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Overview of first week, January 15-19
Topics.

• Introduction to the course and overview of topics to be covered

• Introduction to Variational Monte Carlo methods, Metropolis Algorithm,
statistics and Markov Chain theory

• C++ and python programming

Teaching Material, videos and written material.

• Asynchronuous vidoes

• Lecture notes and reading assignments

• Additional (often recommended) background material

Material this week
Teaching Material, videos and written material (to be uploaded after
lecture).

• Video of lecture with subtitles

• Slides for first week
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Teaching team

1. Daniel Haas Lima Beccatini, d.h.b.lima@fys.uio.no, office FØ454

2. Håkon Kvernmoen, hakon.kvernmoen@fys.uio.no, office FØ456

3. Morten Hjorth-Jensen, mhjensen@uio.no, office FØ470

4. Ruben Guevara, ruben.guevara@fys.uio.no, office FØ375

Textbooks
There are no unique textbooks which cover the material to be discussed. For
each week however, we will, in addition to our own lecture notes, send links to
additional literature.

Lectures and ComputerLab

• Lectures: Friday (10.15am-12pm). First time January 19. Last lecture
session May 10 (can be changed).

• Computerlab: Friday (12.15pm-3pm), first time January 19, last lab session
May 10 (can be changed).

• Weekly plans and all other information are on the webpage of the course

• First project to be handed in March 22.

• Second and final project to be handed in June 1.

• There is no final exam, only project work.

Course Format

• Two compulsory projects. Electronic reports only. You are free to choose
your format. We use canvas.uio.no to hand in the projects.

• Evaluation and grading: The two projects count 1/2 each of the final mark.

• The computer lab (room FØ434 in the Physics building) has no PCs,
so please bring your own laptops. C/C++ and Python are the default
programming language, but programming languages like Fortran2008, Rust,
Julia and other can also be used. All source codes discussed during the
lectures can be found at the webpage of the course.
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Aims

• Be able to apply central many-particle methods like the Variational Monte
Carlo method to properties of many-fermion systems and many-boson
systems.

• Understand how to simulate quantum mechanical systems with many
interacting particles. The methods are relevant for atomic, molecular,
condensed matter physics, materials science, nanotechnology, quantum
chemistry and nuclear physics.

• Learn to manage and structure larger projects, with unit tests, object
orientation and writing clean code

• Learn about a proper statistical analysis of large data sets

More aims

• Learn to optimize with convex optimization methods functions that depend
on many variables.

• Parallelization and code optimizations

• Depending on interests, the second project can focus on different topics.
These can be quantum computing for studies of quantum mechani-
cal problems, machine learning for solving quantum-mechanical problems,
quantum machine learning and many-body methods like coupled cluster
theory, Hartree-Fock theory and other.

Topics covered in this course

• Parallelization (MPI and OpenMP), high-performance computing top-
ics. Choose between Python, Fortran2008 and/or C++ as programming
languages.

• Algorithms for Monte Carlo Simulations (multidimensional integrals),
Metropolis-Hastings and importance sampling algorithms. Improved Monte
Carlo methods.

• Statistical analysis of data from Monte Carlo calculations, bootstrapping,
jackknife and blocking methods.

• Eigenvalue solvers
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More on topics covered in this course

• For project 2 there are several possibilities

1. Variational Monte Carlo for fermions
2. Hartree-Fock theory for fermions
3. Coupled cluster theory for fermions (iterative methods)
4. Neural networks and Machine Learning to solve the same problems

as in project 1
5. Eigenvalue problems with deep learning methods
6. Possible project on quantum computing and quantum machine learn-

ing

Other topics covered in this course

• Search for minima in multidimensional spaces (conjugate gradient method,
steepest descent method, quasi-Newton-Raphson, Broyden-Jacobian). Con-
vex optimization, gradient methods

• Iterative methods for solutions of non-linear equations.

• Object orientation

• Data analysis and resampling techniques

• Variational Monte Carlo (VMC) for ab initio studies of quantum mechan-
ical many-body systems.

