
Computational Physics Lectures:
Variational Monte Carlo methods

Morten Hjorth-Jensen1,2

1Department of Physics, University of Oslo
2Department of Physics and Astronomy and National Superconducting Cyclotron Laboratory, Michigan State University

Aug 23, 2017

Quantum Monte Carlo Motivation
Given a hamiltonian H and a trial wave function ΨT , the variational principle

states that the expectation value of 〈H〉, defined through

E[H] = 〈H〉 =
∫
dRΨ∗T (R)H(R)ΨT (R)∫
dRΨ∗T (R)ΨT (R)

,

is an upper bound to the ground state energy E0 of the hamiltonian H, that is

E0 ≤ 〈H〉.

In general, the integrals involved in the calculation of various expectation values
are multi-dimensional ones. Traditional integration methods such as the Gauss-
Legendre will not be adequate for say the computation of the energy of a
many-body system.

Quantum Monte Carlo Motivation
The trial wave function can be expanded in the eigenstates of the hamiltonian

since they form a complete set, viz.,

ΨT (R) =
∑
i

aiΨi(R),

and assuming the set of eigenfunctions to be normalized one obtains∑
nm a

∗
man

∫
dRΨ∗m(R)H(R)Ψn(R)∑

nm a
∗
man

∫
dRΨ∗m(R)Ψn(R)

=
∑
n a

2
nEn∑

n a
2
n

≥ E0,

where we used that H(R)Ψn(R) = EnΨn(R). In general, the integrals involved
in the calculation of various expectation values are multi-dimensional ones. The
variational principle yields the lowest state of a given symmetry.

c© 1999-2017, Morten Hjorth-Jensen. Released under CC Attribution-NonCommercial 4.0
license

Quantum Monte Carlo Motivation
In most cases, a wave function has only small values in large parts of configura-

tion space, and a straightforward procedure which uses homogenously distributed
random points in configuration space will most likely lead to poor results. This
may suggest that some kind of importance sampling combined with e.g., the
Metropolis algorithm may be a more efficient way of obtaining the ground state
energy. The hope is then that those regions of configurations space where the
wave function assumes appreciable values are sampled more efficiently.

Quantum Monte Carlo Motivation
The tedious part in a VMC calculation is the search for the variational

minimum. A good knowledge of the system is required in order to carry out
reasonable VMC calculations. This is not always the case, and often VMC
calculations serve rather as the starting point for so-called diffusion Monte
Carlo calculations (DMC). DMC is a way of solving exactly the many-body
Schroedinger equation by means of a stochastic procedure. A good guess on the
binding energy and its wave function is however necessary. A carefully performed
VMC calculation can aid in this context.

Quantum Monte Carlo Motivation

• Construct first a trial wave function ψT (R,α), for a many-body system
consisting of N particles located at positions

R = (R1, . . . ,RN). The trial wave function depends on α variational parameters
α = (α1, . . . , αM).
• Then we evaluate the expectation value of the hamiltonian H

E[H] = 〈H〉 =
∫
dRΨ∗T (R,α)H(R)ΨT (R,α)∫
dRΨ∗T (R,α)ΨT (R,α)

.

• Thereafter we vary α according to some minimization algorithm and return
to the first step.

Quantum Monte Carlo Motivation
Basic steps. Choose a trial wave function ψT (R).

P (R) = |ψT (R)|2∫
|ψT (R)|2 dR

.

This is our new probability distribution function (PDF). The approximation to
the expectation value of the Hamiltonian is now

E[H(α)] =
∫
dRΨ∗T (R,α)H(R)ΨT (R,α)∫
dRΨ∗T (R,α)ΨT (R,α)

.

2

Quantum Monte Carlo Motivation
Define a new quantity

EL(R,α) = 1
ψT (R,α)HψT (R,α),

called the local energy, which, together with our trial PDF yields

E[H(α)] =
∫
P (R)EL(R)dR ≈ 1

N

N∑
i=1

P (Ri,α)EL(Ri,α)

with N being the number of Monte Carlo samples.

Quantum Monte Carlo
The Algorithm for performing a variational Monte Carlo calculations runs

thus as this

• Initialisation: Fix the number of Monte Carlo steps. Choose an initial R
and variational parameters α and calculate |ψαT (R)|2.

• Initialise the energy and the variance and start the Monte Carlo calculation.

