
Computational Physics Lectures:
Introduction to Monte Carlo methods

Morten Hjorth-Jensen1,2

1Department of Physics, University of Oslo
2Department of Physics and Astronomy and National Superconducting Cyclotron Laboratory, Michigan State University

Oct 4, 2019

Monte Carlo methods, plan for the lectures

1. Intro, MC integration and probability distribution functions (PDFs)

2. More on integration, PDFs, MC integration and random walks.

3. Random walks and statistical physics.

4. Statistical physics and the Ising and Potts models

5. Quantum Monte Carlo

Monte Carlo: Enhances algorithmic thinking!

• Be able to generate random variables following a given probability distri-
bution function PDF

• Find a probability distribution function (PDF)

• Sampling rule for accepting a move

• Compute standard deviation and other expectation values

• Techniques for improving errors

c© 1999-2019, Morten Hjorth-Jensen. Released under CC Attribution-NonCommercial 4.0
license

Domains and probabilities
Consider the following simple example, namely the tossing of a dice, resulting

in the following possible values

{2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}.

These values are called the domain. To this domain we have the corresponding
probabilities

{1/36, 2/36/3/36, 4/36, 5/36, 6/36, 5/36, 4/36, 3/36, 2/36, 1/36}.

Monte Carlo methods, tossing a dice
The numbers in the domain are the outcomes of the physical process tossing

the dice. We cannot tell beforehand whether the outcome is 3 or 5 or any
other number in this domain. This defines the randomness of the outcome, or
unexpectedness or any other synonimous word which encompasses the uncertitude
of the final outcome.

The only thing we can tell beforehand is that say the outcome 2 has a certain
probability. If our favorite hobby is to spend an hour every evening throwing
dice and registering the sequence of outcomes, we will note that the numbers in
the above domain

{2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12},

appear in a random order. After 11 throws the results may look like

{10, 8, 6, 3, 6, 9, 11, 8, 12, 4, 5}.

Stochastic variables
Random variables are characterized by a domain which contains all

possible values that the random value may take. This domain has a
corresponding PDF.

Stochastic variables and the main concepts, the discrete
case

There are two main concepts associated with a stochastic variable. The domain
is the set D = {x} of all accessible values the variable can assume, so that X ∈ D.
An example of a discrete domain is the set of six different numbers that we may
get by throwing of a dice, x ∈ {1, 2, 3, 4, 5, 6}.

The probability distribution function (PDF) is a function p(x) on the domain
which, in the discrete case, gives us the probability or relative frequency with
which these values of X occur

p(x) = Prob(X = x).

2

Stochastic variables and the main concepts, the continuous
case

In the continuous case, the PDF does not directly depict the actual probability.
Instead we define the probability for the stochastic variable to assume any value
on an infinitesimal interval around x to be p(x)dx. The continuous function p(x)
then gives us the density of the probability rather than the probability itself. The
probability for a stochastic variable to assume any value on a non-infinitesimal
interval [a, b] is then just the integral

Prob(a ≤ X ≤ b) =
∫ b

a

p(x)dx.

Qualitatively speaking, a stochastic variable represents the values of numbers
chosen as if by chance from some specified PDF so that the selection of a large
set of these numbers reproduces this PDF.

The cumulative probability
Of interest to us is the cumulative probability distribution function (CDF),

P (x), which is just the probability for a stochastic variable X to assume any
value less than x

P (x) = Prob(X ≤ x) =
∫ x

−∞
p(x′)dx′.

The relation between a CDF and its corresponding PDF is then

p(x) = d

dx
P (x).

Properties of PDFs
There are two properties that all PDFs must satisfy. The first one is positivity

(assuming that the PDF is normalized)

0 ≤ p(x) ≤ 1.

Naturally, it would be nonsensical for any of the values of the domain to occur
with a probability greater than 1 or less than 0. Also, the PDF must be
normalized. That is, all the probabilities must add up to unity. The probability
of “anything” to happen is always unity. For both discrete and continuous PDFs,
this condition is ∑

xi∈D
p(xi) = 1,∫

x∈D
p(x) dx = 1.

3

Important distributions, the uniform distribution
The first one is the most basic PDF; namely the uniform distribution

p(x) = 1
b− a

θ(x− a)θ(b− x), (1)

with
θ(x) = 0 x < 0
θ(x) = 1

b−a ∈ [a, b].

The normal distribution with b = 1 and a = 0 is used to generate random
numbers.

Gaussian distribution
The second one is the Gaussian Distribution

p(x) = 1
σ
√

2π
exp (− (x− µ)2

2σ2),

with mean value µ and standard deviation σ. If µ = 0 and σ = 1, it is normally
called the standard normal distribution

p(x) = 1√
2π

exp (−x
2

2),

The following simple Python code plots the above distribution for different
values of µ and σ.

Exponential distribution
Another important distribution in science is the exponential distribution

p(x) = α exp−(αx).

Expectation values
Let h(x) be an arbitrary continuous function on the domain of the stochastic

variable X whose PDF is p(x). We define the expectation value of h with respect
to p as follows

〈h〉X ≡
∫
h(x)p(x) dx (2)

Whenever the PDF is known implicitly, like in this case, we will drop the index
X for clarity. A particularly useful class of special expectation values are the
moments. The n-th moment of the PDF p is defined as follows

〈xn〉 ≡
∫
xnp(x) dx

4

Stochastic variables and the main concepts, mean values
The zero-th moment 〈1〉 is just the normalization condition of p. The first

moment, 〈x〉, is called the mean of p and often denoted by the letter µ

〈x〉 = µ ≡
∫
xp(x)dx,

for a continuous distribution and

〈x〉 = µ ≡
N∑
i=1

xip(xi),

for a discrete distribution. Qualitatively it represents the centroid or the average
value of the PDF and is therefore simply called the expectation value of p(x).

Stochastic variables and the main concepts, central mo-
ments, the variance

A special version of the moments is the set of central moments, the n-th central
moment defined as

〈(x− 〈x〉)n〉 ≡
∫

(x− 〈x〉)np(x) dx

The zero-th and first central moments are both trivial, equal 1 and 0, respectively.
But the second central moment, known as the variance of p, is of particular
interest. For the stochastic variable X, the variance is denoted as σ2

X or Var(X)

σ2
X = Var(X) = 〈(x− 〈x〉)2〉 =

∫
(x− 〈x〉)2p(x)dx

=
∫ (

x2 − 2x〈x〉2 + 〈x〉2
)
p(x)dx

= 〈x2〉〉 − 2〈x〉〈x〉+ 〈x〉2

= 〈x2〉 − 〈x〉2

The square root of the variance, σ =
√
〈(x− 〈x〉)2〉 is called the standard

deviation of p. It is the RMS (root-mean-square) value of the deviation of the
PDF from its mean value, interpreted qualitatively as the “spread” of p around
its mean.

