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Project suggestion
The aim of this project is to solve eigenvalue problems using the VQE algo-
rithm. As background material we recommend the lectures from FYS5419,
in particular week 10 and week 11 at https://github.com/CompPhysics/
QuantumComputingMachineLearning/tree/gh-pages/doc/pub.

The following articles are recommended as background literature

1. VQE review article

2. Gradients of Hamiltonians":"https://journals.aps.org/pra/abstract/10.1103/PhysRevA.99.032331"

Part a)
Write a function which sets up a one-qubit basis and apply the various Pauli
matrices to these basis states. Apply the Hadamard and Phase gates to the
same one-qubit basis states and study their actions on these states. Define
also Bell states and write a code where you implement a Hadamard gate and
thereafter a CNOT gate on one of the Bell states of your choice. Perform
thereafter a measurement on the first qubit and thereafter on the second qubit.
The measurements should be performed several times and it is the average results
of these measurements which should be discussed and presented.

Compare your code with the results obtained using Qiskit, see the example at
https://quantum-computing.ibm.com/composer/docs/iqx/first-circuit.
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Part b)
We define a symmetric matrix H ∈ R2×2

H =
[
H11 H12
H21 H22

]
,

We let H = H0 + HI , where

H0 =
[
E1 0
0 E2

]
,

is a diagonal matrix. Similarly,

HI =
[
V11 V12
V21 V22

]
,

where Vij represent various interaction matrix elements. We can view H0 as the
non-interacting solution

H0|0⟩ = E1|0⟩, (1)
and

H0|1⟩ = E2|1⟩, (2)
where we have defined the orthogonal computational one-qubit basis states |0⟩
and |1⟩.

We rewrite H (and H0 and HI) via Pauli matrices

H0 = EI + Ωσz, E = E1 + E2

2 , Ω = E1 − E2

2 ,

and
HI = cI + ωzσz + ωxσx,

with c = (V11 + V22)/2, ωz = (V11 − V22)/2 and ωx = V12 = V21. We let our
Hamiltonian depend linearly on a strength parameter λ

H = H0 + λHI,

with λ ∈ [0, 1], where the limits λ = 0 and λ = 1 represent the non-interacting
(or unperturbed) and fully interacting system, respectively. The model is an
eigenvalue problem with only two available states.

Here we set the parameters E1 = 0, E2 = 4, V11 = −V22 = 3 and V12 =
V21 = 0.2.

The non-interacting solutions represent our computational basis. Pertinent to
our choice of parameters, is that at λ ≥ 2/3, the lowest eigenstate is dominated
by |1⟩ while the upper is |0⟩. At λ = 1 the |0⟩ mixing of the lowest eigenvalue is
1% while for λ ≤ 2/3 we have a |0⟩ component of more than 90%. The character
of the eigenvectors has therefore been interchanged when passing z = 2/3. The
value of the parameter V12 represents the strength of the coupling between the
two states..
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Solve by standard eigenvalue solvers (either numerically or analytically)
the above eigenvalue problem. Find the two eigenvalues as function of the
interaction strength λ. Study the behavior of these eigenstates as functions of
the interaction strength λ. Comment your results.

Part c)
Implement now the variational quantum eigensolver (VQE) for the above Hamilto-
nian and set up the circuit(s) which is(are) needed in order to find the eigenvalues
of this system. Discuss the results and compare these with those from part b).
Feel free to use either Qiskit or your own code (based on the setup from part
a)) or both approaches. Discuss your results.

Part d)
Extend part c) to a two-qubit system with the following computational basis
states and Hamiltonian matrix written out in terms of Pauli spin matrices.

This system can be thought of as composed of two subsystems A and B.
Each subsystem has computational basis states

|0⟩A,B =
[
1 0

]T |1⟩A,B =
[
0 1

]T
.

The subsystems could represent single particles or composite many-particle
systems of a given symmetry. This leads to the many-body computational basis
states

|00⟩ = |0⟩A ⊗ |0⟩B =
[
1 0 0 0

]T
,

and
|01⟩ = |0⟩A ⊗ |1⟩B =

[
0 1 0 0

]T
,

and
|10⟩ = |1⟩A ⊗ |0⟩B =

[
0 0 1 0

]T
,

and finally
|11⟩ = |1⟩A ⊗ |1⟩B =

[
0 0 0 1

]T
.

These computational basis states define also the eigenstates of the non-
interacting Hamiltonian

H0|00⟩ = ϵ00|00⟩,
H0|10⟩ = ϵ10|10⟩,
H0|01⟩ = ϵ01|01⟩,

and
H0|11⟩ = ϵ11|11⟩.