– Calculate a trial position Rp = R + r ∗ step where r is a random
variable r ∈ [0, 1].

– Metropolis algorithm to accept or reject this move w = P (Rp)/P (R).
– If the step is accepted, then we set R = Rp.
– Update averages

• Finish and compute final averages.

Observe that the jumping in space is governed by the variable step. This is
Called brute-force sampling. Need importance sampling to get more relevant
sampling, see lectures below.

Quantum Monte Carlo: hydrogen atom
The radial Schroedinger equation for the hydrogen atom can be written as

− ~2

2m
∂2u(r)
∂r2 −

(
ke2

r
− ~2l(l + 1)

2mr2

)
u(r) = Eu(r),

or with dimensionless variables

−1
2
∂2u(ρ)
∂ρ2 − u(ρ)

ρ
+ l(l + 1)

2ρ2 u(ρ)− λu(ρ) = 0,

3

with the hamiltonian

H = −1
2
∂2

∂ρ2 −
1
ρ

+ l(l + 1)
2ρ2 .

Use variational parameter α in the trial wave function

uαT (ρ) = αρe−αρ.

Quantum Monte Carlo: hydrogen atom
Inserting this wave function into the expression for the local energy EL gives

EL(ρ) = −1
ρ
− α

2

(
α− 2

ρ

)
.

A simple variational Monte Carlo calculation results in

α 〈H〉 σ2 σ/
√
N

7.00000E-01 -4.57759E-01 4.51201E-02 6.71715E-04
8.00000E-01 -4.81461E-01 3.05736E-02 5.52934E-04
9.00000E-01 -4.95899E-01 8.20497E-03 2.86443E-04
1.00000E-00 -5.00000E-01 0.00000E+00 0.00000E+00
1.10000E+00 -4.93738E-01 1.16989E-02 3.42036E-04
1.20000E+00 -4.75563E-01 8.85899E-02 9.41222E-04
1.30000E+00 -4.54341E-01 1.45171E-01 1.20487E-03

Quantum Monte Carlo: hydrogen atom
We note that at α = 1 we obtain the exact result, and the variance is zero,

as it should. The reason is that we then have the exact wave function, and the
action of the hamiltionan on the wave function

Hψ = constant× ψ,

yields just a constant. The integral which defines various expectation values
involving moments of the hamiltonian becomes then

〈Hn〉 =
∫
dRΨ∗T (R)Hn(R)ΨT (R)∫

dRΨ∗T (R)ΨT (R)
= constant×

∫
dRΨ∗T (R)ΨT (R)∫
dRΨ∗T (R)ΨT (R)

= constant.

This gives an important information: the exact wave function leads
to zero variance! Variation is then performed by minimizing both the energy
and the variance.

4

Quantum Monte Carlo: the helium atom
The helium atom consists of two electrons and a nucleus with charge Z = 2.

The contribution to the potential energy due to the attraction from the nucleus
is

−2ke2

r1
− 2ke2

r2
,

and if we add the repulsion arising from the two interacting electrons, we obtain
the potential energy

V (r1, r2) = −2ke2

r1
− 2ke2

r2
+ ke2

r12
,

with the electrons separated at a distance r12 = |r1 − r2|.

Quantum Monte Carlo: the helium atom
The hamiltonian becomes then

Ĥ = −~2∇2
1

2m − ~2∇2
2

2m − 2ke2

r1
− 2ke2

r2
+ ke2

r12
,

and Schroedingers equation reads

Ĥψ = Eψ.

All observables are evaluated with respect to the probability distribution

P (R) = |ψT (R)|2∫
|ψT (R)|2 dR

.

generated by the trial wave function. The trial wave function must approximate
an exact eigenstate in order that accurate results are to be obtained.

Quantum Monte Carlo: the helium atom
Choice of trial wave function for Helium: Assume r1 → 0.

EL(R) = 1
ψT (R)HψT (R) = 1

ψT (R)

(
−1

2∇
2
1 −

Z

r1

)
ψT (R) + finite terms.

EL(R) = 1
RT (r1)

(
−1

2
d2

dr2
1
− 1
r1

d

dr1
− Z

r1

)
RT (r1) + finite terms

For small values of r1, the terms which dominate are

lim
r1→0

EL(R) = 1
RT (r1)

(
− 1
r1

d

dr1
− Z

r1

)
RT (r1),

since the second derivative does not diverge due to the finiteness of Ψ at the
origin.