First Illustration of the Use of Monte-Carlo Methods, inte-
gration

With this definition of a random variable and its associated PDF, we attempt
now a clarification of the Monte-Carlo strategy by using the evaluation of an
integral as our example.

5

In discussion on numerical integration we went through standard methods
for evaluating an integral like

I =
∫ 1

0
f(x)dx ≈

N∑
i=1

ωif(xi),

where ωi are the weights determined by the specific integration method (like
Simpson’s method) with xi the given mesh points. To give you a feeling of
how we are to evaluate the above integral using Monte-Carlo, we employ here
the crudest possible approach. Later on we will present slightly more refined
approaches. This crude approach consists in setting all weights equal 1, ωi = 1.
That corresponds to the rectangle method

I =
∫ b

a

f(x)dx ≈ h
N∑
i=1

f(xi−1/2),

where f(xi−1/2) is the midpoint value of f for a given value xi−1/2.

First Illustration of the Use of Monte-Carlo Methods, inte-
gration
Setting h = (b − a)/N where b = 1, a = 0, we can then rewrite the above

integral as

I =
∫ 1

0
f(x)dx ≈ 1

N

N∑
i=1

f(xi−1/2),

where xi−1/2 are the midpoint values of x. Introducing the concept of the average
of the function f for a given PDF p(x) as

〈f〉 =
N∑
i=1

f(xi)p(xi),

and identify p(x) with the uniform distribution, viz. p(x) = 1 when x ∈ [0, 1]
and zero for all other values of x. The integral is is then the average of f over
the interval x ∈ [0, 1]

I =
∫ 1

0
f(x)dx ≈ 〈f〉.

First Illustration of the Use of Monte-Carlo Methods, vari-
ance in integration

In addition to the average value 〈f〉 the other important quantity in a Monte-
Carlo calculation is the variance σ2 and the standard deviation σ. We define

6

first the variance of the integral with f for a uniform distribution in the interval
x ∈ [0, 1] to be

σ2
f =

N∑
i=1

(f(xi)− 〈f〉)2p(xi),

and inserting the uniform distribution this yields

σ2
f = 1

N

N∑
i=1

f(xi)2 −

(
1
N

N∑
i=1

f(xi)
)2

,

or
σ2
f =

(
〈f2〉 − 〈f〉2

)
.

Monte-Carlo integration, meaning of variance
The variance is nothing but a measure of the extent to which f deviates from

its average over the region of integration. The standard deviation is defined as
the square root of the variance. If we consider the above results for a fixed value
of N as a measurement, we could recalculate the above average and variance for
a series of different measurements. If each such measumerent produces a set of
averages for the integral I denoted 〈f〉l, we have for M measurements that the
integral is given by

〈I〉M = 1
M

M∑
l=1
〈f〉l.

First Illustration of the Use of Monte-Carlo Methods, inte-
gration
If we can consider the probability of correlated events to be zero, we can

rewrite the variance of these series of measurements as (equating M = N)

σ2
N ≈

1
N

(
〈f2〉 − 〈f〉2

)
=
σ2
f

N
. (3)

We note that the standard deviation is proportional to the inverse square root
of the number of measurements

σN ∼
1√
N
.

Important aspects of Monte-Carlo Methods
The aim of Monte Carlo calculations is to have σN as small as possible after

N samples. The results from one sample represents, since we are using concepts
from statistics, a ’measurement’.

7

Why Monte Carlo integration?
The scaling in the previous equation is clearly unfavorable compared even

with the trapezoidal rule. We saw that the trapezoidal rule carries a truncation
error

error ∼ O(h2),
with h the step length. In general, methods based on a Taylor expansion such
as the trapezoidal rule or Simpson’s rule have a truncation error which goes like
∼ O(hk), with k ≥ 1. Recalling that the step size is defined as h = (b− a)/N ,
we have an error which goes like

error ∼ N−k.

Why Monte Carlo integration?
Monte Carlo integration is more efficient in higher dimensions. To see this, let

us assume that our integration volume is a hypercube with side L and dimension
d. This cube contains hence N = (L/h)d points and therefore the error in the
result scales as N−k/d for the traditional methods.

The error in the Monte carlo integration is however independent of d and
scales as

error ∼ 1/
√
N.

Always!
Comparing this error with that of the traditional methods, shows that Monte

Carlo integration is more efficient than an algorithm with error in powers of k
when

d > 2k.

Why Monte Carlo integration? Example
In order to expose this, consider the definition of the quantum mechanical

energy of a system consisting of 10 particles in three dimensions. The energy is
the expectation value of the Hamiltonian H and reads

E =
∫
dR1dR2 . . . dRNΨ∗(R1,R2, . . . ,RN)H(R1,R2, . . . ,RN)Ψ(R1,R2, . . . ,RN)∫

dR1dR2 . . . dRNΨ∗(R1,R2, . . . ,RN)Ψ(R1,R2, . . . ,RN)
,

where Ψ is the wave function of the system and Ri are the coordinates of each
particle. If we want to compute the above integral using for example Gaussian
quadrature and use for example ten mesh points for the ten particles, we need
to compute a ten-dimensional integral with a total of 1030 mesh points. As an
amusing exercise, assume that you have access to today’s fastest computer with
a theoretical peak capacity of more than one Petaflops, that is 1015 floating
point operations per second. Assume also that every mesh point corresponds to
one floating operation per second. Estimate then the time needed to compute
this integral with a traditional method like Gaussian quadrature and compare
this number with the estimated lifetime of the universe, T ≈ 4.7 × 1017s. Do
you have the patience to wait?

8

Monte Carlo integration, simple example
We end this first part with a discussion of a brute force Monte Carlo program

which integrates ∫ 1

0
dx

4
1 + x2 = π,

where the input is the desired number of Monte Carlo samples.

Monte Carlo integration, simple example
What we are doing is to employ a random number generator to obtain numbers

xi in the interval [0, 1] through a call to one of the library functions ran0, ran1,
ran2 or ran3 which generate random numbers in the interval x ∈ [0, 1]. These
functions will be discussed in the next section. Here we simply employ these
functions in order to generate a random variable. All random number generators
produce pseudo-random numbers in the interval [0, 1] using the so-called uniform
probability distribution p(x) defined as

p(x) = 1
b− a

Θ(x− a)Θ(b− x),

with a = 0 og b = 1 and where Θ is the standard Heaviside function or simply
the step function.

Monte Carlo integration, simple example
If we have a general interval [a, b], we can still use these random number

generators through a change of variables

z = a+ (b− a)x,

with x in the interval x ∈ [0, 1].