• Simulation of two- and three-dimensional systems like quantum dots or
atoms and molecules or systems from solid state physics

Last (?) word on topics covered in this course

• Simulation of trapped bosons using VMC (project 1, default)

• Machine learning and neural networks (project 2, default, same
system as in project 1)

• Extension of project 1 to fermionic systems (project 2)

• Coupled cluster theory (project 2, depends on interest)

• Other quantum-mechanical methods and systems can be tailored to one’s
interests (Hartree-Fock Theory, Many-body perturbation theory, time-
dependent theories and more).
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Quantum Monte Carlo Motivation
Most quantum mechanical problems of interest in for example atomic, molecular,
nuclear and solid state physics consist of a large number of interacting electrons
and ions or nucleons.

The total number of particles N is usually sufficiently large that an exact
solution cannot be found.

Typically, the expectation value for a chosen hamiltonian for a system of N
particles is

⟨H⟩ =
∫
dR1dR2 . . . dRN Ψ∗(R1,R2, . . . ,RN )H(R1,R2, . . . ,RN )Ψ(R1,R2, . . . ,RN )∫

dR1dR2 . . . dRN Ψ∗(R1,R2, . . . ,RN )Ψ(R1,R2, . . . ,RN )
,

an in general intractable problem.
This integral is actually the starting point in a Variational Monte Carlo

calculation. Gaussian quadrature: Forget it! Given 10 particles and 10 mesh
points for each degree of freedom and an ideal 1 Tflops machine (all operations
take the same time), how long will it take to compute the above integral? The
lifetime of the universe is of the order of 1017 s.

Quantum Monte Carlo Motivation
As an example from the nuclear many-body problem, we have Schroedinger’s
equation as a differential equation

ĤΨ(r1, .., rA, α1, .., αA) = EΨ(r1, .., rA, α1, .., αA)

where
r1, .., rA,

are the coordinates and
α1, .., αA,

are sets of relevant quantum numbers such as spin and isospin for a system of A
nucleons (A = N + Z, N being the number of neutrons and Z the number of
protons).

Quantum Monte Carlo Motivation
There are

2A ×
(
A
Z

)
coupled second-order differential equations in 3A dimensions.

For a nucleus like beryllium-10 this number is 215040. This is a truely
challenging many-body problem.

Methods like partial differential equations can at most be used for 2-3
particles.
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Various many-body methods
• Monte-Carlo methods

• Renormalization group (RG) methods, in particular density matrix RG

• Large-scale diagonalization (Iterative methods, Lanczo’s method, dimen-
sionalities 1010 states)

• Coupled cluster theory, favoured method in quantum chemistry, molecular
and atomic physics. Applications to ab initio calculations in nuclear physics
as well for large nuclei.

• Perturbative many-body methods

• Green’s function methods

• Density functional theory/Mean-field theory and Hartree-Fock theory

The physics of the system hints at which many-body methods to use.

Pros and Cons of Monte Carlo
• Is physically intuitive.

• Allows one to study systems with many degrees of freedom. Diffusion
Monte Carlo (DMC) and Green’s function Monte Carlo (GFMC) yield in
principle the exact solution to Schroedinger’s equation.

• Variational Monte Carlo (VMC) is easy to implement but needs a reliable
trial wave function, can be difficult to obtain. This is where we will use
Hartree-Fock theory to construct an optimal basis.

• DMC/GFMC for fermions (spin with half-integer values, electrons, baryons,
neutrinos, quarks) has a sign problem. Nature prefers an anti-symmetric
wave function. The PDF in this case given distribution of random walkers.

More on Pros and Cons of Monte Carlo
• The solution has a statistical error, which can be large.

• There is a limit for how large systems one can study, DMC needs a huge
number of random walkers in order to achieve stable results.

• Obtain only the lowest-lying states with a given symmetry. Can get excited
states with extra labor.
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Where and why do we use Monte Carlo Methods in Quan-
tum Physics

• Quantum systems with many particles at finite temperature: Path Integral
Monte Carlo with applications to dense matter and quantum liquids (phase
transitions from normal fluid to superfluid). Strong correlations.

• Bose-Einstein condensation of dilute gases, method transition from non-
linear PDE to Diffusion Monte Carlo as density increases.

• Light atoms, molecules, solids and nuclei.

• Lattice Quantum-Chromo Dynamics. Impossible to solve without MC
calculations.

• Simulations of systems in solid state physics, from semiconductors to spin
systems. Many electrons active and possibly strong correlations.

