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Introduction
The spectacular demonstration of Bose-Einstein condensation (BEC) in gases of
alkali atoms 87Rb, 23Na, 7Li confined in magnetic traps has led to an explosion of
interest in confined Bose systems. Of interest is the fraction of condensed atoms,
the nature of the condensate, the excitations above the condensate, the atomic
density in the trap as a function of Temperature and the critical temperature of
BEC, Tc.

A key feature of the trapped alkali and atomic hydrogen systems is that
they are dilute. The characteristic dimensions of a typical trap for 87Rb is
aho = (ℏ/mω⊥)

1
2 = 1 − 2 × 104 Å . The interaction between 87Rb atoms can be

well represented by its s-wave scattering length, aRb. This scattering length lies
in the range 85a0 < aRb < 140a0 where a0 = 0.5292 Å is the Bohr radius. The
definite value aRb = 100a0 is usually selected and for calculations the definite
ratio of atom size to trap size aRb/aho = 4.33 × 10−3 is usually chosen. A typical
87Rb atom density in the trap is n ≃ 1012 − 1014 atoms per cubic cm, giving an
inter-atom spacing ℓ ≃ 104 Å. Thus the effective atom size is small compared
to both the trap size and the inter-atom spacing, the condition for diluteness
(na3

Rb ≃ 10−6 where n = N/V is the number density).
Many theoretical studies of Bose-Einstein condensates (BEC) in gases of alkali

atoms confined in magnetic or optical traps have been conducted in the framework
of the Gross-Pitaevskii (GP) equation. The key point for the validity of this
description is the dilute condition of these systems, that is, the average distance
between the atoms is much larger than the range of the inter-atomic interaction.
In this situation the physics is dominated by two-body collisions, well described
in terms of the s-wave scattering length a. The crucial parameter defining
the condition for diluteness is the gas parameter x(r) = n(r)a3, where n(r) is
the local density of the system. For low values of the average gas parameter
xav ≤ 10−3, the mean field Gross-Pitaevskii equation does an excellent job.
However, in recent experiments, the local gas parameter may well exceed this
value due to the possibility of tuning the scattering length in the presence of a
so-called Feshbach resonance.
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Thus, improved many-body methods like Monte Carlo calculations may be
needed.

The aim of this project is to use the Variational Monte Carlo (VMC) method
and evaluate the ground state energy of a trapped, hard sphere Bose gas for
different numbers of particles with a specific trial wave function.

This trial wave function is used to study the sensitivity of condensate and
non-condensate properties to the hard sphere radius and the number of particles.
The trap we will use is a spherical (S) or an elliptical (E) harmonic trap in one,
two and finally three dimensions, with the latter given by

Vext(r) =
{

1
2 mω2

hor2 (S)
1
2 m[ω2

ho(x2 + y2) + ω2
zz2] (E) (1)

where (S) stands for spherical and

H =
N∑
i

(
−ℏ2

2m
▽2

i + Vext(ri)
)

+
N∑

i<j

Vint(ri, rj), (2)

as the two-body Hamiltonian of the system. Here ω2
ho defines the trap potential

strength. In the case of the elliptical trap, Vext(x, y, z), ωho = ω⊥ is the trap
frequency in the perpendicular or xy plane and ωz the frequency in the z direction.
The mean square vibrational amplitude of a single boson at T = 0K in the
trap (1) is ⟨x2⟩ = (ℏ/2mωho) so that aho ≡ (ℏ/mωho) 1

2 defines the characteristic
length of the trap. The ratio of the frequencies is denoted λ = ωz/ω⊥ leading
to a ratio of the trap lengths (a⊥/az) = (ωz/ω⊥) 1

2 =
√

λ. Note that we use the
shorthand notation

N∑
i<j

Vij ≡
N∑

i=1

N∑
j=i+1

Vij , (3)

that is, the notation i < j under the summation sign signifies a double sum
running over all pairwise interactions once.

We will represent the inter-boson interaction by a pairwise, repulsive potential

Vint(|ri − rj |) =
{

∞ |ri − rj | ≤ a
0 |ri − rj | > a

(4)

where a is the so-called hard-core diameter of the bosons. Clearly, Vint(|ri − rj |)
is zero if the bosons are separated by a distance |ri − rj | greater than a but
infinite if they attempt to come within a distance |ri − rj | ≤ a.