Monte Carlo integration, simple example
The present approach to the above integral is often called ’crude’ or ’Brute-

Force’ Monte-Carlo. Later on in this chapter we will study refinements to this
simple approach. The reason is that a random generator produces points that
are distributed in a homogenous way in the interval [0, 1]. If our function is
peaked around certain values of x, we may end up sampling function values
where f(x) is small or near zero. Better schemes which reflect the properties of
the function to be integrated are thence needed.

Monte Carlo integration, algorithm
The algorithm is as follows

• Choose the number of Monte Carlo samples N .

9

• Perform a loop over N and for each step generate a random number xi in
the interval [0, 1] through a call to a random number generator.

• Use this number to evaluate f(xi).

• Evaluate the contributions to the mean value and the standard deviation
for each loop.

• After N samples calculate the final mean value and the standard deviation.

Monte Carlo integration, simple example, the program

Monte Carlo integration, simple example and the results

N I σN
10 3.10263E+00 3.98802E-01
100 3.02933E+00 4.04822E-01
1000 3.13395E+00 4.22881E-01
10000 3.14195E+00 4.11195E-01

100000 3.14003E+00 4.14114E-01
1000000 3.14213E+00 4.13838E-01
10000000 3.14177E+00 4.13523E-01

109 3.14162E+00 4.13581E-01

We note that as N increases, the integral itself never reaches more than an
agreement to the fourth or fifth digit. The variance also oscillates around its
exact value 4.13581E − 01.

Testing against the trapezoidal rule for a one-dimensional
integral
The following simple Python code, with pertaining plot shows the relative

error for the above integral using a brute force Monte Carlo approach and the
trapezoidal rule. Running the python code shows that the trapezoidal rule is
clearly superior in this case. With importance sampling and multi-dimensional
integrals, the Monte Carl method takes over again.

Second example, particles in a box
We give here an example of how a system evolves towards a well defined

equilibrium state.
Consider a box divided into two equal halves separated by a wall. At the

beginning, time t = 0, there are N particles on the left side. A small hole in the
wall is then opened and one particle can pass through the hole per unit time.

10

After some time the system reaches its equilibrium state with equally many
particles in both halves, N/2. Instead of determining complicated initial condi-
tions for a system of N particles, we model the system by a simple statistical
model. In order to simulate this system, which may consist of N � 1 particles,
we assume that all particles in the left half have equal probabilities of going to
the right half. We introduce the label nl to denote the number of particles at
every time on the left side, and nr = N − nl for those on the right side.

Second example, particles in a box
The probability for a move to the right during a time step ∆t is nl/N . The

algorithm for simulating this problem may then look like this

• Choose the number of particles N .

b* Make a loop over time, where the maximum time (or maximum number of
steps) should be larger than the number of particles N .

• For every time step ∆t there is a probability nl/N for a move to the right.
Compare this probability with a random number x.

• If x ≤ nl/N , decrease the number of particles in the left half by one, i.e.,
nl = nl − 1. Else, move a particle from the right half to the left, i.e.,
nl = nl + 1.

• Increase the time by one unit (the external loop).

Second example, particles in a box
In this case, a Monte Carlo sample corresponds to one time unit ∆t.
The following simple C/C++-program illustrates this model.

Second example, particles in a box, discussion
If we denote 〈nl〉 as the number of particles in the left half as a time average

after equilibrium is reached, we can define the standard deviation as

σ =
√
〈n2
l 〉 − 〈nl〉2. (4)

This problem has also an analytic solution to which we can compare our
numerical simulation.

11

Second example, particles in a box, discussion
If nl(t) is the number of particles in the left half after t moves, the change in

nl(t) in the time interval ∆t is

∆n =
(
N − nl(t)

N
− nl(t)

N

)
∆t,

and assuming that nl and t are continuous variables we arrive at

dnl(t)
dt

= 1− 2nl(t)
N

,

whose solution is
nl(t) = N

2

(
1 + e−2t/N

)
,

with the initial condition nl(t = 0) = N . Note that we have assumed n to be a
continuous variable. Obviously, particles are discrete objects.

Simple demonstration using python
The following simple Python code implements the above algorithm for particles

in a box and plots the final number of particles in each part of the box. The
produced figure shows the development of this system as function of time
steps. We note that for N = 1000 after roughly 2000 time steps, the system
has reached the equilibrium state. There are however noteworthy fluctuations
around equilibrium.

Brief Summary
In essence the Monte Carlo method contains the following ingredients

• A PDF which characterizes the system

• Random numbers which are generated so as to cover in an as uniform as
possible way on the unity interval [0,1].

• A sampling rule

• An error estimation

• Techniques for improving the errors

Probability Distribution Functions
The following table collects properties of probability distribution functions.

In our notation we reserve the label p(x) for the probability of a certain event,
while P (x) is the cumulative probability.

12

Discrete PDF Continuous PDF
Domain {x1, x2, x3, . . . , xN} [a, b]
Probability p(xi) p(x)dx
Cumulative Pi =

∑i
l=1 p(xl) P (x) =

∫ x
a
p(t)dt

Positivity 0 ≤ p(xi) ≤ 1 p(x) ≥ 0
Positivity 0 ≤ Pi ≤ 1 0 ≤ P (x) ≤ 1
Monotonic Pi ≥ Pj if xi ≥ xj P (xi) ≥ P (xj) if xi ≥ xj
Normalization PN = 1 P (b) = 1

Probability Distribution Functions
With a PDF we can compute expectation values of selected quantities such as

〈xk〉 =
N∑
i=1

xki p(xi),

if we have a discrete PDF or

〈xk〉 =
∫ b

a

xkp(x)dx,

in the case of a continuous PDF. We have already defined the mean value µ and
the variance σ2.

The three famous Probability Distribution Functions
There are at least three PDFs which one may encounter. These are the
Uniform distribution

p(x) = 1
b− a

Θ(x− a)Θ(b− x),

yielding probabilities different from zero in the interval [a, b].
The exponential distribution

p(x) = α exp (−αx),

yielding probabilities different from zero in the interval [0,∞) and with mean
value

µ =
∫ ∞

0
xp(x)dx =

∫ ∞
0

xα exp (−αx)dx = 1
α
,

with variance
σ2 =

∫ ∞
0

x2p(x)dx− µ2 = 1
α2 .

13

Probability Distribution Functions, the normal distribution
Finally, we have the so-called univariate normal distribution, or just the

normal distribution

p(x) = 1
b
√

2π
exp

(
− (x− a)2

2b2

)
with probabilities different from zero in the interval (−∞,∞). The integral∫∞
−∞ exp

(
−(x2)dx appears in many calculations, its value is

√
π, a result we will

need when we compute the mean value and the variance. The mean value is

µ =
∫ ∞

0
xp(x)dx = 1

b
√

2π

∫ ∞
−∞

x exp
(
− (x− a)2

2b2

)
dx,

which becomes with a suitable change of variables

µ = 1
b
√

2π

∫ ∞
−∞

b
√

2(a+ b
√

2y) exp−y2dy = a.