Quantum Monte Carlo Motivation
We start with the variational principle. Given a hamiltonian H and a trial wave
function ΨT , the variational principle states that the expectation value of ⟨H⟩,
defined through

E[H] = ⟨H⟩ =
∫
dRΨ∗

T (R)H(R)ΨT (R)∫
dRΨ∗

T (R)ΨT (R)
,

is an upper bound to the ground state energy E0 of the hamiltonian H, that is

E0 ≤ ⟨H⟩.

In general, the integrals involved in the calculation of various expectation values
are multi-dimensional ones. Traditional integration methods such as the Gauss-
Legendre will not be adequate for say the computation of the energy of a
many-body system.

Quantum Monte Carlo Motivation
The trial wave function can be expanded in the eigenstates of the hamiltonian
since they form a complete set, viz.,

ΨT (R) =
∑

i

aiΨi(R),

and assuming the set of eigenfunctions to be normalized one obtains∑
nm a∗

man

∫
dRΨ∗

m(R)H(R)Ψn(R)∑
nm a∗

man

∫
dRΨ∗

m(R)Ψn(R)
=

∑
n a

2
nEn∑

n a
2
n

≥ E0,

where we used that H(R)Ψn(R) = EnΨn(R). In general, the integrals involved
in the calculation of various expectation values are multi-dimensional ones. The
variational principle yields the lowest state of a given symmetry.
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Quantum Monte Carlo Motivation
In most cases, a wave function has only small values in large parts of configuration
space, and a straightforward procedure which uses homogenously distributed
random points in configuration space will most likely lead to poor results. This
may suggest that some kind of importance sampling combined with e.g., the
Metropolis algorithm may be a more efficient way of obtaining the ground state
energy. The hope is then that those regions of configurations space where the
wave function assumes appreciable values are sampled more efficiently.

Quantum Monte Carlo Motivation
The tedious part in a VMC calculation is the search for the variational minimum.
A good knowledge of the system is required in order to carry out reasonable
VMC calculations. This is not always the case, and often VMC calculations
serve rather as the starting point for so-called diffusion Monte Carlo calculations
(DMC). DMC is a way of solving exactly the many-body Schroedinger equation
by means of a stochastic procedure. A good guess on the binding energy and its
wave function is however necessary. A carefully performed VMC calculation can
aid in this context.

Quantum Monte Carlo, ingredients and basic steps
• Construct first a trial wave function ψT (R,α), for a many-body system

consisting of N particles located at positions R = (R1, . . . ,RN ). The trial
wave function depends on α variational parameters α = (α1, . . . , αM ).

• Then we evaluate the expectation value of the hamiltonian H

E[H] = ⟨H⟩ =
∫
dRΨ∗

T (R,α)H(R)ΨT (R,α)∫
dRΨ∗

T (R,α)ΨT (R,α)
.

• Thereafter we vary α according to some minimization algorithm and return
to the first step.

Quantum Monte Carlo, basic steps, the probability distri-
bution function (PDF)
Choose a trial wave function ψT (R).

P (R) = |ψT (R)|2∫
|ψT (R)|2 dR

.

This is our new probability distribution function (PDF). The approximation to
the expectation value of the Hamiltonian is now

E[H(α)] =
∫
dRΨ∗

T (R,α)H(R)ΨT (R,α)∫
dRΨ∗

T (R,α)ΨT (R,α)
.
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Quantum Monte Carlo ingredients, the local energy
Define a new quantity

EL(R,α) = 1
ψT (R,α)HψT (R,α),

called the local energy, which, together with our trial PDF yields

E[H(α)] =
∫
P (R)EL(R)dR ≈ 1

N

N∑
i=1

EL(Ri,α)

with N being the number of Monte Carlo samples.

Quantum Monte Carlo algorithm
The Algorithm for performing a variational Monte Carlo calculations runs thus
as this

• Initialisation: Fix the number of Monte Carlo steps. Choose an initial R
and variational parameters α and calculate |ψα

T (R)|2.

• Initialise the energy and the variance and start the Monte Carlo calculation.

– Calculate a trial position Rp = R + r ∗ step where r is a random
variable r ∈ [0, 1].

– Metropolis algorithm to accept or reject this move w = P (Rp)/P (R).
– If the step is accepted, then we set R = Rp.
– Update averages

• Finish and compute final averages.

Observe that the jumping in space is governed by the variable step. This is
Called brute-force sampling. Need importance sampling to get more relevant
sampling, see lectures below.

