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Introduction
The aim of this project is to use the Variational Monte Carlo (VMC) method to
evaluate the ground state energy, onebody densities, expectation values of the
kinetic and potential energies and single-particle denisties of quantum dots with
N = 2, N = 6, N = 12 and N = 20 electrons. These are so-called closed shell
systems.

Theoretical background and description of the physical
system
We consider a system of electrons confined in a pure two-dimensional isotropic
harmonic oscillator potential, with an idealized total Hamiltonian given by
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where natural units (ℏ = c = e = me = 1) are used and all energies are in so-
called atomic units a.u. We will study systems of many electrons N as functions
of the oscillator frequency ω using the above Hamiltonian. The Hamiltonian
includes a standard harmonic oscillator part

Ĥ0 =
N∑

i=1

(
−1

2∇2
i + 1

2ω
2r2

i

)
,

and the repulsive interaction between two electrons given by
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Ĥ1 =
∑
i<j

1
rij
,

with the distance between electrons given by rij = |r1 − r2|. We define the mod-
ulus of the positions of the electrons (for a given electron i) as ri =

√
r2

ix
+ r2

iy
.

Project 2 a): In exercises a-f we will deal only with a system of two electrons
in a quantum dot with a frequency of ℏω = 1. The reason for this is that we
have exact closed form expressions for the ground state energy from Taut’s work
for selected values of ω, see M. Taut, Phys. Rev. A 48, 3561 (1993). The energy
is given by 3 a.u. (atomic units) when the interaction between the electrons is
included. If only the harmonic oscillator part of the Hamiltonian is included,
the so-called unperturbed part,

Ĥ0 =
N∑

i=1

(
−1

2∇2
i + 1

2ω
2r2

i

)
,

the energy is 2 a.u. The wave function for one electron in an oscillator potential
in two dimensions is

ϕnx,ny
(x, y) = AHnx

(
√
ωx)Hny

(
√
ωy) exp (−ω(x2 + y2)/2.

The functions Hnx(
√
ωx) are so-called Hermite polynomials, discussed in con-

nection with project 1 while A is a normalization constant. For the lowest-lying
state we have nx = ny = 0 and an energy ϵnx,ny

= ω(nx +ny +1) = ω. Convince
yourself that the lowest-lying energy for the two-electron system is simply 2ω.

The unperturbed wave function for the ground state of the two-electron
system is given by

Φ(r1, r2) = C exp
(
−ω(r2

1 + r2
2)/2

)
,

with C being a normalization constant and ri =
√
r2

ix
+ r2

iy
. Note that the

vector ri refers to the x and y position for a given particle. What is the total
spin of this wave function? Find arguments for why the ground state should
have this specific total spin.

Project 2 b): We want to perform a Variational Monte Carlo calculation of
the ground state of two electrons in a quantum dot well with different oscillator
energies, assuming total spin S = 0 using the Hamiltonian of Eq. (1). Our trial
wave function which has the following form

ψT (r1, r2) = C exp
(
−αω(r2

1 + r2
2)/2

)
exp

(
ar12

(1 + βr12)

)
, (2)

where a is equal to one when the two electrons have anti-parallel spins and 1/3
when the spins are parallel. Finally, α and β are our variational parameters.
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Note well the dependence on α for the single-particle part of the trial function. It
is important to remember this when you use higher-order Hermite polynomials.
Find the analytical expressions for the local energy.

Project 2 c): Your task is to perform a Variational Monte Carlo calculation
using the Metropolis algorithm to compute the integral

⟨E⟩ =
∫
dr1dr2ψ

∗
T (r1, r2)Ĥ(r1, r2)ψT (r1, r2)∫

dr1dr2ψ∗
T (r1, r2)ψT (r1, r2) . (3)

Compute the expectation value of the energy using both the analytical expression
for the local energy and numerical derivation of the kinetic energy. Compare
the time usage between the two approaches. Perform these calculations without
importance sampling and also without the Jastrow factor. For the calculations
without the Jastrow factor and repulsive Coulomb potential, your energy should
equal 2.0 a.u. and your variance should be exactly equal to zero.