Probability Distribution Functions, the normal distribution
Similarly, the variance becomes

σ2 = 1
b
√

2π

∫ ∞
−∞

(x− µ)2 exp
(
− (x− a)2

2b2

)
dx,

and inserting the mean value and performing a variable change we obtain

σ2 = 1
b
√

2π

∫ ∞
−∞

b
√

2(b
√

2y)2 exp
(
−y2)dy = 2b2√

π

∫ ∞
−∞

y2 exp
(
−y2)dy,

and performing a final integration by parts we obtain the well-known result
σ2 = b2. It is useful to introduce the standard normal distribution as well,
defined by µ = a = 0, viz. a distribution centered around zero and with a
variance σ2 = 1, leading to

p(x) = 1√
2π

exp
(
−x

2

2

)
. (5)

Probability Distribution Functions, the cumulative distri-
bution

The exponential and uniform distributions have simple cumulative functions,
whereas the normal distribution does not, being proportional to the so-called
error function erf(x), given by

P (x) = 1√
2π

∫ x

−∞
exp

(
− t

2

2

)
dt,

which is difficult to evaluate in a quick way.

14

Probability Distribution Functions, other important distri-
bution
Some other PDFs which one encounters often in the natural sciences are the

binomial distribution

p(x) =
(
n
x

)
yx(1− y)n−x x = 0, 1, . . . , n,

where y is the probability for a specific event, such as the tossing of a coin
or moving left or right in case of a random walker. Note that x is a discrete
stochastic variable.

The sequence of binomial trials is characterized by the following definitions

• Every experiment is thought to consist of N independent trials.

• In every independent trial one registers if a specific situation happens or
not, such as the jump to the left or right of a random walker.

• The probability for every outcome in a single trial has the same value, for
example the outcome of tossing (either heads or tails) a coin is always 1/2.

Probability Distribution Functions, the binomial distribu-
tion

In order to compute the mean and variance we need to recall Newton’s binomial
formula

(a+ b)m =
m∑
n=0

(
m
n

)
anbm−n,

which can be used to show that
n∑
x=0

(
n
x

)
yx(1− y)n−x = (y + 1− y)n = 1,

the PDF is normalized to one. The mean value is

µ =
n∑
x=0

x

(
n
x

)
yx(1− y)n−x =

n∑
x=0

x
n!

x!(n− x)!y
x(1− y)n−x,

resulting in

µ =
n∑
x=0

x
(n− 1)!

(x− 1)!(n− 1− (x− 1))!y
x−1(1− y)n−1−(x−1),

which we rewrite as

µ = ny

n∑
ν=0

(
n− 1
ν

)
yν(1− y)n−1−ν = ny(y + 1− y)n−1 = ny.

The variance is slightly trickier to get. It reads σ2 = ny(1− y).

15

Probability Distribution Functions, Poisson’s distribution
Another important distribution with discrete stochastic variables x is the

Poisson model, which resembles the exponential distribution and reads

p(x) = λx

x! e
−λ x = 0, 1, . . . , ;λ > 0.

In this case both the mean value and the variance are easier to calculate,

µ =
∞∑
x=0

x
λx

x! e
−λ = λe−λ

∞∑
x=1

λx−1

(x− 1)! = λ,

and the variance is σ2 = λ.

Probability Distribution Functions, Poisson’s distribution
An example of applications of the Poisson distribution could be the counting

of the number of α-particles emitted from a radioactive source in a given time
interval. In the limit of n → ∞ and for small probabilities y, the binomial
distribution approaches the Poisson distribution. Setting λ = ny, with y the
probability for an event in the binomial distribution we can show that

lim
n→∞

(
n
x

)
yx(1− y)n−xe−λ =

∞∑
x=1

λx

x! e
−λ.

Meet the covariance!
An important quantity in a statistical analysis is the so-called covariance.
Consider the set {Xi} of n stochastic variables (not necessarily uncorrelated)

with the multivariate PDF P (x1, . . . , xn). The covariance of two of the stochastic
variables, Xi and Xj , is defined as follows

Cov(Xi, Xj) = 〈(xi − 〈xi〉)(xj − 〈xj〉)〉 (6)

=
∫
· · ·
∫

(xi − 〈xi〉)(xj − 〈xj〉)P (x1, . . . , xn) dx1 . . . dxn, (7)

with
〈xi〉 =

∫
· · ·
∫
xiP (x1, . . . , xn) dx1 . . . dxn.

Meet the covariance in matrix disguise
If we consider the above covariance as a matrix

Cij = Cov(Xi, Xj),

then the diagonal elements are just the familiar variances, Cii = Cov(Xi, Xi) =
Var(Xi). It turns out that all the off-diagonal elements are zero if the stochastic
variables are uncorrelated.

16

Meet the covariance, uncorrelated events
This is easy to show, keeping in mind the linearity of the expectation value.

Consider the stochastic variables Xi and Xj , (i 6= j)

Cov(Xi, Xj) = 〈(xi − 〈xi〉)(xj − 〈xj〉)〉
= 〈xixj − xi〈xj〉 − 〈xi〉xj + 〈xi〉〈xj〉〉
= 〈xixj〉 − 〈xi〈xj〉〉 − 〈〈xi〉xj〉+ 〈〈xi〉〈xj〉〉
= 〈xixj〉 − 〈xi〉〈xj〉 − 〈xi〉〈xj〉+ 〈xi〉〈xj〉
= 〈xixj〉 − 〈xi〉〈xj〉

If Xi and Xj are independent, we get

〈xixj〉 = 〈xi〉〈xj〉 = Cov(Xi, Xj) = 0 (i 6= j).

Numerical experiments and the covariance
Now that we have constructed an idealized mathematical framework, let us try

to apply it to empirical observations. Examples of relevant physical phenomena
may be spontaneous decays of nuclei, or a purely mathematical set of numbers
produced by some deterministic mechanism. It is the latter we will deal with,
using so-called pseudo-random number generators. In general our observations
will contain only a limited set of observables. We remind the reader that a
stochastic process is a process that produces sequentially a chain of values

{x1, x2, . . . xk, . . . }.

Numerical experiments and the covariance
We will call these values our measurements and the entire set as our measured

sample. The action of measuring all the elements of a sample we will call a
stochastic experiment (since, operationally, they are often associated with results
of empirical observation of some physical or mathematical phenomena; precisely
an experiment). We assume that these values are distributed according to some
PDF pX(x), where X is just the formal symbol for the stochastic variable whose
PDF is pX(x). Instead of trying to determine the full distribution p we are often
only interested in finding the few lowest moments, like the mean µX and the
variance σX .

Numerical experiments and the covariance, actual situa-
tions

In practical situations however, a sample is always of finite size. Let that size
be n. The expectation value of a sample α, the sample mean, is then defined
as follows

〈xα〉 ≡
1
n

n∑
k=1

xα,k.