5

Quantum Monte Carlo: the helium atom
This results in

1
RT (r1)

dRT (r1)
dr1

= −Z,

and
RT (r1) ∝ e−Zr1 .

A similar condition applies to electron 2 as well. For orbital momenta l > 0 we
have

1
RT (r)

dRT (r)
dr

= − Z

l + 1 .

Similarly, studying the case r12 → 0 we can write a possible trial wave function
as

ψT (R) = e−α(r1+r2)eβr12 .

The last equation can be generalized to

ψT (R) = φ(r1)φ(r2) . . . φ(rN)
∏
i<j

f(rij),

for a system with N electrons or particles.

The first attempt at solving the helium atom
During the development of our code we need to make several checks. It is

also very instructive to compute a closed form expression for the local energy.
Since our wave function is rather simple it is straightforward to find an analytic
expressions. Consider first the case of the simple helium function

ΨT (r1, r2) = e−α(r1+r2)

The local energy is for this case

EL1 = (α− Z)
(

1
r1

+ 1
r2

)
+ 1
r12
− α2

which gives an expectation value for the local energy given by

〈EL1〉 = α2 − 2α
(
Z − 5

16

)

The first attempt at solving the Helium atom
With closed form formulae we can speed up the computation of the correlation.

In our case we write it as

ΨC = exp

∑
i<j

arij
1 + βrij

,
6

which means that the gradient needed for the so-called quantum force and local
energy can be calculated analytically. This will speed up your code since the
computation of the correlation part and the Slater determinant are the most
time consuming parts in your code.

We will refer to this correlation function as ΨC or the linear Pade-Jastrow.

The first attempt at solving the Helium atom
We can test this by computing the local energy for our helium wave function

ψT (r1, r2) = exp (−α(r1 + r2)) exp
(

r12

2(1 + βr12)

)
,

with α and β as variational parameters.
The local energy is for this case

EL2 = EL1+ 1
2(1 + βr12)2

{
α(r1 + r2)

r12
(1− r1r2

r1r2
)− 1

2(1 + βr12)2 −
2
r12

+ 2β
1 + βr12

}
It is very useful to test your code against these expressions. It means also that
you don’t need to compute a derivative numerically as discussed in the code
example below.

The first attempt at solving the Helium atom
For the computation of various derivatives with different types of wave func-

tions, you will find it useful to use python with symbolic python, that is sympy,
see online manual. Using sympy allows you autogenerate both Latex code as
well c++, python or Fortran codes. Here you will find some simple examples.
We choose the 2s hydrogen-orbital (not normalized) as an example

φ2s(r) = (Zr − 2) exp−(1
2Zr),

with r2 = x2 + y2 + z2.

from sympy import symbols, diff, exp, sqrt
x, y, z, Z = symbols(’x y z Z’)
r = sqrt(x*x + y*y + z*z)
r
phi = (Z*r - 2)*exp(-Z*r/2)
phi
diff(phi, x)

This doesn’t look very nice, but sympy provides several functions that allow for
improving and simplifying the output.

7

http://docs.sympy.org/latest/index.html

The first attempt at solving the Helium atom
We can improve our output by factorizing and substituting expressions

from sympy import symbols, diff, exp, sqrt, factor, Symbol, printing
x, y, z, Z = symbols(’x y z Z’)
r = sqrt(x*x + y*y + z*z)
phi = (Z*r - 2)*exp(-Z*r/2)
R = Symbol(’r’) #Creates a symbolic equivalent of r
#print latex and c++ code
print printing.latex(diff(phi, x).factor().subs(r, R))
print printing.ccode(diff(phi, x).factor().subs(r, R))

The first attempt at solving the Helium atom
We can in turn look at second derivatives

from sympy import symbols, diff, exp, sqrt, factor, Symbol, printing
x, y, z, Z = symbols(’x y z Z’)
r = sqrt(x*x + y*y + z*z)
phi = (Z*r - 2)*exp(-Z*r/2)
R = Symbol(’r’) #Creates a symbolic equivalent of r
(diff(diff(phi, x), x) + diff(diff(phi, y), y) + diff(diff(phi, z), z)).factor().subs(r, R)
Collect the Z values
(diff(diff(phi, x), x) + diff(diff(phi, y), y) +diff(diff(phi, z), z)).factor().collect(Z).subs(r, R)
Factorize also the r**2 terms
(diff(diff(phi, x), x) + diff(diff(phi, y), y) + diff(diff(phi, z), z)).factor().collect(Z).subs(r, R).subs(r**2, R**2).factor()
print printing.ccode((diff(diff(phi, x), x) + diff(diff(phi, y), y) + diff(diff(phi, z), z)).factor().collect(Z).subs(r, R).subs(r**2, R**2).factor())

With some practice this allows one to be able to check one’s own calculation and
translate automatically into code lines.