Project 2 d): Add now importance sampling and repeat the calculations
from the previous exercise but use only the analytical expression for the local
energy. Perform also a blocking analysis in order to obtain the optimal standard
deviation. Compare your results with the those without importance sampling
and comment your results.

Project 2 e): Using either the steepest descent method or the conjugate
gradient method, find the optimal variational parameters and perform your
Monte Carlo calculations using these. In addition, you should parallelize your
program using MPI and set it up to run on Smaug.

Project 2 f): Finally, we wil now analyze and interpret our results for the two-
electron systems. Find the energy minimum and discuss your results compared
with the analytical solution from Taut’s work, see reference [1] below. Compute
also the mean distance r12 = |r1 − r2| (with ri =

√
r2

ix
+ r2

iy
) between the two

electrons for the optimal set of the variational parameters. With the optimal
parameters for the ground state wave function, compute the onebody density.
Discuss your results and compare the results with those obtained with a pure
harmonic oscillator wave functions. Run a Monte Carlo calculations without the
Jastrow factor as well and compute the same quantities. How important are the
correlations induced by the Jastrow factor? Compute also the expectation value
of the kinetic energy and potential energy using ω = 0.01, ω = 0.05, ω = 0.1,
ω = 0.5 and ω = 1.0. Comment your results. Hint, think of the virial theorem.

Project 2 g): The previous exercises have prepared you for extending your
calculational machinery to other systems. Here we will focus on quantum dots
with N = 6 and N = 12 electrons.
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The new item you need to pay attention to is the calculation of the Slater
Determinant. This is an additional complication to your VMC calculations. If
we stick to harmonic oscillator like wave functions, the trial wave function for
say an N = 6 electron quantum dot can be written as

ψT (r1, r2, . . . , r6) = Det (ϕ1(r1), ϕ2(r2), . . . , ϕ6(r6))
6∏

i<j

exp
(

arij

(1 + βrij)

)
, (4)

where Det is a Slater determinant and the single-particle wave functions are
the harmonic oscillator wave functions for the nx = 0, 1 and ny = 0, 1 orbitals.
Similarly, for the N = 12 quantum dot, the trial wave function can take the form

ψT (r1, r2, . . . , r12) = Det (ϕ1(r1), ϕ2(r2), . . . , ϕ12(r12))
12∏

i<j

exp
(

arij

(1 + βrij)

)
,

(5)
In this case you need to include the nx = 2 and ny = 2 wave functions as well.
Observe that ri =

√
r2

ix
+ r2

iy
. Use the Hermite polynomials defined in project 1.

Reference [5] gives benchmark results for closed-shell systems up to N = 20.
Write a function which sets up the Slater determinant. Find the Hermite

polynomials which are needed for nx = 0, 1, 2 and obviously ny as well. Compare
the results you obtain with those from project 1. Compute the ground state
energies of quantum dots for N = 6 and N = 12 electrons, following the same
set up as in the previous exercises for ω = 0.01, ω = 0.05, ω = 0.1, ω = 0.5, and
ω = 1.0. The calculations should include parallelization, blocking, importance
sampling and energy minimization using the conjugate gradient approach or
similar approaches. To test your Slater determinant code, you should reproduce
the unperturbed single-particle energies when the electron-electron repulsion is
switched off. Convince yourself that the unperturbed ground state energies for
N = 6 is 10ω and for N = 12 we obtain 28ω. What is the expected total spin of
the ground states?

Project 2 h): With the optimal parameters for the ground state wave function,
compute again the onebody density. Discuss your results and compare the results
with those obtained with a pure harmonic oscillator wave functions. Run a
Monte Carlo calculations without the Jastrow factor as well and compute the
same quantities. How important are the correlations induced by the Jastrow
factor? Compute also the expectation value of the kinetic energy and potential
energy using ω = 0.01, ω = 0.05, ω = 0.1, ω = 0.5, and ω = 1.0. Comment your
results.