17

The sample variance is:

Var(x) ≡ 1
n

n∑
k=1

(xα,k − 〈xα〉)2,

with its square root being the standard deviation of the sample.

Numerical experiments and the covariance, our observables
You can think of the above observables as a set of quantities which define a

given experiment. This experiment is then repeated several times, say m times.
The total average is then

〈Xm〉 = 1
m

m∑
α=1

xα = 1
mn

∑
α,k

xα,k, (8)

where the last sums end at m and n. The total variance is

σ2
m = 1

mn2

m∑
α=1

(〈xα〉 − 〈Xm〉)2,

which we rewrite as

σ2
m = 1

m

m∑
α=1

n∑
kl=1

(xα,k − 〈Xm〉)(xα,l − 〈Xm〉). (9)

Numerical experiments and the covariance, the sample vari-
ance
We define also the sample variance σ2 of all mn individual experiments as

σ2 = 1
mn

m∑
α=1

n∑
k=1

(xα,k − 〈Xm〉)2. (10)

These quantities, being known experimental values or the results from our
calculations, may differ, in some cases significantly, from the similarly named
exact values for the mean value µX , the variance Var(X) and the covariance
Cov(X,Y).

Numerical experiments and the covariance, central limit
theorem

The central limit theorem states that the PDF p̃(z) of the average ofm random
values corresponding to a PDF p(x) is a normal distribution whose mean is the
mean value of the PDF p(x) and whose variance is the variance of the PDF p(x)
divided by m, the number of values used to compute z.

18

The central limit theorem leads then to the well-known expression for the
standard deviation, given by

σm = σ√
m
.

In many cases the above estimate for the standard deviation, in particular if
correlations are strong, may be too simplistic. We need therefore a more precise
defintion of the error and the variance in our results.

Definition of Correlation Functions and Standard Deviation
Our estimate of the true average µX is the sample mean 〈Xm〉

µX ≈ Xm = 1
mn

m∑
α=1

n∑
k=1

xα,k.

We can then use Eq. (9)

σ2
m = 1

mn2

m∑
α=1

n∑
kl=1

(xα,k − 〈Xm〉)(xα,l − 〈Xm〉),

and rewrite it as

σ2
m = σ2

n
+ 2
mn2

m∑
α=1

n∑
k<l

(xα,k − 〈Xm〉)(xα,l − 〈Xm〉),

where the first term is the sample variance of all mn experiments divided by n
and the last term is nothing but the covariance which arises when k 6= l.

Definition of Correlation Functions and Standard Deviation
Our estimate of the true average µX is the sample mean 〈Xm〉
If the observables are uncorrelated, then the covariance is zero and we obtain

a total variance which agrees with the central limit theorem. Correlations may
often be present in our data set, resulting in a non-zero covariance. The first
term is normally called the uncorrelated contribution. Computationally the
uncorrelated first term is much easier to treat efficiently than the second. We
just accumulate separately the values x2 and x for every measurement x we
receive. The correlation term, though, has to be calculated at the end of the
experiment since we need all the measurements to calculate the cross terms.
Therefore, all measurements have to be stored throughout the experiment.

Definition of Correlation Functions and Standard Deviation
Let us analyze the problem by splitting up the correlation term into partial

sums of the form

19

fd = 1
nm

m∑
α=1

n−d∑
k=1

(xα,k − 〈Xm〉)(xα,k+d − 〈Xm〉),

The correlation term of the total variance can now be rewritten in terms of fd

2
mn2

m∑
α=1

n∑
k<l

(xα,k − 〈Xm〉)(xα,l − 〈Xm〉) = 2
n

n−1∑
d=1

fd

Definition of Correlation Functions and Standard Deviation
The value of fd reflects the correlation between measurements separated by

the distance d in the samples. Notice that for d = 0, f is just the sample variance,
σ2. If we divide fd by σ2, we arrive at the so called autocorrelation function

κd = fd
σ2 (11)

which gives us a useful measure of the correlation pair correlation starting always
at 1 for d = 0.

Definition of Correlation Functions and Standard Devia-
tion, sample variance
The sample variance of the mn experiments can now be written in terms of

the autocorrelation function

σ2
m = σ2

n
+ 2
n
· σ2

n−1∑
d=1

fd
σ2 =

(
1 + 2

n−1∑
d=1

κd

)
1
n
σ2 = τ

n
· σ2 (12)

and we see that σm can be expressed in terms of the uncorrelated sample
variance times a correction factor τ which accounts for the correlation between
measurements. We call this correction factor the autocorrelation time

τ = 1 + 2
n−1∑
d=1

κd (13)

For a correlation free experiment, τ equals 1.

Definition of Correlation Functions and Standard Deviation
From the point of view of Eq. (12) we can interpret a sequential correlation

as an effective reduction of the number of measurements by a factor τ . The
effective number of measurements becomes

neff = n

τ

20

To neglect the autocorrelation time τ will always cause our simple uncorrelated
estimate of σ2

m ≈ σ2/n to be less than the true sample error. The estimate
of the error will be too “good”. On the other hand, the calculation of the full
autocorrelation time poses an efficiency problem if the set of measurements is
very large. The solution to this problem is given by more practically oriented
methods like the blocking technique.

Example of the central limit theorem

Random Numbers
Uniform deviates are just random numbers that lie within a specified range

(typically 0 to 1), with any one number in the range just as likely as any
other. They are, in other words, what you probably think random numbers are.
However, we want to distinguish uniform deviates from other sorts of random
numbers, for example numbers drawn from a normal (Gaussian) distribution of
specified mean and standard deviation. These other sorts of deviates are almost
always generated by performing appropriate operations on one or more uniform
deviates, as we will see in subsequent sections. So, a reliable source of random
uniform deviates, the subject of this section, is an essential building block for
any sort of stochastic modeling or Monte Carlo computer work.

Random Numbers, better name: pseudo random
numbers

A disclaimer is however appropriate. It should be fairly obvious that something
as deterministic as a computer cannot generate purely random numbers.

Numbers generated by any of the standard algorithms are in reality pseudo
random numbers, hopefully abiding to the following criteria:

• they produce a uniform distribution in the interval [0,1].

• correlations between random numbers are negligible

• the period before the same sequence of random numbers is repeated is as
large as possible and finally

• the algorithm should be fast.

21

Random number generator RNG
The most common random number generators are based on so-called Linear

congruential relations of the type

Ni = (aNi−1 + c)MOD(M),

which yield a number in the interval [0,1] through

xi = Ni/M

The number M is called the period and it should be as large as possible
and N0 is the starting value, or seed. The function MOD means the remainder,
that is if we were to evaluate (13)MOD(9), the outcome is the remainder of the
division 13/9, namely 4.

