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Introduction
The aim of this project is to use the coupled cluster method method to evaluate
the ground state energy of quantum dots with N = 2, N = 6, N = 12 and
N = 20 electrons. These are so-called closed shell systems. These systems can
however be changed to other ones. This is a project which favors people who
have studied many-body physics at the level of FYS4480/9480.

Theoretical background and description of the physical
system
We consider a system of electrons confined in a pure two-dimensional isotropic
harmonic oscillator potential, with an idealized total Hamiltonian given by
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, (1)

where natural units (ℏ = c = e = me = 1) are used and all energies are in so-
called atomic units a.u. We will study systems of many electrons N as functions
of the oscillator frequency ω using the above Hamiltonian. The Hamiltonian
includes a standard harmonic oscillator part

Ĥ0 =
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,

and the repulsive interaction between two electrons given by
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ĤI =
N∑

i<j

1
rij
,

with the distance between electrons given by rij =
√
r1 − r2. We define the

modulus of the positions of the electrons (for a given electron i) as ri =
√
r2

ix
+ r2

iy
.

There is no spin-orbit part in the two-body Hamiltonian and the different parts
of the Hamiltonian have no spin operators. This means that the spin of a
single-particle state or a many-particle state is a conserved quantity.

If only the harmonic oscillator part of the Hamiltonian, the so-called unper-
turbed part is given by

Ĥ0 =
N∑

i=1

(
−1

2∇2
i + 1
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i

)
.

The wave function for one electron in an oscillator potential in two dimensions is

ϕnx,ny
(x, y) = AHnx

(
√
ωx)Hny

(
√
ωy) exp (−ω(x2 + y2)/2.

The functions Hnx
(
√
ωx) are so-called Hermite polynomials, discussed in the

appendix while A is a normalization constant. For the lowest-lying state we have
nx = ny = 0 and an energy ϵnx,ny = ω(nx + ny + 1) = ω.

In our case the single-particle basis is provided by the harmonic oscillator
functions. The first part of this project deals thus with the setup of the basis
functions and the computation of matrix elements for the Coulomb interaction.

Getting started. Make a program that sets up all the quantum numbers for
the single-particle basis using a harmonic oscillator in two dimensions. The list
should contain the quantum numbers nx and ny, spin and its projection and the
single particle energies in atomic units. Define a cutoff in the list according to the
harmonic oscillator excitation energy. The table here lists the first four harmonic
oscillator shells, with its pertinent degeneracies, and the total number of electrons
which can be accomodated up to a given energy. These numbers are the so-called
magic numbers for a two-dimensional quantum dot. The degeneracies take into
account the two spin values an electron can take. Convince yourself about the
correctness of this table and use it to check that your code is running correctly.

Shell number (nx, ny) Energy Degeneracy N
1 (0, 0) ℏω 2 2
2 (1, 0), (0, 1) 2ℏω 4 6
3 (2, 0), (0, 2), (1, 1) 3ℏω 6 12
3 (3, 0), (0, 3), (2, 1), (1, 2) 4ℏω 8 20

Convince yourself that the unperturbed lowest-lying energy for the two-electron
system is simply 2ω. Similarly, find the corresponding energies for N = 6,
N = 12, N = 20 and N = 30 electrons. These results will turn out to be very
useful when you need to check your programs.
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Setting up the single-particle basis. With the single-particle basis from
the previous step, you should now write a class which encodes the information
about the harmonic oscillator single-particle basis. This should include the
single-particle energies, spin and its projections as well as the harmonic oscillator
functions that depend on nx and ny.

Computing the two-body matrix elements. In order to set up the two-
body matrix elements, we need to define the so-called direct and exchange matrix
elements. This leads to what we call an anti-symmetrized matrix element.

We introduce the following shorthands for the integrals

⟨pq|v̂|rs⟩ =
∫
ψ∗

p(xi)ψ∗
q (xj)V (rij)ψr(xi)ψs(xj)dxidxj ,

which defines the so-called direct matrix element and

⟨pq|v̂|sr⟩ =
∫
ψ∗

p(xi)ψ∗
q (xj)V (rij)ψs(xi)ψr(xj)dxidxj ,

which defines the exchange element. The variables pqrs define all the single-
particle quantum numbers. In our case these are nx, ny and spin and its
projections.