Our trial wave function for the ground state with N atoms is given by

ΨT (r) = ΨT (r1, r2, . . . rN , α, β) =
[∏

i

g(α, β, ri)
] ∏

j<k

f(a, |rj − rk|)

 , (5)
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where α and β are variational parameters. The single-particle wave function is
proportional to the harmonic oscillator function for the ground state, i.e.,

g(α, β, ri) = exp [−α(x2
i + y2

i + βz2
i )]. (6)

For spherical traps we have β = 1 and for non-interacting bosons (a = 0) we
have α = 1/2a2

ho. The correlation wave function is

f(a, |ri − rj |) =
{

0 |ri − rj | ≤ a
(1 − a

|ri−rj | ) |ri − rj | > a. (7)

Project 1 a): Local energy. Find the analytic expressions for the local
energy

EL(r) = 1
ΨT (r)HΨT (r), (8)

for the above trial wave function of Eq. (5) and defined by the terms in Eqs. (6)
and (7).

Find first the local energy the case with only the harmonic oscillator potential,
that is we set a = 0 and discard totally the two-body potential.

Use first that β = 1 and find the relevant local energies in one, two and three
dimensions for one and N particles with the same mass.

Compute also the analytic expression for the drift force to be used in impor-
tance sampling

F = 2∇ΨT

ΨT
. (9)

Find first the equivalent expressions for the just the harmonic oscillator part
in one, two and three dimensions with β = 1.

Our next step involves the calculation of local energy for the full problem
in three dimensions. The tricky part is to find an analytic expressions for the
derivative of the trial wave function

1
ΨT (r)

N∑
i

∇2
i ΨT (r),

with the above trial wave function of Eq. (5). We rewrite

ΨT (r) = ΨT (r1, r2, . . . rN , α, β) =
[∏

i

g(α, β, ri)
] ∏

j<k

f(a, |rj − rk|)

 ,

as

ΨT (r) =
[∏

i

g(α, β, ri)
]

exp

∑
j<k

u(rjk)
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where we have defined rij = |ri − rj | and

f(rij) = exp (u(rij)),

with u(rij) = ln f(rij). We have also

g(α, β, ri) = exp
[
−α(x2

i + y2
i + βz2

i )
]

= ϕ(ri).

Show that the first derivative for particle k is

∇kΨT (r) = ∇kϕ(rk)

∏
i ̸=k

ϕ(ri)

 exp

∑
j<m

u(rjm)


+

[∏
i

ϕ(ri)
]

exp

∑
j<m

u(rjm)

 ∑
l ̸=k

∇ku(rkl),

and find the final expression for our specific trial function. The expression for
the second derivative is (show this)

1
ΨT (r)∇2

kΨT (r) = ∇2
kϕ(rk)
ϕ(rk) + 2∇kϕ(rk)

ϕ(rk)

∑
j ̸=k

(rk − rj)
rkj

u′(rkj)


+

∑
i̸=k

∑
j ̸=k

(rk − ri)(rk − rj)
rkirkj

u′(rki)u′(rkj)

+
∑
j ̸=k

(
u′′(rkj) + 2

rkj
u′(rkj)

)
.

Use this expression to find the final second derivative entering the definition
of the local energy. You need to get the analytic expression for this expression
using the harmonic oscillator wave functions and the correlation term defined in
the project.

Note: In parts 1b, 1c, 1d, 1e and 1f you will develop all computational
ingredients needed by studying only the non-interacting case. We add the
repulsive interaction in the final two parts, 1g and 1h. The reason for doing
so is that we can develop all programming ingredients and compare our results
against exact analytical results.

Project 1 b): Developing the code. Write a Variational Monte Carlo
program which uses standard Metropolis sampling and compute the ground state
energy of a spherical harmonic oscillator (β = 1) with no interaction and one
dimension. Use natural units and make an analysis of your calculations using
both the analytic expression for the local energy and a numerical calculation of
the kinetic energy using numerical derivation. Compare the CPU time difference.

4



The only variational parameter is α. Perform these calculations for N = 1,
N = 10, 100 and 500 atoms. Compare your results with the exact answer.
Extend then your results to two and three dimensions and compare with the
analytical results.

Project 1 c): Adding importance sampling. We repeat part b), but now
we replace the brute force Metropolis algorithm with importance sampling based
on the Fokker-Planck and the Langevin equations. Discuss your results and
comment on eventual differences between importance sampling and brute force
sampling. Run the calculations for the one, two and three-dimensional systems
only and without the repulsive potential. Study the dependence of the results as
a function of the time step δt. Compare the results with those obtained under
b) and comment eventual differences.