Random number generator RNG and periodic
outputs
The problem with such generators is that their outputs are periodic; they

will start to repeat themselves with a period that is at most M . If however the
parameters a and c are badly chosen, the period may be even shorter.

Consider the following example

Ni = (6Ni−1 + 7)MOD(5),

with a seedN0 = 2. This generator produces the sequence 4, 1, 3, 0, 2, 4, 1, 3, 0, 2, ,
i.e., a sequence with period 5. However, increasing M may not guarantee a
larger period as the following example shows

Ni = (27Ni−1 + 11)MOD(54),

which still, with N0 = 2, results in 11, 38, 11, 38, 11, 38, . . . , a period of just 2.

Random number generator RNG and its period
Typical periods for the random generators provided in the program library

are of the order of ∼ 109 or larger. Other random number generators which
have become increasingly popular are so-called shift-register generators. In these
generators each successive number depends on many preceding values (rather
than the last values as in the linear congruential generator). For example, you
could make a shift register generator whose lth number is the sum of the l − ith
and l − jth values with modulo M ,

Nl = (aNl−i + cNl−j)MOD(M).

22

Random number generator RNG, other examples
Such a generator again produces a sequence of pseudorandom numbers but

this time with a period much larger than M . It is also possible to construct
more elaborate algorithms by including more than two past terms in the sum
of each iteration. One example is the generator of Marsaglia and Zaman which
consists of two congruential relations

Nl = (Nl−3 −Nl−1)MOD(231 − 69), (14)

followed by
Nl = (69069Nl−1 + 1013904243)MOD(232), (15)

which according to the authors has a period larger than 294.

Random number generator RNG, other examples
Instead of using modular addition, we could use the bitwise exclusive-OR (⊕)

operation so that

Nl = (Nl−i)⊕ (Nl−j)

where the bitwise action of ⊕ means that if Nl−i = Nl−j the result is 0 whereas
if Nl−i 6= Nl−j the result is 1. As an example, consider the case where Nl−i = 6
and Nl−j = 11. The first one has a bit representation (using 4 bits only) which
reads 0110 whereas the second number is 1011. Employing the ⊕ operator yields
1101, or 23 + 22 + 20 = 13.

In Fortran90, the bitwise ⊕ operation is coded through the intrinsic function
IEOR(m,n) where m and n are the input numbers, while in C it is given by
m ∧ n.

Random number generator RNG, RAN0
We show here how the linear congruential algorithm can be implemented,

namely
Ni = (aNi−1)MOD(M).

However, since a and Ni−1 are integers and their multiplication could become
greater than the standard 32 bit integer, there is a trick via Schrage’s algorithm
which approximates the multiplication of large integers through the factorization

M = aq + r,

where we have defined

q = [M/a],

23

http://dl.acm.org/citation.cfm?id=187154

and
r = M MOD a.

where the brackets denote integer division. In the code below the numbers q and
r are chosen so that r < q.

Random number generator RNG, RAN0
To see how this works we note first that

(aNi−1)MOD(M) = (aNi−1 − [Ni−1/q]M)MOD(M), (16)

since we can add or subtract any integer multiple of M from aNi−1. The last
term [Ni−1/q]MMOD(M) is zero since the integer division [Ni−1/q] just yields
a constant which is multiplied with M .

Random number generator RNG, RAN0
We can now rewrite Eq. (16) as

(aNi−1)MOD(M) = (aNi−1 − [Ni−1/q](aq + r))MOD(M), (17)
which results in

(aNi−1)MOD(M) = (a(Ni−1 − [Ni−1/q]q)− [Ni−1/q]r)) MOD(M), (18)

yielding

(aNi−1)MOD(M) = (a(Ni−1MOD(q))− [Ni−1/q]r)) MOD(M). (19)

Random number generator RNG, RAN0
The term [Ni−1/q]r is always smaller or equal Ni−1(r/q) and with r < q we

obtain always a number smaller than Ni−1, which is smaller than M . And since
the number Ni−1MOD(q) is between zero and q − 1 then a(Ni−1MOD(q)) < aq.
Combined with our definition of q = [M/a] ensures that this term is also smaller
than M meaning that both terms fit into a 32-bit signed integer. None of these
two terms can be negative, but their difference could. The algorithm below adds
M if their difference is negative. Note that the program uses the bitwise ⊕
operator to generate the starting point for each generation of a random number.
The period of ran0 is ∼ 2.1× 109. A special feature of this algorithm is that is
should never be called with the initial seed set to 0.

Random number generator RNG, RAN0 code

24

Properties of Selected Random Number Generators
As mentioned previously, the underlying PDF for the generation of random

numbers is the uniform distribution, meaning that the probability for finding a
number x in the interval [0,1] is p(x) = 1.

A random number generator should produce numbers which are uniformly
distributed in this interval. The table shows the distribution of N = 10000
random numbers generated by the functions in the program library. We note in
this table that the number of points in the various intervals 0.0− 0.1, 0.1− 0.2
etc are fairly close to 1000, with some minor deviations.

Two additional measures are the standard deviation σ and the mean µ = 〈x〉.

Properties of Selected Random Number Generators
For the uniform distribution, the mean value µ is then

µ = 〈x〉 = 1
2

while the standard deviation is

σ =
√
〈x2〉 − µ2 = 1√

12
= 0.2886.

Properties of Selected Random Number Generators
The various random number generators produce results which agree rather

well with these limiting values.

x-bin ran0 ran1 ran2 ran3
0.0-0.1 1013 991 938 1047
0.1-0.2 1002 1009 1040 1030
0.2-0.3 989 999 1030 993
0.3-0.4 939 960 1023 937
0.4-0.5 1038 1001 1002 992
0.5-0.6 1037 1047 1009 1009
0.6-0.7 1005 989 1003 989
0.7-0.8 986 962 985 954
0.8-0.9 1000 1027 1009 1023
0.9-1.0 991 1015 961 1026
µ 0.4997 0.5018 0.4992 0.4990
σ 0.2882 0.2892 0.2861 0.2915

Simple demonstration of RNGs using python
The following simple Python code plots the distribution of the produced

random numbers using the linear congruential RNG employed by Python. The
trend displayed in the previous table is seen rather clearly.

25

Properties of Selected Random Number Generators
Since our random numbers, which are typically generated via a linear congruen-

tial algorithm, are never fully independent, we can then define an important test
which measures the degree of correlation, namely the so-called auto-correlation
function defined previously, see again Eq. (11). We rewrite it here as

Ck = fd
σ2 ,

with C0 = 1. Recall that σ2 = 〈x2
i 〉 − 〈xi〉2 and that

fd = 1
nm

m∑
α=1

n−d∑
k=1

(xα,k − 〈Xm〉)(xα,k+d − 〈Xm〉),

The non-vanishing of Ck for k 6= 0 means that the random numbers are not
independent. The independence of the random numbers is crucial in the evalua-
tion of other expectation values. If they are not independent, our assumption
for approximating σN in Eq. (3) is no longer valid.