Quantum Monte Carlo: hydrogen atom
The radial Schroedinger equation for the hydrogen atom can be written as

− ℏ2

2m
∂2u(r)
∂r2 −

(
ke2

r
− ℏ2l(l + 1)

2mr2

)
u(r) = Eu(r),

or with dimensionless variables

−1
2
∂2u(ρ)
∂ρ2 − u(ρ)

ρ
+ l(l + 1)

2ρ2 u(ρ) − λu(ρ) = 0,

with the hamiltonian

H = −1
2
∂2

∂ρ2 − 1
ρ

+ l(l + 1)
2ρ2 .
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Introducing the variational parameters
We introduce the variational parameter α in the trial wave function

uα
T (ρ) = αρe−αρ.

Quantum Monte Carlo: results for the hydrogen atom
Inserting this wave function into the expression for the local energy EL gives

EL(ρ) = −1
ρ

− α

2

(
α− 2

ρ

)
.

A simple variational Monte Carlo calculation results in

α ⟨H⟩ σ2 σ/
√
N

7.00000E-01 -4.57759E-01 4.51201E-02 6.71715E-04
8.00000E-01 -4.81461E-01 3.05736E-02 5.52934E-04
9.00000E-01 -4.95899E-01 8.20497E-03 2.86443E-04
1.00000E-00 -5.00000E-01 0.00000E+00 0.00000E+00
1.10000E+00 -4.93738E-01 1.16989E-02 3.42036E-04
1.20000E+00 -4.75563E-01 8.85899E-02 9.41222E-04
1.30000E+00 -4.54341E-01 1.45171E-01 1.20487E-03

Quantum Monte Carlo: interpreting the hydrogen atom
results
We note that at α = 1 we obtain the exact result, and the variance is zero, as it
should. The reason is that we then have the exact wave function, and the action
of the hamiltionan on the wave function

Hψ = constant × ψ,

yields just a constant. The integral which defines various expectation values
involving moments of the hamiltonian becomes then

⟨Hn⟩ =
∫
dRΨ∗

T (R)Hn(R)ΨT (R)∫
dRΨ∗

T (R)ΨT (R)
= constant×

∫
dRΨ∗

T (R)ΨT (R)∫
dRΨ∗

T (R)ΨT (R)
= constant.

This gives an important information: the exact wave function leads
to zero variance! Variation is then performed by minimizing both the energy
and the variance.

Quantum Monte Carlo for bosons
For bosons in a harmonic oscillator-like trap we will use is a spherical (S) or an
elliptical (E) harmonic trap in one, two and finally three dimensions, with the
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latter given by

Vext(r) =
{

1
2mω

2
hor

2 (S)
1
2m[ω2

ho(x2 + y2) + ω2
zz

2] (E) (1)

where (S) stands for symmetric and

Ĥ =
N∑
i

(
−ℏ2

2m ▽2
i + Vext(ri)

)
+

N∑
i<j

Vint(ri, rj), (2)

as the two-body Hamiltonian of the system.

Quantum Monte Carlo for bosons
We will represent the inter-boson interaction by a pairwise, repulsive potential

Vint(|ri − rj |) =
{

∞ |ri − rj | ≤ a
0 |ri − rj | > a

(3)

where a is the so-called hard-core diameter of the bosons. Clearly, Vint(|ri − rj |)
is zero if the bosons are separated by a distance |ri − rj | greater than a but
infinite if they attempt to come within a distance |ri − rj | ≤ a.

Quantum Monte Carlo for bosons
Our trial wave function for the ground state with N atoms is given by

ΨT (R) = ΨT (r1, r2, . . . rN , α, β) =
∏

i

g(α, β, ri)
∏
i<j

f(a, |ri − rj |), (4)

where α and β are variational parameters. The single-particle wave function is
proportional to the harmonic oscillator function for the ground state

g(α, β, ri) = exp [−α(x2
i + y2

i + βz2
i )]. (5)

Quantum Monte Carlo for bosons
The rest of this material is best read using the jupyter-notebook

For spherical traps we have β = 1 and for non-interacting bosons (a = 0) we
have α = 1/2a2

ho. The correlation wave function is

f(a, |ri − rj |) =
{

0 |ri − rj | ≤ a
(1 − a

|ri−rj | ) |ri − rj | > a. (6)
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Simple example, the hydrogen atom. The radial Schroedinger equation
for the hydrogen atom can be written as (when we have gotten rid of the first
derivative term in the kinetic energy and used rR(r) = u(r))

− ℏ2

2m
d2u(r)
dr2 −

(
ke2

r
− ℏ2l(l + 1)

2mr2

)
u(r) = Eu(r).

