argv[0] « " read also output file and number of elements on same line"
« endl; exit(1); else outfilename=argv[1];

// opening a file for the program ofile.open(outfilename); int i = atoi(argv[2]);
// int *a; //a = new int[i]; double *a = new double[i]; cout « " bytes for i=" «
sizeof(i) « endl; for (int j = 0; j < i; j++) a[j] = j*exp(2.0); // ofile instead of
cout ofile « setw(15) « setprecision(8) « "a=" « a[j] « endl; delete [] a; // free
memory ofile.close(); // close output file return 0;

Example codes in c++, transfer of data using call by value
and call by reference
include <iostream> using namespace std; // Declare functions before main void
func(int, int*); int main(int argc, char *argv[]) int a; int *b; a = 10; b = new
int[10]; for(int i = 0; i < 10; i++) b[i] = i; cout « b[i] « endl; // the variable
a is transferred by call by value. This means // that the function func cannot
change a in the calling function func(a,b);

delete [] b ; return 0; // End: function main()
void func(int x, int *y) // a becomes locally x and it can be changed locally

x+=7; // func gets the address of the first element of y (b) // it changes y[0] to
10 and when returning control to main // it changes also b[0]. Call by reference
*y += 10; // *y = *y+10; // explicit element y[6] += 10; // in this function
y[0] and y[6] have been changed and when returning // control to main this
means that b[0] and b[6] are changed. return; // End: function func()

Example codes in c++, operating on several arrays and
printing time used
include <cstdlib> include <iostream> include <cmath> include <iomanip>
include "time.h"

using namespace std; // note use of namespace int main (int argc, char*
argv[]) int i = atoi(argv[1]); double *a, *b, *c; a = new double[i]; b = new
double[i]; c = new double[i];

clocktstart, finish; start = clock(); for(intj = 0; j < i; j++)a[j] = cos(j ∗ 1.0); b[j] = sin(j + 3.0); c[j] = 0.0;for(intj =
0; j < i; j++)c[j] = a[j] + b[j];finish = clock(); doubletimeused = (double)(finish−
start)/(CLOCKSPERSEC); cout << setiosflags(ios :: showpoint|ios :: uppercase); cout <<

20

https://github.com/CompPhysics/ComputationalPhysicsMSU/blob/master/doc/Programs/LecturePrograms/programs/Classes/cpp/program5.cpp
https://github.com/CompPhysics/ComputationalPhysicsMSU/blob/master/doc/Programs/LecturePrograms/programs/Classes/cpp/program5.cpp
https://github.com/CompPhysics/ComputationalPhysicsMSU/blob/master/doc/Programs/LecturePrograms/programs/Classes/cpp/program6.cpp
https://github.com/CompPhysics/ComputationalPhysicsMSU/blob/master/doc/Programs/LecturePrograms/programs/Classes/cpp/program6.cpp
https://github.com/CompPhysics/ComputationalPhysicsMSU/blob/master/doc/Programs/LecturePrograms/programs/Classes/cpp/program7.cpp
https://github.com/CompPhysics/ComputationalPhysicsMSU/blob/master/doc/Programs/LecturePrograms/programs/Classes/cpp/program7.cpp

setprecision(10) << setw(20) << ”Timeusedforvectoraddition = ” << timeused <<
endl; delete[]a; delete[]b; delete[]c; return0; /∗successexecutionoftheprogram∗/

21

