
FYS4411/9411 Project 2, Machine
learning for quantum many-body

problems. Deadline June 1

Computational Physics II FYS4411/FYS9411

Department of Physics, University of Oslo, Norway

Spring semester 2024

Introduction
The idea of representing the wave function with a restricted Boltzmann machine
(RBM) was presented recently by G. Carleo and M. Troyer, Science 355, Issue
6325, pp. 602-606 (2017). They named such a wave function/network a neural
network quantum state (NQS). In their article they apply it to the quantum
mechanical spin lattice systems of the Ising model and Heisenberg model, with
encouraging results. To further test the applicability of RBM’s to quantum
mechanics we will in this project apply it to a system of two interacting electrons
(or bosons) confined to move in a harmonic oscillator trap. It is possible to
extend this system to more bosons or fermions, but we will limit ourselves to
two particles only.

We will study this system with so-called Boltzmann machine first as deep
learning method. If time allows, we can replace the Bolztmann machines with
neural networks.

Theoretical background and description of the physical
system
We consider a system of two electrons (or bosons) confined in a pure two-
dimensional isotropic harmonic oscillator potential, with an idealized total
Hamiltonian given by

Ĥ =
N∑

i=1

(
−1

2∇2
i + 1

2ω2r2
i

)
+

∑
i<j

1
rij

, (1)

where natural units (ℏ = c = e = me = 1) are used and all energies are in so-
called atomic units a.u. We will study systems of many electrons N as functions

© 1999-2024, "Computational Physics II
FYS4411/FYS9411":"http://www.uio.no/studier/emner/matnat/fys/FYS4411/index-

eng.html". Released under CC Attribution-NonCommercial 4.0 license

http://www.uio.no/studier/emner/matnat/fys/FYS4411/index-eng.html
http://science.sciencemag.org/content/355/6325/602
http://science.sciencemag.org/content/355/6325/602

of the oscillator frequency ω using the above Hamiltonian. The Hamiltonian
includes a standard harmonic oscillator part

Ĥ0 =
N∑

i=1

(
−1

2∇2
i + 1

2ω2r2
i

)
,

and the repulsive interaction between two electrons given by

Ĥ1 =
∑
i<j

1
rij

,

with the distance between the electrons (or bosons) given by rij = |r1 − r2|. We
define the modulus of the positions of the electrons (for a given electron i) as
ri =

√
r2

ix
+ r2

iy
.

In this project we will deal only with a system of two electrons (or bosons)
in a quantum dot with a frequency of ℏω = 1. The reason for this is that we
have exact closed form expressions for the ground state energy from Taut’s
work for selected values of ω, see M. Taut, Phys. Rev. A 48, 3561 (1993).
The energy is given by 3 a.u. (atomic units) when the interaction between the
electrons is included. We can however easily extend our system to say interacting
bosons, and in particular to more than two, as we did in project 1. Thus, ss an
alternative, you can replace the electron system with the same system
of Bosons from project 1.

If only the harmonic oscillator part of the Hamiltonian is included, the
so-called unperturbed part,

Ĥ0 =
N∑

i=1

(
−1

2∇2
i + 1

2ω2r2
i

)
,

the energy is 2 a.u. The wave function for one electron in an oscillator potential
in two dimensions is

ϕnx,ny
(x, y) = AHnx

(
√

ωx)Hny
(
√

ωy) exp (−ω(x2 + y2)/2.

The functions Hnx
(
√

ωx) are so-called Hermite polynomials while A is a normal-
ization constant. For the lowest-lying state we have nx = ny = 0 and an energy
ϵnx,ny

= ω(nx + ny + 1) = ω. Convince yourself that the lowest-lying energy for
the two-electron system is simply 2ω.

The unperturbed wave function for the ground state of the two-electron (or
two-boson) system is given by

Φ(r1, r2) = C exp
(
−ω(r2

1 + r2
2)/2

)
,

with C being a normalization constant and ri =
√

r2
ix

+ r2
iy

. Note that the
vector ri refer to the x and y position for a given particle. What is the total

2

spin of this wave function? Find arguments for why the ground state should
have this specific total spin.

Many of the needed details can be found in the lecture notes on Boltzmann
machines and neural networks. We recommend also to take a look at the code
at the end of these notes.

Representing the wave function with a neural network. Our neural
network of choice is the restricted Boltzmann machine. It is a two layer net
where one is called the layer of visible nodes and the other the layer of hidden
nodes. It is called restricted because there are no connections between nodes
in the same layer. Meaning there’s only a connection between two nodes if one
is visible and the other hidden. These type of networks constitute the building
blocks of the deep belief networks. The RBM is a generative network, meaning
that the idea is for it to learn a probability distribution. Thus the network does
not produce an output directly, but a probability distribution from which we
can generate an output. In our case this distribution corresponds to the wave
function and the output we wish to generate are the positions taken by the
particles in our system.