The first attempt at solving the Helium atom
The c++ code with a VMC Solver class, main program first.

#include "vmcsolver.h"
#include <iostream>
using namespace std;

int main()
{

VMCSolver *solver = new VMCSolver();
solver->runMonteCarloIntegration();
return 0;

}

The first attempt at solving the Helium atom
The c++ code with a VMC Solver class, the VMCSolver header file.

#ifndef VMCSOLVER_H
#define VMCSOLVER_H
#include <armadillo>
using namespace arma;
class VMCSolver
{

8

https://github.com/CompPhysics/ComputationalPhysics/tree/master/doc/Programs/LecturePrograms/programs/VMC/cpp

public:
VMCSolver();
void runMonteCarloIntegration();

private:
double waveFunction(const mat &r);
double localEnergy(const mat &r);
int nDimensions;
int charge;
double stepLength;
int nParticles;
double h;
double h2;
long idum;
double alpha;
int nCycles;
mat rOld;
mat rNew;

};
#endif // VMCSOLVER_H

The first attempt at solving the Helium atom
The c++ code with a VMC Solver class, VMCSolver codes, initialize.

#include "vmcsolver.h"
#include "lib.h"
#include <armadillo>
#include <iostream>
using namespace arma;
using namespace std;

VMCSolver::VMCSolver() :
nDimensions(3),
charge(2),
stepLength(1.0),
nParticles(2),
h(0.001),
h2(1000000),
idum(-1),
alpha(0.5*charge),
nCycles(1000000)

{
}

The first attempt at solving the Helium atom
The c++ code with a VMC Solver class, VMCSolver codes.

void VMCSolver::runMonteCarloIntegration()
{

rOld = zeros<mat>(nParticles, nDimensions);
rNew = zeros<mat>(nParticles, nDimensions);
double waveFunctionOld = 0;
double waveFunctionNew = 0;
double energySum = 0;
double energySquaredSum = 0;
double deltaE;
// initial trial positions

9

for(int i = 0; i < nParticles; i++) {
for(int j = 0; j < nDimensions; j++) {

rOld(i,j) = stepLength * (ran2(&idum) - 0.5);
}

}
rNew = rOld;
// loop over Monte Carlo cycles
for(int cycle = 0; cycle < nCycles; cycle++) {

// Store the current value of the wave function
waveFunctionOld = waveFunction(rOld);
// New position to test
for(int i = 0; i < nParticles; i++) {

for(int j = 0; j < nDimensions; j++) {
rNew(i,j) = rOld(i,j) + stepLength*(ran2(&idum) - 0.5);

}
// Recalculate the value of the wave function
waveFunctionNew = waveFunction(rNew);
// Check for step acceptance (if yes, update position, if no, reset position)
if(ran2(&idum) <= (waveFunctionNew*waveFunctionNew) / (waveFunctionOld*waveFunctionOld)) {

for(int j = 0; j < nDimensions; j++) {
rOld(i,j) = rNew(i,j);
waveFunctionOld = waveFunctionNew;

}
} else {

for(int j = 0; j < nDimensions; j++) {
rNew(i,j) = rOld(i,j);

}
}
// update energies
deltaE = localEnergy(rNew);
energySum += deltaE;
energySquaredSum += deltaE*deltaE;

}
}
double energy = energySum/(nCycles * nParticles);
double energySquared = energySquaredSum/(nCycles * nParticles);
cout << "Energy: " << energy << " Energy (squared sum): " << energySquared << endl;

}

The first attempt at solving the Helium atom
The c++ code with a VMC Solver class, VMCSolver codes.