Project 1 d): Finding the best parameter(s). When we performed the
calculations in parts 1b) and 1c), we simply plotted the expectation value of
the energy as a function of the parameter α. For large systems, this means that
we end up with spending equally many Monte Carlo cycles for values of the
energy away from the minimum. We can improve upon this by using various
optimization algorithms. The aim of this part, still using only the non-interacting
case, is to add to our code either a steepest descent algorithm or a stochastic
gradient optmization algorithm in order to obtain the best possible parameter α
which minimized the expectation value of the energy.

Project 1 e): A better statistical analysis. In performing the Monte Carlo
analysis we will use the blocking and bootstrap techniques to make the final
statistical analysis of the numerical data. Present your results with a proper
evaluation of the statistical errors. Repeat the calculations from part d) (or c)
and include a proper error analysis. Limit yourself to the three-dimensional case
only.

A useful strategy here is to write your expectation values to file and then
have a Python code which does the final statistical analysis. Alternatively, you
can obviously write addition functions to be used by your main program and
perform the final statistical analysis within the same code.

Project 1 f): Parallelizing your code. Before we add the two-body inter-
action, our final computational ingredient is to parallelize our code. With this
last ingredient we have obtained a code framework which contains the essential
elements used in a Variational Monte Carlo approach to a many-body problem.
Dealing with a non-interacting case only till now allows us to continuously check
our results against exact solutions.

You should parallelize your code using MPI or OpenMP.

Project 1 g): The repulsive interaction. We are now ready to include the
repulsive two-body interaction.
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We turn to the elliptic trap with a repulsive interaction. We fix, as in Refs.
[1,2] below, a/aho = 0.0043. We introduce lengths in units of aho, r → r/aho

and energy in units of ℏωho. Show then that the original Hamiltonian can be
rewritten as

H =
N∑

i=1

1
2

(
−∇2

i + x2
i + y2

i + γ2z2
i

)
+

∑
i<j

Vint(|ri − rj |).

What is the expression for γ? Choose the initial value for β = γ = 2.82843
and compute ground state energy using the trial wave function of Eq. (5) using
only α as variational parameter. Vary again the parameter α in order to find a
minimum. Perform the calculations for N = 10, 50 and N = 100 and compare
your results to those from the ideal case in the previous exercises. Benchmark
your results with those of Refs. [1,2].

Project 1 h): Onebody densities. With the optimal parameters for the
ground state wave function, compute again the onebody density with and without
the Jastrow factor. How important are the correlations induced by the Jastrow
factor?
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Introduction to numerical projects
Here follows a brief recipe and recommendation on how to write a report for
each project.

• Give a short description of the nature of the problem and the eventual
numerical methods you have used.

• Describe the algorithm you have used and/or developed. Here you may
find it convenient to use pseudocoding. In many cases you can describe
the algorithm in the program itself.

• Include the source code of your program. Comment your program properly.

• If possible, try to find analytic solutions, or known limits in order to test
your program when developing the code.
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• Include your results either in figure form or in a table. Remember to label
your results. All tables and figures should have relevant captions and labels
on the axes.

• Try to evaluate the reliabilty and numerical stability/precision of your
results. If possible, include a qualitative and/or quantitative discussion of
the numerical stability, eventual loss of precision etc.

• Try to give an interpretation of you results in your answers to the problems.

• Critique: if possible include your comments and reflections about the
exercise, whether you felt you learnt something, ideas for improvements
and other thoughts you’ve made when solving the exercise. We wish to
keep this course at the interactive level and your comments can help us
improve it.

• Try to establish a practice where you log your work at the computerlab.
You may find such a logbook very handy at later stages in your work,
especially when you don’t properly remember what a previous test version
of your program did. Here you could also record the time spent on solving
the exercise, various algorithms you may have tested or other topics which
you feel worthy of mentioning.

Format for electronic delivery of report and programs
The preferred format for the report is a PDF file. You can also use DOC or
postscript formats or as an ipython notebook file. As programming language we
prefer that you choose between C/C++, Fortran2008 or Python. The following
prescription should be followed when preparing the report:

• Use canvas to hand in your projects, log in at http://canvas.uio.no
with your normal UiO username and password.

• Upload only the report file! For the source code file(s) you have developed
please provide us with your link to your github domain. The report
file should include all of your discussions and a list of the codes you have
developed. The full version of the codes should be in your github repository.

• In your github repository, please include a folder which contains selected
results. These can be in the form of output from your code for a selected
set of runs and input parameters.

• Still in your github make a folder where you place your codes.

• In this and all later projects, you should include tests (for example unit
tests) of your code(s).
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• Comments from us on your projects, approval or not, corrections to be
made etc can be found under your Devilry domain and are only visible to
you and the teachers of the course.

Finally, we encourage you to work two and two together. Optimal working
groups consist of 2-3 students. You can then hand in a common report.
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