Neural networks are referred to as falling under either supervised or un-
supervised learning. Here we are not working with training data, thus it is
not supervised. It’s rather called reinforcement learning. From the variational
principle we know that the NQS wave fucntion represents the ground state
once the quantum mechanical energy is minimized. This information is used to
optimize the weights and biases of the network.

For more information and practical guides to the RBM, check out the links
in the literature section.

When working with the restricted Boltzmann machine we are given the joint
probability distribution between the hidden and visible nodes.

Restricted Boltzmann Machine (RBM). The joint probability distribution
is defined as

Frbm(X, H) = 1
Z

e− 1
T0

E(X,H) (2)

where Z is the partition function/normalization constant

Z =
∫ ∫

e− 1
T0

E(x,h)dxdh (3)

It is common to ignore T0 by setting it to one. Here E is known as the
energy of a configuration of the nodes. Do not confuse this with the energy of
the quantum mechanical system. Here it is a function which gives the specifics
of the relation between the hidden and visible nodes. Different versions of RBMs
will implement the energy function differently.

3

http://compphysics.github.io/ComputationalPhysics2/doc/LectureNotes/_build/html/boltzmannmachines.html
http://compphysics.github.io/ComputationalPhysics2/doc/LectureNotes/_build/html/boltzmannmachines.html

Gaussian-Binary RBM. The original and most common version of an RBM
is called "binary-binary", meaning both visible and hidden nodes only take on
binary values. In our case we wish to model continuous values (positions), thus
the visible nodes should be continuous. We therefore choose an RBM called
"Gaussian-binary".

E(X, H) =
M∑
i

(Xi − ai)2

2σ2
i

−
N∑
j

bjHj −
M,N∑

i,j

XiwijHj

σ2
i

(4)

If σi = σ then

E(X, H) = ||X − a||2

2σ2 − bT H − XT WH
σ2 (5)

Here X are the visible nodes (the position coordinates), H are the hidden nodes,
a are the visible biases, b are the hidden biases and W is a matrix containing
the weights characterizing the connection of each visible node to a hidden node.

The Wave Function. To find the marginal probability Frbm(X) we set:

Frbm(X) =
∑

h

Frbm(X, h) (6)

= 1
Z

∑
h

e−E(X,h) (7)

This is used to represent the wave function:

Ψ(X) = Frbm(X) (8)

= 1
Z

∑
{hj}

e−E(X,h) (9)

= 1
Z

∑
{hj}

e
−

∑M

i

(Xi−ai)2

2σ2 +
∑N

j
bjhj+

∑M,N

i,j

Xiwij hj

σ2 (10)

= 1
Z

e−
∑M

i

(Xi−ai)2

2σ2

N∏
j

(1 + ebj+
∑M

i

Xiwij

σ2) (11)

(12)

The Monte Carlo procedure. In many aspects, the procedure of optimizing
the NQS wave function will be very similar to the VMC method in project one.
However, it requires a heavier emphasis on the minimization process. Whereas
in project one you only had one or two parameters to optimize and could even
determine them analytically, in this situation the biases and weights quickly
add up to a high number of parameters to optimize, and it’s hard, if possible at
all, to determine them analytically. Thus minimizing the quantum mechanical

4

energy and optimizing the parameters is important from the beginning. Still,
the structure of the process is similar. You set up an initial guess of the NQS
wave function by giving the weights and biases random, preferably small values.
The process then follows the same structure as the VMC method.

Project 2 a): Analytical expressions. Once again you should start by
analytically determining the local energy, given by

EL = 1
ΨĤΨ (13)

using the NQS Ψ and the Hamiltonian as defined earlier.
If your minimization method of choice is for example stochastic gradient

descent (when using this method for neural network training, the step size is
often referred to as the learning rate), you will also need the gradient of the local
energy with respect to the RBM parameters α (a, b and W). It is given by

Gi = ∂⟨EL⟩
∂αi

= 2(⟨EL
1
Ψ

∂Ψ
∂αi

⟩ − ⟨EL⟩⟨ 1
Ψ

∂Ψ
∂αi

⟩) (14)

where αi = a1, ..., aM , b1, ..., bN , w11, ..., wMN .
In addition to EL then you will also need to find the expression for ∂Ψ

∂αi
.

You see here that the visible nodes (the position coordinates) and the cor-
responding visible biases are vectors of length M . The hidden nodes and the
corresponding hidden biases are vectors of length N . The weight matrix is of size
M × N . While the number of hidden nodes (that is, N) is your own choice and
should be experimented with, the number of visible nodes (M) should correspond
to the number of particles (P) and the number of dimensions (D) in the system,
that is M = P · D.

Project 2 b): Initial code. Now implement the code. The structure of the
code (how you organize your classes) can (probably) imitate what you did in
project 1. Use standard Metropolis sampling and ignore the interaction. This
means excluding the repulsive interaction from your Hamiltonian and local
energy calculations. In this case the analytically correct energy of the system is
given by E = 1

2 P · D. Optimize the NQS and compute the energy of 1 particle in
1D with 2 hidden units as accurately as you can. Experiment with the learning
rate. What precision do you achieve? Eventually you may also experiment with
changing the number of hidden units. Document your findings.