We will specialize to the case with l = 0 and end up with

− ℏ2

2m
d2u(r)
dr2 −

(
ke2

r

)
u(r) = Eu(r).

Then we introduce a dimensionless variable ρ = r/a where a is a constant with
dimension length. Multiplying with ma2/ℏ2 we can rewrite our equations as

−1
2
d2u(ρ)
dρ2 − ke2ma

ℏ2
u(ρ)
ρ

− λu(ρ) = 0.

Since a is just a parameter we choose to set

ke2ma

ℏ2 = 1,

which leads to a = ℏ2/mke2, better known as the Bohr radius with value
0.053 nm. Scaling the equations this way does not only render our numerical
treatment simpler since we avoid carrying with us all physical parameters, but
we obtain also a natural length scale. We will see this again and again. In
our discussions below with a harmonic oscillator trap, the natural lentgh scale
with be determined by the oscillator frequency, the mass of the particle and ℏ.
We have also defined a dimensionless ’energy’ λ = Ema2/ℏ2. With the rescaled
quantities, the ground state energy of the hydrogen atom is 1/2. The equation
we want to solve is now defined by the Hamiltonian

H = −1
2
d2

dρ2 − 1
ρ
.

As trial wave function we peep now into the analytical solution for the
hydrogen atom and use (with α as a variational parameter)

uα
T (ρ) = αρ exp −(αρ).

Inserting this wave function into the expression for the local energy EL gives

EL(ρ) = −1
ρ

− α

2

(
α− 2

ρ

)
.

To have analytical local energies saves us from computing numerically the
second derivative, a feature which often increases our numerical expenditure
with a factor of three or more. Integratng up the local energy (recall to bring
back the PDF in the integration) gives E[α] = α(α/2 − 1).
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Second example, the harmonic oscillator in one dimension. We present
here another well-known example, the harmonic oscillator in one dimension for
one particle. This will also serve the aim of introducing our next model, namely
that of interacting electrons in a harmonic oscillator trap.

Here as well, we do have analytical solutions and the energy of the ground
state, with ℏ = 1, is 1/2ω, with ω being the oscillator frequency. We use the
following trial wave function

ψT (x;α) = exp −(1
2α

2x2),

which results in a local energy

1
2

(
α2 + x2(1 − α4)

)
.

We can compare our numerically calculated energies with the exact energy as
function of α

E[α] = 1
4

(
α2 + 1

α2

)
.

Similarly, with the above ansatz, we can also compute the exact variance which
reads

σ2[α] = 1
4

(
1 + (1 − α4)2 3

4α4

)
− E

2
.

Our code for computing the energy of the ground state of the harmonic oscillator
follows here. We start by defining directories where we store various outputs.

# Common imports
import os

# Where to save the figures and data files
PROJECT_ROOT_DIR = "Results"
FIGURE_ID = "Results/FigureFiles"
DATA_ID = "Results/VMCHarmonic"

if not os.path.exists(PROJECT_ROOT_DIR):
os.mkdir(PROJECT_ROOT_DIR)

if not os.path.exists(FIGURE_ID):
os.makedirs(FIGURE_ID)

if not os.path.exists(DATA_ID):
os.makedirs(DATA_ID)

def image_path(fig_id):
return os.path.join(FIGURE_ID, fig_id)

def data_path(dat_id):
return os.path.join(DATA_ID, dat_id)

def save_fig(fig_id):
plt.savefig(image_path(fig_id) + ".png", format='png')

outfile = open(data_path("VMCHarmonic.dat"),'w')
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We proceed with the implementation of the Monte Carlo algorithm but list
first the ansatz for the wave function and the expression for the local energy

# VMC for the one-dimensional harmonic oscillator
# Brute force Metropolis, no importance sampling and no energy minimization
from math import exp, sqrt
from random import random, seed
import numpy as np
import matplotlib.pyplot as plt
from decimal import *
# Trial wave function for the Harmonic oscillator in one dimension
def WaveFunction(r,alpha):

return exp(-0.5*alpha*alpha*r*r)

# Local energy for the Harmonic oscillator in one dimension
def LocalEnergy(r,alpha):

return 0.5*r*r*(1-alpha**4) + 0.5*alpha*alpha

Note that in the Metropolis algorithm there is no need to compute the trial
wave function, mainly since we are just taking the ratio of two exponentials. It is
then from a computational point view, more convenient to compute the argument
from the ratio and then calculate the exponential. Here we have refrained from
this purely of pedagogical reasons.