Correlation function and which random number generators
should I use
The program here computes the correlation function for one of the standard

functions included with the c++ compiler.

Correlation function and which random number generators
should I use

The following Python code plots the results for the correlation function from
the above program.

Which RNG should I use?

• In the library files lib.cpp and lib.h we have included four popular RNGs
taken from the widely used textbook Numerical Recipes. These are called
ran0, ran1, ran2 and ran3.

• C++ has a class called random. The random class contains a large
selection of RNGs and is highly recommended. Some of these RNGs have
very large periods making it thereby very safe to use these RNGs in case
one is performing large calculations. In particular, the Mersenne twister
random number engine has a period of 219937.

26

http://numerical.recipes/
http://www.cplusplus.com/reference/random/
http://www.cplusplus.com/reference/random/mersenne_twister_engine/
http://www.cplusplus.com/reference/random/mersenne_twister_engine/

How to use the Mersenne generator
The following part of a c++ code (from project 4) sets up the uniform

distribution for x ∈ [0, 1].

Improved Monte Carlo Integration
We have presented a simple brute force approach to integration with the Monte

Carlo method. There we sampled over a given number of points distributed
uniformly in the interval [0, 1]

I =
∫ 1

0
f(x)dx = 〈f〉.

Here we introduce two important steps which in most cases improve upon the
above simple brute force approach with the uniform distribution, namely

• change of variables and

• importance sampling

Change of Variables
The starting point is always the uniform distribution

p(x)dx =
{
dx 0 ≤ x ≤ 1
0 else

with p(x) = 1 and satisfying ∫ ∞
−∞

p(x)dx = 1.

All random number generators use the uniform distribution to generate numbers
x ∈ [0, 1].

Change of Variables
When we attempt a transformation to a new variable x → y we have to

conserve the probability
p(y)dy = p(x)dx,

which for the uniform distribution implies

p(y)dy = dx.

Let us assume that p(y) is a PDF different from the uniform PDF p(x) = 1 with
x ∈ [0, 1]. If we integrate the last expression we arrive at

27

x(y) =
∫ y

0
p(y′)dy′,

which is nothing but the cumulative distribution of p(y), i.e.,

x(y) = P (y) =
∫ y

0
p(y′)dy′.

Transformed Uniform Distribution
Suppose we have the general uniform distribution

p(y)dy =
{

dy
b−a a ≤ y ≤ b
0 else

If we wish to relate this distribution to the one in the interval x ∈ [0, 1] we have

p(y)dy = dy

b− a
= dx,

and integrating we obtain the cumulative function

x(y) =
∫ y

a

dy′

b− a
,

yielding

y = a+ (b− a)x,

a well-known result!

Exponential Distribution
Assume that

p(y) = exp (−y),

which is the exponential distribution, important for the analysis of e.g., radioac-
tive decay. Again, p(x) is given by the uniform distribution with x ∈ [0, 1], and
with the assumption that the probability is conserved we have

p(y)dy = exp (−y)dy = dx,

which yields after integration

x(y) = P (y) =
∫ y

0
exp (−y′)dy′ = 1− exp (−y),

or

y(x) = − ln (1− x).

28

Exponential Distribution
This gives us the new random variable y in the domain y ∈ [0,∞) determined

through the random variable x ∈ [0, 1] generated by functions like ran0.
This means that if we can factor out exp (−y) from an integrand we may

have

I =
∫ ∞

0
F (y)dy =

∫ ∞
0

exp (−y)G(y)dy

which we rewrite as∫ ∞
0

exp (−y)G(y)dy =
∫ 1

0
G(y(x))dx ≈ 1

N

N∑
i=1

G(y(xi)),

where xi is a random number in the interval [0, 1].

Exponential Distribution
We have changed the integration limits in the second integral, since we have

performed a change of variables. Since we have used the uniform distribution
defined for x ∈ [0, 1], the integration limits change to 0 and 1. The variable y is
now a function of x. Note also that in practical implementations, our random
number generators for the uniform distribution never return exactly 0 or 1, but
we may come very close.

The algorithm for the last example is rather simple. In the function which
sets up the integral, we simply need to call one of the random number generators
like ran0, ran1, ran2 or ran3 in order to obtain numbers in the interval [0,1].
We obtain y by the taking the logarithm of (1− x). Our calling function which
sets up the new random variable y may then include statements like

Normal Distribution
For the normal distribution, expressed here as

g(x, y) = exp (−(x2 + y2)/2)dxdy.

it is rather difficult to find an inverse since the cumulative distribution is given
by the error function erf(x)

erf(x) = 2√
π

∫ x

0
e−t

2
dt.

Both c++ and Fortran have this function as intrinsic ones.

29

http://www.cplusplus.com/reference/cmath/erfc/
https://gcc.gnu.org/onlinedocs/gfortran/ERFC.html

Normal Distribution
We obviously would like to avoid computing an integral everytime we need a

random variable. If we however switch to polar coordinates, we have for x and y

r =
(
x2 + y2)1/2 θ = tan−1x

y
,

resulting in

g(r, θ) = r exp (−r2/2)drdθ,

where the angle θ could be given by a uniform distribution in the region [0, 2π].
Following example 1 above, this implies simply multiplying random numbers
x ∈ [0, 1] by 2π.

Normal Distribution
The variable r, defined for r ∈ [0,∞) needs to be related to to random numbers

x′ ∈ [0, 1]. To achieve that, we introduce a new variable

u = 1
2r

2,

and define a PDF
exp (−u)du,

with u ∈ [0,∞). Using the results from example 2 for the exponential distribution,
we have

u = − ln (1− x′),

where x′ is a random number generated for x′ ∈ [0, 1].

Normal Distribution
With

x = r cos (θ) =
√

2u cos (θ),

and

y = r sin (θ) =
√

2u sin (θ),

we can obtain new random numbers x, y through

x =
√
−2 ln (1− x′) cos (θ),

and
y =

√
−2 ln (1− x′) sin (θ),

with x′ ∈ [0, 1] and θ ∈ 2π[0, 1].

30

Normal Distribution
A function which yields such random numbers for the normal distribution

would include statements like

Importance Sampling
With the aid of the above variable transformations we address now one of the

most widely used approaches to Monte Carlo integration, namely importance
sampling.

Let us assume that p(y) is a PDF whose behavior resembles that of a function
F defined in a certain interval [a, b]. The normalization condition is∫ b

a

p(y)dy = 1.

We can rewrite our integral as

I =
∫ b

a

F (y)dy =
∫ b

a

p(y)F (y)
p(y) dy.