Many of the needed details can be found in the lecture notes on Boltzmann
machines and neural networks. We recommend also to take a look at the code
at the end of these notes.

Project 2 c): Importance sampling. Add importance sampling to improve
your method. Document the results and compare them to the brute force method.

Project 2 d): Statistical analysis. Include a proper statistical analysis by
use of the blocking method for your results.

5

http://compphysics.github.io/ComputationalPhysics2/doc/LectureNotes/_build/html/boltzmannmachines.html
http://compphysics.github.io/ComputationalPhysics2/doc/LectureNotes/_build/html/boltzmannmachines.html

Project 2 e): Interaction. Include the interaction. Remember that for the
interacting case we have an analytical answer when we look at two particles in
two dimensions (the energy shoud be 3 a.u.). As before, experiment with the
learning rate and number of hidden values and document how well the network
reproduces the analytical value. For bosons you can easily extend the code in
order to handle more particles. For fermions we would need to include properly
the anti-symmetry of the wave function. As an optional part, you could use the
same Hamiltonian for Bosons as you did in project 1.

Project 2 f): Replacing a Boltzmann machine with a neural network
(optional part). This part is optional and follows H. Saito, J. Phys. Soc. Jpn.
87, 074002 (2018). Here we replace a Boltzmann machine with a neural network.
Most of the formalism we have developed for the Boltzmann machine part can
be applied to a neural network. The task here is thus to study a neural network
which replaces the correlated part of the ansatz for the wave function. We will
keep a one-body part as a product of harmonic oscillator type of functions and
simply multiply this part with a neural network meant to replace the standard
Jastrow factor. Compare your results with those obtained with a Boltzmann
machine and comment your findings.

Literature.

1. M. Taut, Phys. Rev. A 48, 3561 - 3566 (1993)

2. G. Carleo and M. Troyer, Science 355, Issue 6325, pp. 602-606 (2017)

3. Restricted Boltzmann machines in quantum physics

4. A Practical Guide to Training Restricted Boltzmann Machines

5. H. Saito, J. Phys. Soc. Jpn. 87, 074002 (2018)

Introduction to numerical projects
Here follows a brief recipe and recommendation on how to write a report for
each project.

• Give a short description of the nature of the problem and the eventual
numerical methods you have used.

• Describe the algorithm you have used and/or developed. Here you may
find it convenient to use pseudocoding. In many cases you can describe
the algorithm in the program itself.

• Include the source code of your program. Comment your program properly.

• If possible, try to find analytic solutions, or known limits in order to test
your program when developing the code.

6

https://journals.jps.jp/doi/10.7566/JPSJ.87.074002
https://journals.jps.jp/doi/10.7566/JPSJ.87.074002
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.48.3561
http://science.sciencemag.org/content/355/6325/602
https://www.nature.com/articles/s41567-019-0545-1
https://www.cs.toronto.edu/~hinton/absps/guideTR.pdf
https://journals.jps.jp/doi/10.7566/JPSJ.87.074002

• Include your results either in figure form or in a table. Remember to label
your results. All tables and figures should have relevant captions and labels
on the axes.

• Try to evaluate the reliabilty and numerical stability/precision of your
results. If possible, include a qualitative and/or quantitative discussion of
the numerical stability, eventual loss of precision etc.

• Try to give an interpretation of you results in your answers to the problems.

• Critique: if possible include your comments and reflections about the
exercise, whether you felt you learnt something, ideas for improvements
and other thoughts you’ve made when solving the exercise. We wish to
keep this course at the interactive level and your comments can help us
improve it.

• Try to establish a practice where you log your work at the computerlab.
You may find such a logbook very handy at later stages in your work,
especially when you don’t properly remember what a previous test version
of your program did. Here you could also record the time spent on solving
the exercise, various algorithms you may have tested or other topics which
you feel worthy of mentioning.

Format for electronic delivery of report and programs
The preferred format for the report is a PDF file. You can also use DOC or
postscript formats or as an ipython notebook file. As programming language we
prefer that you choose between C/C++, Fortran2008 or Python. The following
prescription should be followed when preparing the report:

• Use canvas to hand in your projects, log in at http://canvas.uio.no
with your normal UiO username and password.

• Upload only the report file! For the source code file(s) you have developed
please provide us with your link to your github domain. The report
file should include all of your discussions and a list of the codes you have
developed. The full version of the codes should be in your github repository.

• In your github repository, please include a folder which contains selected
results. These can be in the form of output from your code for a selected
set of runs and input parameters.

• Still in your github make a folder where you place your codes.

• In this and all later projects, you should include tests (for example unit
tests) of your code(s).

7

http://canvas.uio.no

• Comments from us on your projects, approval or not, corrections to be
made etc can be found under your Devilry domain and are only visible to
you and the teachers of the course.

Finally, we encourage you to work two and two together. Optimal working
groups consist of 2-3 students. You can then hand in a common report.

8