double VMCSolver::localEnergy(const mat &r)
{

mat rPlus = zeros<mat>(nParticles, nDimensions);
mat rMinus = zeros<mat>(nParticles, nDimensions);
rPlus = rMinus = r;
double waveFunctionMinus = 0;
double waveFunctionPlus = 0;
double waveFunctionCurrent = waveFunction(r);
// Kinetic energy, brute force derivations
double kineticEnergy = 0;
for(int i = 0; i < nParticles; i++) {

for(int j = 0; j < nDimensions; j++) {
rPlus(i,j) += h;
rMinus(i,j) -= h;
waveFunctionMinus = waveFunction(rMinus);
waveFunctionPlus = waveFunction(rPlus);
kineticEnergy -= (waveFunctionMinus + waveFunctionPlus - 2 * waveFunctionCurrent);

10

rPlus(i,j) = r(i,j);
rMinus(i,j) = r(i,j);

}
}
kineticEnergy = 0.5 * h2 * kineticEnergy / waveFunctionCurrent;
// Potential energy
double potentialEnergy = 0;
double rSingleParticle = 0;
for(int i = 0; i < nParticles; i++) {

rSingleParticle = 0;
for(int j = 0; j < nDimensions; j++) {

rSingleParticle += r(i,j)*r(i,j);
}
potentialEnergy -= charge / sqrt(rSingleParticle);

}
// Contribution from electron-electron potential
double r12 = 0;
for(int i = 0; i < nParticles; i++) {

for(int j = i + 1; j < nParticles; j++) {
r12 = 0;
for(int k = 0; k < nDimensions; k++) {

r12 += (r(i,k) - r(j,k)) * (r(i,k) - r(j,k));
}
potentialEnergy += 1 / sqrt(r12);

}
}
return kineticEnergy + potentialEnergy;

}

The first attempt at solving the Helium atom
The c++ code with a VMC Solver class, VMCSolver codes.

double VMCSolver::waveFunction(const mat &r)
{

double argument = 0;
for(int i = 0; i < nParticles; i++) {

double rSingleParticle = 0;
for(int j = 0; j < nDimensions; j++) {

rSingleParticle += r(i,j) * r(i,j);
}
argument += sqrt(rSingleParticle);

}
return exp(-argument * alpha);

}

The first attempt at solving the Helium atom
The c++ code with a VMC Solver class, the VMCSolver header file.

#include <armadillo>
#include <iostream>
using namespace arma;
using namespace std;
double ran2(long *);

class VMCSolver
{
public:

11

VMCSolver();
void runMonteCarloIntegration();

private:
double waveFunction(const mat &r);
double localEnergy(const mat &r);
int nDimensions;
int charge;
double stepLength;
int nParticles;
double h;
double h2;
long idum;
double alpha;
int nCycles;
mat rOld;
mat rNew;

};

VMCSolver::VMCSolver() :
nDimensions(3),
charge(2),
stepLength(1.0),
nParticles(2),
h(0.001),
h2(1000000),
idum(-1),
alpha(0.5*charge),
nCycles(1000000)

{
}

void VMCSolver::runMonteCarloIntegration()
{

rOld = zeros<mat>(nParticles, nDimensions);
rNew = zeros<mat>(nParticles, nDimensions);
double waveFunctionOld = 0;
double waveFunctionNew = 0;
double energySum = 0;
double energySquaredSum = 0;
double deltaE;
// initial trial positions
for(int i = 0; i < nParticles; i++) {

for(int j = 0; j < nDimensions; j++) {
rOld(i,j) = stepLength * (ran2(&idum) - 0.5);

}
}
rNew = rOld;
// loop over Monte Carlo cycles
for(int cycle = 0; cycle < nCycles; cycle++) {

// Store the current value of the wave function
waveFunctionOld = waveFunction(rOld);
// New position to test
for(int i = 0; i < nParticles; i++) {

for(int j = 0; j < nDimensions; j++) {
rNew(i,j) = rOld(i,j) + stepLength*(ran2(&idum) - 0.5);

}
// Recalculate the value of the wave function
waveFunctionNew = waveFunction(rNew);
// Check for step acceptance (if yes, update position, if no, reset position)
if(ran2(&idum) <= (waveFunctionNew*waveFunctionNew) / (waveFunctionOld*waveFunctionOld)) {

12

for(int j = 0; j < nDimensions; j++) {
rOld(i,j) = rNew(i,j);
waveFunctionOld = waveFunctionNew;

}
} else {

for(int j = 0; j < nDimensions; j++) {
rNew(i,j) = rOld(i,j);