# The Monte Carlo sampling with the Metropolis algo
# The jit decorator tells Numba to compile this function.
# The argument types will be inferred by Numba when the function is called.
def MonteCarloSampling():

NumberMCcycles= 100000
StepSize = 1.0
# positions
PositionOld = 0.0
PositionNew = 0.0

# seed for rng generator
seed()
# start variational parameter
alpha = 0.4
for ia in range(MaxVariations):

alpha += .05
AlphaValues[ia] = alpha
energy = energy2 = 0.0
#Initial position
PositionOld = StepSize * (random() - .5)
wfold = WaveFunction(PositionOld,alpha)
#Loop over MC MCcycles
for MCcycle in range(NumberMCcycles):

#Trial position
PositionNew = PositionOld + StepSize*(random() - .5)
wfnew = WaveFunction(PositionNew,alpha)
#Metropolis test to see whether we accept the move
if random() <= wfnew**2 / wfold**2:

PositionOld = PositionNew
wfold = wfnew

DeltaE = LocalEnergy(PositionOld,alpha)
energy += DeltaE
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energy2 += DeltaE**2
#We calculate mean, variance and error
energy /= NumberMCcycles
energy2 /= NumberMCcycles
variance = energy2 - energy**2
error = sqrt(variance/NumberMCcycles)
Energies[ia] = energy
Variances[ia] = variance
outfile.write('%f %f %f %f \n' %(alpha,energy,variance,error))

return Energies, AlphaValues, Variances

Finally, the results are presented here with the exact energies and variances
as well.

#Here starts the main program with variable declarations
MaxVariations = 20
Energies = np.zeros((MaxVariations))
ExactEnergies = np.zeros((MaxVariations))
ExactVariance = np.zeros((MaxVariations))
Variances = np.zeros((MaxVariations))
AlphaValues = np.zeros(MaxVariations)
(Energies, AlphaValues, Variances) = MonteCarloSampling()
outfile.close()
ExactEnergies = 0.25*(AlphaValues*AlphaValues+1.0/(AlphaValues*AlphaValues))
ExactVariance = 0.25*(1.0+((1.0-AlphaValues**4)**2)*3.0/(4*(AlphaValues**4)))-ExactEnergies*ExactEnergies

#simple subplot
plt.subplot(2, 1, 1)
plt.plot(AlphaValues, Energies, 'o-',AlphaValues, ExactEnergies,'r-')
plt.title('Energy and variance')
plt.ylabel('Dimensionless energy')
plt.subplot(2, 1, 2)
plt.plot(AlphaValues, Variances, '.-',AlphaValues, ExactVariance,'r-')
plt.xlabel(r'$\alpha$', fontsize=15)
plt.ylabel('Variance')
save_fig("VMCHarmonic")
plt.show()
#nice printout with Pandas
import pandas as pd
from pandas import DataFrame
data ={'Alpha':AlphaValues, 'Energy':Energies,'Exact Energy':ExactEnergies,'Variance':Variances,'Exact Variance':ExactVariance,}
frame = pd.DataFrame(data)
print(frame)

For α = 1 we have the exact eigenpairs, as can be deduced from the table
here. With ω = 1, the exact energy is 1/2 a.u. with zero variance, as it should.
We see also that our computed variance follows rather well the exact variance.
Increasing the number of Monte Carlo cycles will improve our statistics (try to
increase the number of Monte Carlo cycles).

The fact that the variance is exactly equal to zero when α = 1 is that we
then have the exact wave function, and the action of the hamiltionan on the
wave function

Hψ = constant × ψ,
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yields just a constant. The integral which defines various expectation values
involving moments of the hamiltonian becomes then

⟨Hn⟩ =
∫
dRΨ∗

T (R)Hn(R)ΨT (R)∫
dRΨ∗

T (R)ΨT (R)
= constant×

∫
dRΨ∗

T (R)ΨT (R)∫
dRΨ∗

T (R)ΨT (R)
= constant.

This gives an important information: the exact wave function leads to
zero variance! As we will see later, many practitioners perform a minimization
on both the energy and the variance.
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