These matrix elements are defined in terms of two-body quantum numbers.
Which quantum numbers are conserved? Which are the possible values the total
spin of a two-body state can have?

The direct and exchange matrix elements can be brought together if we define
the anti-symmetrized matrix element

⟨pq|v̂|rs⟩AS = ⟨pq|v̂|rs⟩ − ⟨pq|v̂|sr⟩.

It has the symmetry property

⟨pq|v̂|rs⟩AS = −⟨pq|v̂|sr⟩AS = −⟨qp|v̂|rs⟩AS,

and
⟨pq|v̂|rs⟩AS = ⟨qp|v̂|sr⟩AS.

Your task is to write a function which calculates the integral

⟨pq|v̂|rs⟩ =
∫
ψ∗

p(xi)ψ∗
q (xj)V (rij)ψr(xi)ψs(xj)dxidxj ,

and then assemble the direct and exchange terms in order to construct the
anti-symmetrized matrix elements to be used as inputs to the coupled cluster
code. The integral needs to be parallelized. Chapter five of the lecture notes
discusses Gaussian quadrature. You may find it convenient to use Hermite
polynomials in order to set up the integration points and weights.
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Coupled Cluster theory. The aim of this project is to develop a coupled
cluster doubles (CCD) code, where 2p− 2h excitations are included only.

We will start with a two-electron problem and compare our results to those
of Taut, see reference [1] below.

The ansatz for the ground state is given by

|Ψ0⟩ = |ΨCC⟩ = eT̂ |Φ0⟩ =
(

N∑
n=1

1
n! T̂

n

)
|Φ0⟩,

where N represents the maximum number of particle-hole excitations and T̂ is
the cluster operator defined as

T̂ = T̂1 + T̂2 + . . .+ T̂N

T̂n =
(

1
n!

)2 ∑
i1,i2,...in

a1,a2,...an

ta1a2...an
i1i2...in

a†
a1
a†

a2
. . . a†

an
ain

. . . ai2ai1 .

The energy is given by
ECC = ⟨Φ0|H|Φ0⟩,

where H is a similarity transformed Hamiltonian

H = e−T̂ ĤNe
T̂

ĤN = Ĥ − ⟨Φ0|Ĥ|Φ0⟩.

The coupled cluster energy is a function of the unknown cluster amplitudes
ta1a2...an
i1i2...in

, given by the solutions to the amplitude equations

0 = ⟨Φa1...an
i1...in

|H|Φ0⟩. (2)

In order to set up the above equations, the similarity transformed Hamiltonian
H is expanded using the Baker-Campbell-Hausdorff expression,

H = ĤN +
[
ĤN , T̂

]
+ 1

2

[[
ĤN , T̂

]
, T̂
]

+ . . .+ 1
n!

[
. . .
[
ĤN , T̂

]
, . . . T̂

]
+ . . . (3)

and simplified using the connected cluster theorem

H = ĤN +
(
ĤN T̂

)
c

+ 1
2

(
ĤN T̂

2
)

c
+ · · · + 1

n!

(
ĤN T̂

n
)

c
+ . . .

We will discuss parts of the the derivation below.
We will now approximate the cluster operator T̂ to include only 2p − 2h

correlations. This leads to the so-called CCD approximation, that is

T̂ ≈ T̂2 = 1
4
∑
abij

tab
ij a

†
aa

†
bajai,
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meaning that we have

|Ψ0⟩ ≈ |ΨCCD⟩ = exp
(
T̂2

)
|Φ0⟩.

Inserting these equations in the expression for the computation of the energy we
have, with a Hamiltonian defined with respect to a general reference vacuum

Ĥ = ĤN + Eref ,

with
ĤN =

∑
pq

⟨p|f̂ |q⟩a†
paq + 1

4
∑
pqrs

⟨pq|v̂|rs⟩a†
pa

†
qasar,

we obtain that the energy can be written as

⟨Φ0| exp
(

−T̂2

)
ĤN exp

(
T̂2

)
|Φ0⟩ = ⟨Φ0|ĤN (1 + T̂2)|Φ0⟩ = ECCD.