}
}
// update energies
deltaE = localEnergy(rNew);
energySum += deltaE;
energySquaredSum += deltaE*deltaE;

}
}
double energy = energySum/(nCycles * nParticles);
double energySquared = energySquaredSum/(nCycles * nParticles);
cout << "Energy: " << energy << " Energy (squared sum): " << energySquared << endl;

}

double VMCSolver::localEnergy(const mat &r)
{

mat rPlus = zeros<mat>(nParticles, nDimensions);
mat rMinus = zeros<mat>(nParticles, nDimensions);
rPlus = rMinus = r;
double waveFunctionMinus = 0;
double waveFunctionPlus = 0;
double waveFunctionCurrent = waveFunction(r);
// Kinetic energy, brute force derivations
double kineticEnergy = 0;
for(int i = 0; i < nParticles; i++) {

for(int j = 0; j < nDimensions; j++) {
rPlus(i,j) += h;
rMinus(i,j) -= h;
waveFunctionMinus = waveFunction(rMinus);
waveFunctionPlus = waveFunction(rPlus);
kineticEnergy -= (waveFunctionMinus + waveFunctionPlus - 2 * waveFunctionCurrent);
rPlus(i,j) = r(i,j);
rMinus(i,j) = r(i,j);

}
}
kineticEnergy = 0.5 * h2 * kineticEnergy / waveFunctionCurrent;
// Potential energy
double potentialEnergy = 0;
double rSingleParticle = 0;
for(int i = 0; i < nParticles; i++) {

rSingleParticle = 0;
for(int j = 0; j < nDimensions; j++) {

rSingleParticle += r(i,j)*r(i,j);
}
potentialEnergy -= charge / sqrt(rSingleParticle);

}
// Contribution from electron-electron potential
double r12 = 0;
for(int i = 0; i < nParticles; i++) {

for(int j = i + 1; j < nParticles; j++) {
r12 = 0;
for(int k = 0; k < nDimensions; k++) {

r12 += (r(i,k) - r(j,k)) * (r(i,k) - r(j,k));
}
potentialEnergy += 1 / sqrt(r12);

13

}
}
return kineticEnergy + potentialEnergy;

}

double VMCSolver::waveFunction(const mat &r)
{

double argument = 0;
for(int i = 0; i < nParticles; i++) {

double rSingleParticle = 0;
for(int j = 0; j < nDimensions; j++) {

rSingleParticle += r(i,j) * r(i,j);
}
argument += sqrt(rSingleParticle);

}
return exp(-argument * alpha);

}

/*
** The function
** ran2()
** is a long periode (> 2 x 10^18) random number generator of
** L’Ecuyer and Bays-Durham shuffle and added safeguards.
** Call with idum a negative integer to initialize; thereafter,
** do not alter idum between sucessive deviates in a
** sequence. RNMX should approximate the largest floating point value
** that is less than 1.
** The function returns a uniform deviate between 0.0 and 1.0
** (exclusive of end-point values).
*/

#define IM1 2147483563
#define IM2 2147483399
#define AM (1.0/IM1)
#define IMM1 (IM1-1)
#define IA1 40014
#define IA2 40692
#define IQ1 53668
#define IQ2 52774
#define IR1 12211
#define IR2 3791
#define NTAB 32
#define NDIV (1+IMM1/NTAB)
#define EPS 1.2e-7
#define RNMX (1.0-EPS)

double ran2(long *idum)
{

int j;
long k;
static long idum2 = 123456789;
static long iy=0;
static long iv[NTAB];
double temp;

if(*idum <= 0) {
if(-(*idum) < 1) *idum = 1;
else *idum = -(*idum);
idum2 = (*idum);
for(j = NTAB + 7; j >= 0; j--) {

k = (*idum)/IQ1;

14

idum = IA1(*idum - k*IQ1) - k*IR1;
if(*idum < 0) *idum += IM1;
if(j < NTAB) iv[j] = *idum;

}
iy=iv[0];

}
k = (*idum)/IQ1;
idum = IA1(*idum - k*IQ1) - k*IR1;
if(*idum < 0) *idum += IM1;
k = idum2/IQ2;
idum2 = IA2*(idum2 - k*IQ2) - k*IR2;
if(idum2 < 0) idum2 += IM2;
j = iy/NDIV;
iy = iv[j] - idum2;
iv[j] = *idum;
if(iy < 1) iy += IMM1;
if((temp = AM*iy) > RNMX) return RNMX;
else return temp;