The interacting part of the Hamiltonian HI is given by the tensor product of
two σx and σz matrices, respectively, that is

HI = Hxσx ⊗ σx + Hzσz ⊗ σz,
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where Hx and Hz are interaction strength parameters. Our final Hamiltonian
matrix is given by

H =


ϵ00 + Hz 0 0 Hx

0 ϵ10 − Hz Hx 0
0 Hx ϵ01 − Hz 0

Hx 0 0 ϵ11 + Hz

 .

The four eigenstates of the above Hamiltonian matrix can in turn be used to
define density matrices. As an example, the density matrix of the first eigenstate
(lowest energy E0) Ψ0 is

ρ0 = (α00|00⟩⟨00| + α10|10⟩⟨10| + α01|01⟩⟨01| + α11|11⟩⟨11|) ,

where the coefficients αij are the eigenvector coefficients resulting from the
solution of the above eigenvalue problem.

We can then in turn define the density matrix for the subsets A or B as

ρA = TrB(ρ0) = ⟨0|ρ0|0⟩B + ⟨1|ρ0|1⟩B ,

or

ρB = TrA(ρ0) = ⟨0|ρ0|0⟩A + ⟨1|ρ0|1⟩A.

The density matrices for these subsets can be used to compute the so-called
von Neumann entropy, which is one of the possible measures of entanglement. A
pure state has entropy equal zero while entangled state have an entropy larger
than zero. The von-Neumann entropy is defined as

S(A, B) = −Tr (ρA,B log2(ρA,B)) .

You can select parameter values (or other of your choice)
Hx = 2.0 Hz = 3.0 H0Energiesnoninteracting = [0.0, 2.5, 6.5, 7.0]
Compute the eigenvalues using standard eigenvalue solvers as functions

of the interaction strength λ and study the role of entanglement. Compute
thereafter the Von Neumann entropy for one of the subsystems using the denisty
matrix of the lowest two-body state . Comment your results.

The example here shows the above von Neumann entropy based on the
density matrix for the lowest many-body state. We see clearly a jump in the
entropy around the point where we have a level crossing. At interaction strenght
λ = 0 we have many-body states purely defined by their computational basis
states. As we switch on the interaction strength, we obtain an increased degree
of mixing and the entropy increases till we reach the level crossing point where
we see an additional and sudden increase in entropy. Similar behaviors are
observed for the other states. The most important result from this example is
that entanglement is driven by the Hamiltonian itself and the strength of the
interaction matrix elements and the non-interacting energies.
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Part e)
Compute now the eigenvalues of this system using the VQE method and set up
the circuits needed to find the lowest state. Compare these results with those
from the previous part. Feel free again to either use your own code for the circuit
and your VQE code or use the functionality of Qiskit, or both.

Introduction to numerical projects
Here follows a brief recipe and recommendation on how to write a report for
each project.

• Give a short description of the nature of the problem and the eventual
numerical methods you have used.

• Describe the algorithm you have used and/or developed. Here you may
find it convenient to use pseudocoding. In many cases you can describe
the algorithm in the program itself.

• Include the source code of your program. Comment your program properly.

• If possible, try to find analytic solutions, or known limits in order to test
your program when developing the code.

• Include your results either in figure form or in a table. Remember to label
your results. All tables and figures should have relevant captions and labels
on the axes.

• Try to evaluate the reliabilty and numerical stability/precision of your
results. If possible, include a qualitative and/or quantitative discussion of
the numerical stability, eventual loss of precision etc.

• Try to give an interpretation of you results in your answers to the problems.

• Critique: if possible include your comments and reflections about the
exercise, whether you felt you learnt something, ideas for improvements
and other thoughts you’ve made when solving the exercise. We wish to
keep this course at the interactive level and your comments can help us
improve it.

• Try to establish a practice where you log your work at the computerlab.
You may find such a logbook very handy at later stages in your work,
especially when you don’t properly remember what a previous test version
of your program did. Here you could also record the time spent on solving
the exercise, various algorithms you may have tested or other topics which
you feel worthy of mentioning.
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Format for electronic delivery of report and programs
The preferred format for the report is a PDF file. You can also use DOC or
postscript formats or as an ipython notebook file. As programming language we
prefer that you choose between C/C++, Fortran2008 or Python. The following
prescription should be followed when preparing the report:

• Send us an email in order to hand in your projects with a link to your
GitHub/Gitlab repository.

• In your GitHub/GitLab or similar repository, please include a folder which
contains selected results. These can be in the form of output from your
code for a selected set of runs and input parameters.

Finally, we encourage you to collaborate. Optimal working groups consist of 2-3
students. You can then hand in a common report.
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