Importance Sampling
Since random numbers are generated for the uniform distribution p(x) with

x ∈ [0, 1], we need to perform a change of variables x→ y through

x(y) =
∫ y

a

p(y′)dy′,

where we used
p(x)dx = dx = p(y)dy.

If we can invert x(y), we find y(x) as well.

Importance Sampling
With this change of variables we can express the integral of Eq. () as

I =
∫ b

a

p(y)F (y)
p(y) dy =

∫ b̃

ã

F (y(x))
p(y(x)) dx,

meaning that a Monte Carlo evaluation of the above integral gives∫ b̃

ã

F (y(x))
p(y(x)) dx = 1

N

N∑
i=1

F (y(xi))
p(y(xi))

.

31

Importance Sampling
Note the change in integration limits from a and b to ã and b̃. The advantage

of such a change of variables in case p(y) follows closely F is that the integrand
becomes smooth and we can sample over relevant values for the integrand. It is
however not trivial to find such a function p. The conditions on p which allow
us to perform these transformations are

• p is normalizable and positive definite,

• it is analytically integrable and

• the integral is invertible, allowing us thereby to express a new variable in
terms of the old one.

Importance Sampling
The variance is now with the definition

F̃ = F (y(x))
p(y(x)) ,

given by

σ2 = 1
N

N∑
i=1

(
F̃
)2 −(1

N

N∑
i=1

F̃

)2

.

Importance Sampling
The algorithm for this procedure is

• Use the uniform distribution to find the random variable y in the interval
[0,1]. The function p(x) is a user provided PDF.

• Evaluate thereafter

I =
∫ b

a

F (x)dx =
∫ b

a

p(x)F (x)
p(x) dx,

by rewriting ∫ b

a

p(x)F (x)
p(x) dx =

∫ b̃

ã

F (x(y))
p(x(y)) dy,

since

dy

dx
= p(x).

• Perform then a Monte Carlo sampling for

32

∫ b̃

ã

F (x(y))
p(x(y)) dy ≈

1
N

N∑
i=1

F (x(yi))
p(x(yi))

,

with yi ∈ [0, 1],

• and evaluate the variance as well.

Importance Sampling, a simple example
Let us look again at the integral

I =
∫ 1

0
F (x)dx =

∫ 1

0

1
1 + x2 dx = π

4 .

We choose the following PDF (which follows closely the function to integrate)

p(x) = 1
3 (4− 2x)

∫ 1

0
p(x)dx = 1,

resulting in
F (0)
p(0) = F (1)

p(1) = 3
4 .

Check that it fullfils the requirements of a PDF! We perform then the change of
variables (via the Cumulative function)

y(x) =
∫ x

0
p(x′)dx′ = 1

3x (4− x) ,

or
x = 2− (4− 3y)1/2

We have that when y = 0 then x = 0 and when y = 1 we have x = 1.

Importance Sampling, a simple example, a simple plot

Importance Sampling, a simple example, the code part

Importance Sampling, a simple example, and the results
The suffix cr stands for the brute force approach while is stands for the use

of importance sampling. All calculations use ran0 as function to generate the
uniform distribution.

33

N Icr σcr Iis σis
10000 3.13395E+00 4.22881E-01 3.14163E+00 6.49921E-03
100000 3.14195E+00 4.11195E-01 3.14163E+00 6.36837E-03
1000000 3.14003E+00 4.14114E-01 3.14128E+00 6.39217E-03
10000000 3.14213E+00 4.13838E-01 3.14160E+00 6.40784E-03

However, it is unfair to study one-dimensional integrals with MC methods!

Acceptance-Rejection Method
This is a rather simple and appealing method after von Neumann. Assume

that we are looking at an interval x ∈ [a, b], this being the domain of the PDF
p(x). Suppose also that the largest value our distribution function takes in this
interval is M , that is

p(x) ≤M x ∈ [a, b].

Then we generate a random number x from the uniform distribution for x ∈ [a, b]
and a corresponding number s for the uniform distribution between [0,M]. If

p(x) ≥ s,

we accept the new value of x, else we generate again two new random numbers
x and s and perform the test in the latter equation again.

Acceptance-Rejection Method
As an example, consider the evaluation of the integral

I =
∫ 3

0
exp (x)dx.

Obviously to derive a closed-form expression is much easier, however the integrand
could pose some more difficult challenges. The aim here is simply to show how
to implent the acceptance-rejection algorithm. The integral is the area below
the curve f(x) = exp (x). If we uniformly fill the rectangle spanned by x ∈ [0, 3]
and y ∈ [0, exp (3)], the fraction below the curve obtained from a uniform
distribution, and multiplied by the area of the rectangle, should approximate
the chosen integral.

Acceptance-Rejection Method
It is rather easy to implement this numerically, as shown in the following

code.

Monte Carlo Integration of Multidimensional Integrals
When we deal with multidimensional integrals of the form

34

I =
∫ b1

a1

dx1

∫ b2

a2

dx2 . . .

∫ bd

ad

dxdg(x1, . . . , xd),

with xi defined in the interval [ai, bi] we would typically need a transformation
of variables of the form

xi = ai + (bi − ai)ti,

if we were to use the uniform distribution on the interval [0, 1].

Monte Carlo Integration of Multidimensional Integrals
In this case, we need a Jacobi determinant

d∏
i=1

(bi − ai),

and to convert the function g(x1, . . . , xd) to

g(x1, . . . , xd)→ g(a1 + (b1 − a1)t1, . . . , ad + (bd − ad)td).

Monte Carlo Integration of Multidimensional Integrals
As an example, consider the following six-dimensional integral∫ ∞

−∞
dxdyg(x,y),

where

g(x,y) = exp (−x2 − y2)(x− y)2

with d = 6.

Monte Carlo Integration of Multidimensional Integrals
We can solve this integral by employing our brute force scheme, or using

importance sampling and random variables distributed according to a gaussian
PDF. For the latter, if we set the mean value µ = 0 and the standard deviation
σ = 1/

√
2, we have

1√
π

exp (−x2),

and using this normal distribution we rewrite our integral as

π3
∫ 6∏

i=1

(
1√
π

exp (−x2
i)
)

(x− y)2dx1. . . . dx6.

35

Monte Carlo Integration of Multidimensional Integrals
We rewrite it in a more compact form as∫

f(x1, . . . , xd)F (x1, . . . , xd)
6∏
i=1

dxi,

where f is the above normal distribution and

F (x1, . . . , x6) = F (x,y) = (x− y)2,

Brute Force Integration
Below we list two codes, one for the brute force integration and the other

employing importance sampling with a gaussian distribution.

Importance Sampling
This code includes a call to the function normalrandom, which produces

random numbers from a gaussian distribution.

Python codes
The first code here is an example of a python which computes the above

integral using the brute force approach

Python codes, importance sampling
The second code, displayed here, uses importance sampling and random

numbers that follow the normal distribution the brute force approach

36