This quantity becomes

ECCD = Eref + 1
4
∑
abij

⟨ij|v̂|ab⟩tab
ij ,

where the latter is the correlation energy from this level of approximation of
coupled cluster theory. Similarly, the expression for the amplitudes reads

⟨Φab
ij | exp

(
−T̂2

)
ĤN exp

(
T̂2

)
|Φ0⟩ = 0.

These equations can be reduced to (after several applications of Wick’s theorem),
for all i > j and all a > b,

0 = ⟨ab|v̂|ij⟩ + (ϵa + ϵb − ϵi − ϵj) tab
ij + 1

2
∑
cd

⟨ab|v̂|cd⟩tcd
ij + 1

2
∑
kl

⟨kl|v̂|ij⟩tab
kl + P̂ (ij|ab)

∑
kc

⟨kb|v̂|cj⟩tac
ik

+1
4
∑
klcd

⟨kl|v̂|cd⟩tcd
ij t

ab
kl + P̂ (ij)

∑
klcd

⟨kl|v̂|cd⟩tac
ik t

bd
jl − 1

2 P̂ (ij)
∑
klcd

⟨kl|v̂|cd⟩tdc
ik t

ab
lj − 1

2 P̂ (ab)
∑
klcd

⟨kl|v̂|cd⟩tac
lk t

db
ij ,

(4)

where we have defined
P̂ (ab) = 1 − P̂ab,

where P̂ab interchanges two particles occupying the quantum numbers a and b.
The operator P̂ (ij|ab) is defined as

P̂ (ij|ab) = (1 − P̂ij)(1 − P̂ab).

The single-particle energies ϵp are normally taken to be either plain harmonic
oscillator ones or Hartree-Fock single-particle energies. Recall also that the
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unknown amplitudes tab
ij represent anti-symmetrized matrix elements, meaning

that they obey the same symmetry relations as the two-body interaction, that is

tab
ij = −tab

ji = −tba
ij = tba

ji .

The two-body matrix elements are also anti-symmetrized, meaning that

⟨ab|v̂|ij⟩ = −⟨ab|v̂|ji⟩ = −⟨ba|v̂|ij⟩ = ⟨ba|v̂|ji⟩.

The non-linear equations for the unknown amplitudes tab
ij are solved iteratively.

In order to develop a program, chapter 8 of the recent Lecture Notes in
Physics (volume 936) is highly recommended as literature. All material is
available from the source site. Example of CCD codes are available from the
program site. These can be used to benchmark your own program.

Project 2 a): Here you should feel free to use either a plain harmonic oscillator
basis or Hartree-Fock basis. If you have performed Hartree-Fock calculations
and are familiar with these, the Hartree-Fock basis defines the so-called reference
energy

Eref =
∑
i≤F

∑
αβ

C∗
iαCiβ⟨α|h|β⟩ + 1

2
∑

ij≤F

∑
αβγδ

C∗
iαC

∗
jβCiγCjδ⟨αβ|v̂|γδ⟩. (5)

If you plan to use Hartree-Fock based matrix elements, you will need to transform
the matrix elements from the harmonic oscillator basis to the Hartree-Fock basis.
The first step is to program

⟨pq|v̂|rs⟩AS =
∑

αβγδ

C∗
pαC

∗
qβCrγCsδ⟨αβ|v̂|γδ⟩AS , (6)

where the coefficients are those from the last Hartree-Fock iteration and the
matrix elements are all anti-symmetrized. You can extend your Hartree-Fock
program to write out these matrix elements after the last Hartree-Fock iteration.
Make sure that your matrix elements are structured according to conserved
quantum numbers, avoiding thereby the write out of many zeros.

To test that your matrix elements are set up correctly, when you read in
these matrix elements in the CCD code, make sure that the reference energy
from your Hartree-Fock calculations are reproduced. Alternatively, you can just
use the standard harmonic oscillator one-body and two-body matrix elements.

Project 2 b): Set up a code which solves the CCD equation by encoding the
equations as they stand, that is follow the mathematical expressions and perform
the sums over all single-particle states. Compute the energy of the two-electron
systems using all single-particle states. Compare these with Taut’s results for
ω = 1 a.u. Since you do not include singles you will not get the exact result. If
you wish to include singles, you will able to obtain the exact results in a basis
with at least ten major oscillator shells. Perform also calculations with N = 6,
N = 12 and N = 20 electrons and compare with reference [2] of Pedersen et al
below.
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Project 2 c): The next step consists in rewriting the equations in terms of
matrix-matrix multiplications and subdividing the matrix elements and opera-
tions in terms of two-particle configuration that conserve total spin projection
and projection of the orbital momentum. Rewrite also the equations in terms
of so-called intermediates, as detailed in section 8.7 of Lietz et al. This section
gives a detailed description on how to build a coupled cluster code and is highly
recommended.