Project 2 i): The last exercise is a performance analysis of your code(s) for
the case of N = 6 electrons. Make a performance analysis by timing your serial
code with and without vectorization. Perform several runs with the same number
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of Monte carlo cycles and compute an average timing analysis with and without
vectorization. Comment your results. Use at least 106 Monte Carlo samples.

Compare thereafter your serial code(s) with the speedup you get by paralleliz-
ing your code, running either OpenMP or MPI or both. Do you get a near 100%
speedup with the parallel version? Comment again your results and perform
timing benchmarks several times in order to extract an average performance
time.

Literature.

1. M. Taut, Phys. Rev. A 48, 3561 - 3566 (1993).

2. B. L. Hammond, W. A. Lester and P. J. Reynolds, Monte Carlo methods in
Ab Initio Quantum Chemistry, World Scientific, Singapore, 1994, chapters
2-5 and appendix B.

3. B. H. Bransden and C. J. Joachain, Physics of Atoms and molecules,
Longman, 1986. Chapters 6, 7 and 9.

4. A. K. Rajagopal and J. C. Kimball, see Phys. Rev. B 15, 2819 (1977).

5. M. L. Pedersen, G. Hagen, M. Hjorth-Jensen, S. Kvaal, and F. Pederiva,
Phys. Rev. B 84, 115302 (2011)

Introduction to numerical projects
Here follows a brief recipe and recommendation on how to write a report for
each project.

• Give a short description of the nature of the problem and the eventual
numerical methods you have used.

• Describe the algorithm you have used and/or developed. Here you may
find it convenient to use pseudocoding. In many cases you can describe
the algorithm in the program itself.

• Include the source code of your program. Comment your program properly.

• If possible, try to find analytic solutions, or known limits in order to test
your program when developing the code.

• Include your results either in figure form or in a table. Remember to label
your results. All tables and figures should have relevant captions and labels
on the axes.

• Try to evaluate the reliabilty and numerical stability/precision of your
results. If possible, include a qualitative and/or quantitative discussion of
the numerical stability, eventual loss of precision etc.
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• Try to give an interpretation of you results in your answers to the problems.

• Critique: if possible include your comments and reflections about the
exercise, whether you felt you learnt something, ideas for improvements
and other thoughts you’ve made when solving the exercise. We wish to
keep this course at the interactive level and your comments can help us
improve it.

• Try to establish a practice where you log your work at the computerlab.
You may find such a logbook very handy at later stages in your work,
especially when you don’t properly remember what a previous test version
of your program did. Here you could also record the time spent on solving
the exercise, various algorithms you may have tested or other topics which
you feel worthy of mentioning.

Format for electronic delivery of report and programs
The preferred format for the report is a PDF file. You can also use DOC or
postscript formats or as an ipython notebook file. As programming language we
prefer that you choose between C/C++, Fortran2008 or Python. The following
prescription should be followed when preparing the report:

• Use canvas to hand in your projects, log in at http://canvas.uio.no
with your normal UiO username and password.

• Upload only the report file! For the source code file(s) you have developed
please provide us with your link to your github domain. The report
file should include all of your discussions and a list of the codes you have
developed. The full version of the codes should be in your github repository.

• In your github repository, please include a folder which contains selected
results. These can be in the form of output from your code for a selected
set of runs and input parameters.

• Still in your github make a folder where you place your codes.

• In this and all later projects, you should include tests (for example unit
tests) of your code(s).

• Comments from us on your projects, approval or not, corrections to be
made etc can be found under your Devilry domain and are only visible to
you and the teachers of the course.

Finally, we encourage you to work two and two together. Optimal working
groups consist of 2-3 students. You can then hand in a common report.
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