}
#undef IM1
#undef IM2
#undef AM
#undef IMM1
#undef IA1
#undef IA2
#undef IQ1
#undef IQ2
#undef IR1
#undef IR2
#undef NTAB
#undef NDIV
#undef EPS
#undef RNMX

// End: function ran2()

#include <iostream>
using namespace std;

int main()
{

VMCSolver *solver = new VMCSolver();
solver->runMonteCarloIntegration();
return 0;

}

The Metropolis algorithm
The Metropolis algorithm , see the original article (see also the FYS3150 lec-

tures) was invented by Metropolis et. al and is often simply called the Metropolis
algorithm. It is a method to sample a normalized probability distribution by a
stochastic process. We define P(n)

i to be the probability for finding the system
in the state i at step n. The algorithm is then

• Sample a possible new state j with some probability Ti→j .

15

http://scitation.aip.org/content/aip/journal/jcp/21/6/10.1063/1.1699114
http://www.uio.no/studier/emner/matnat/fys/FYS3150/h14/index.html
http://www.uio.no/studier/emner/matnat/fys/FYS3150/h14/index.html

• Accept the new state j with probability Ai→j and use it as the next sample.
With probability 1−Ai→j the move is rejected and the original state i is
used again as a sample.

The Metropolis algorithm
We wish to derive the required properties of T and A such that P(n→∞)

i → pi
so that starting from any distribution, the method converges to the correct dis-
tribution. Note that the description here is for a discrete probability distribution.
Replacing probabilities pi with expressions like p(xi)dxi will take all of these
over to the corresponding continuum expressions.

The Metropolis algorithm
The dynamical equation for P(n)

i can be written directly from the description
above. The probability of being in the state i at step n is given by the probability
of being in any state j at the previous step, and making an accepted transition
to i added to the probability of being in the state i, making a transition to any
state j and rejecting the move:

P(n)
i =

∑
j

[
P(n−1)
j Tj→iAj→i + P(n−1)

i Ti→j (1−Ai→j)
]
.

Since the probability of making some transition must be 1,
∑
j Ti→j = 1, and

the above equation becomes

P(n)
i = P(n−1)

i +
∑
j

[
P(n−1)
j Tj→iAj→i − P(n−1)

i Ti→jAi→j

]
.

The Metropolis algorithm
For large n we require that P(n→∞)

i = pi, the desired probability distribution.
Taking this limit, gives the balance requirement∑

j

[pjTj→iAj→i − piTi→jAi→j] = 0 .

The balance requirement is very weak. Typically the much stronger detailed
balance requirement is enforced, that is rather than the sum being set to zero,
we set each term separately to zero and use this to determine the acceptance
probabilities. Rearranging, the result is

Aj→i
Ai→j

= piTi→j
pjTj→i

.

16

The Metropolis algorithm
The Metropolis choice is to maximize the A values, that is

Aj→i = min
(

1, piTi→j
pjTj→i

)
.

Other choices are possible, but they all correspond to multilplying Ai→j and
Aj→i by the same constant smaller than unity.1

The Metropolis algorithm
Having chosen the acceptance probabilities, we have guaranteed that if the

P(n)
i has equilibrated, that is if it is equal to pi, it will remain equilibrated. Next

we need to find the circumstances for convergence to equilibrium.
The dynamical equation can be written as

P(n)
i =

∑
j

MijP(n−1)
j

with the matrix M given by

Mij = δij

[
1−

∑
k

Ti→kAi→k

]
+ Tj→iAj→i .

Summing over i shows that
∑
iMij = 1, and since

∑
k Ti→k = 1, and Ai→k ≤ 1,

the elements of the matrix satisfy Mij ≥ 0. The matrix M is therefore a
stochastic matrix.

The Metropolis algorithm
The Metropolis method is simply the power method for computing the right

eigenvector of M with the largest magnitude eigenvalue. By construction, the
correct probability distribution is a right eigenvector with eigenvalue 1. Therefore,
for the Metropolis method to converge to this result, we must show that M has
only one eigenvalue with this magnitude, and all other eigenvalues are smaller.

1The penalty function method uses just such a factor to compensate for pi that are evaluated
stochastically and are therefore noisy.

17