Rerun your calculations for = 2, N = 6, N = 12 and N = 20 electrons using
your optimal Hartree-Fock basis. Make sure your results from 2b) stay the same.

Calculate as well ground state energies for ω = 0.5 and ω = 0.1. Try to
compare with eventual variational Monte Carlo results from other students, if
possible.

Project 2 d): The final step is to parallelize your CCD code using either
OpenMP or MPI and do a performance analysis. Use the N = 6 case. Make a
performance analysis by timing your serial code with and without vectorization.
Perform several runs and compute an average timing analysis with and without
vectorization. Comment your results.

Compare thereafter your serial code(s) with the speedup you get by paralleliz-
ing your code, running either OpenMP or MPI or both. Do you get a near 100%
speedup with the parallel version? Comment again your results and perform
timing benchmarks several times in order to extract an average performance
time.

Additional material on Hermite polynomials
The Hermite polynomials are the solutions of the following differential equation

d2H(x)
dx2 − 2xdH(x)

dx
+ (λ− 1)H(x) = 0. (7)

The first few polynomials are

H0(x) = 1,

H1(x) = 2x,

H2(x) = 4x2 − 2,

H3(x) = 8x3 − 12x,

and

H4(x) = 16x4 − 48x2 + 12.
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They fulfil the orthogonality relation∫ ∞

−∞
e−x2

Hn(x)2dx = 2nn!
√
π,

and the recursion relation

Hn+1(x) = 2xHn(x) − 2nHn−1(x).
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Introduction to numerical projects
Here follows a brief recipe and recommendation on how to write a report for
each project.

• Give a short description of the nature of the problem and the eventual
numerical methods you have used.

• Describe the algorithm you have used and/or developed. Here you may
find it convenient to use pseudocoding. In many cases you can describe
the algorithm in the program itself.

• Include the source code of your program. Comment your program properly.

• If possible, try to find analytic solutions, or known limits in order to test
your program when developing the code.

• Include your results either in figure form or in a table. Remember to label
your results. All tables and figures should have relevant captions and labels
on the axes.

• Try to evaluate the reliabilty and numerical stability/precision of your
results. If possible, include a qualitative and/or quantitative discussion of
the numerical stability, eventual loss of precision etc.

• Try to give an interpretation of you results in your answers to the problems.

• Critique: if possible include your comments and reflections about the
exercise, whether you felt you learnt something, ideas for improvements
and other thoughts you’ve made when solving the exercise. We wish to
keep this course at the interactive level and your comments can help us
improve it.
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• Try to establish a practice where you log your work at the computerlab.
You may find such a logbook very handy at later stages in your work,
especially when you don’t properly remember what a previous test version
of your program did. Here you could also record the time spent on solving
the exercise, various algorithms you may have tested or other topics which
you feel worthy of mentioning.

Format for electronic delivery of report and programs
The preferred format for the report is a PDF file. You can also use DOC or
postscript formats or as an ipython notebook file. As programming language we
prefer that you choose between C/C++, Fortran2008 or Python. The following
prescription should be followed when preparing the report:

• Use Devilry to hand in your projects, log in at http://devilry.ifi.uio.
no with your normal UiO username and password.

• Upload only the report file! For the source code file(s) you have developed
please provide us with your link to your github domain. The report
file should include all of your discussions and a list of the codes you have
developed. The full version of the codes should be in your github repository.

• In your github repository, please include a folder which contains selected
results. These can be in the form of output from your code for a selected
set of runs and input parameters.

• Still in your github make a folder where you place your codes.

• In this and all later projects, you should include tests (for example unit
tests) of your code(s).

• Comments from us on your projects, approval or not, corrections to be
made etc can be found under your Devilry domain and are only visible to
you and the teachers of the course.

Finally, we encourage you to work two and two together. Optimal working
groups consist of 2-3 students. You can then hand in a common report.
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