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Boltzmann Machines
Why use a generative model rather than the more well known discriminative
deep neural networks (DNN)?

• Discriminitave methods have several limitations: They are mainly super-
vised learning methods, thus requiring labeled data. And there are tasks
they cannot accomplish, like drawing new examples from an unknown
probability distribution.

• A generative model can learn to represent and sample from a probability
distribution. The core idea is to learn a parametric model of the probability
distribution from which the training data was drawn. As an example

1. A model for images could learn to draw new examples of cats and
dogs, given a training dataset of images of cats and dogs.

2. Generate a sample of an ordered or disordered Ising model phase,
having been given samples of such phases.

3. Model the trial function for Monte Carlo calculations

• Both use gradient-descent based learning procedures for minimizing cost
functions

• Energy based models don’t use backpropagation and automatic differenti-
ation for computing gradients, instead turning to Markov Chain Monte
Carlo methods.

• DNNs often have several hidden layers. A restricted Boltzmann machine
has only one hidden layer, however several RBMs can be stacked to make
up Deep Belief Networks, of which they constitute the building blocks.

History: The RBM was developed by amongst others Geoffrey Hinton, called by
some the "Godfather of Deep Learning", working with the University of Toronto
and Google.

A BM is what we would call an undirected probabilistic graphical model with
stochastic continuous or discrete units.

It is interpreted as a stochastic recurrent neural network where the state of
each unit(neurons/nodes) depends on the units it is connected to. The weights
in the network represent thus the strength of the interaction between various
units/nodes.

It turns into a Hopfield network if we choose deterministic rather than stochas-
tic units. In contrast to a Hopfield network, a BM is a so-called generative model.
It allows us to generate new samples from the learned distribution.
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A standard BM network is divided into a set of observable and visible units x̂
and a set of unknown hidden units/nodes ĥ.

Additionally there can be bias nodes for the hidden and visible layers. These
biases are normally set to 1.

BMs are stackable, meaning they cwe can train a BM which serves as input to
another BM. We can construct deep networks for learning complex PDFs. The
layers can be trained one after another, a feature which makes them popular in
deep learning

However, they are often hard to train. This leads to the introduction of
so-called restricted BMs, or RBMS. Here we take away all lateral connections
between nodes in the visible layer as well as connections between nodes in the
hidden layer. The network is illustrated in the figure below.

Hidden Layer 

Visible Layer ai(vi)

bμ(hμ)

WiμvihμInteractions 

The network
The network layers:

1. A function x that represents the visible layer, a vector of M elements
(nodes). This layer represents both what the RBM might be given as
training input, and what we want it to be able to reconstruct. This might
for example be the pixels of an image, the spin values of the Ising model,
or coefficients representing speech.

2. The function h represents the hidden, or latent, layer. A vector of N
elements (nodes). Also called "feature detectors".

The goal of the hidden layer is to increase the model’s expressive power. We
encode complex interactions between visible variables by introducing additional,
hidden variables that interact with visible degrees of freedom in a simple manner,
yet still reproduce the complex correlations between visible degrees in the data
once marginalized over (integrated out).
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Examples of this trick being employed in physics:

1. The Hubbard-Stratonovich transformation

2. The introduction of ghost fields in gauge theory

3. Shadow wave functions in Quantum Monte Carlo simulations

The network parameters, to be optimized/learned:

1. a represents the visible bias, a vector of same length as x.

2. b represents the hidden bias, a vector of same lenght as h.

3. W represents the interaction weights, a matrix of size M × N .

Joint distribution. The restricted Boltzmann machine is described by a
Boltzmann distribution

Prbm(x, h) = 1
Z

e− 1
T0

E(x,h), (1)

where Z is the normalization constant or partition function, defined as

Z =
∫ ∫

e− 1
T0

E(x,h)dxdh. (2)

It is common to ignore T0 by setting it to one.

Network Elements, the energy function. The function E(x, h) gives the
energy of a configuration (pair of vectors) (x, h). The lower the energy of a
configuration, the higher the probability of it. This function also depends on
the parameters a, b and W . Thus, when we adjust them during the learning
procedure, we are adjusting the energy function to best fit our problem.

Defining different types of RBMs. There are different variants of RBMs,
and the differences lie in the types of visible and hidden units we choose as
well as in the implementation of the energy function E(x, h). The connection
between the nodes in the two layers is given by the weights wij .

Binary-Binary RBM: RBMs were first developed using binary units in both
the visible and hidden layer. The corresponding energy function is defined as
follows:

E(x, h) = −
M∑
i

xiai −
N∑
j

bjhj −
M,N∑

i,j

xiwijhj , (3)

where the binary values taken on by the nodes are most commonly 0 and 1.
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Gaussian-Binary RBM: Another varient is the RBM where the visible units
are Gaussian while the hidden units remain binary:

E(x, h) =
M∑
i

(xi − ai)2

2σ2
i

−
N∑
j

bjhj −
M,N∑

i,j

xiwijhj

σ2
i

. (4)

1. RBMs are Useful when we model continuous data (i.e., we wish x to be
continuous)

2. Requires a smaller learning rate, since there’s no upper bound to the value
a component might take in the reconstruction

Other types of units include:

1. Softmax and multinomial units

2. Gaussian visible and hidden units

3. Binomial units

4. Rectified linear units

Cost function. When working with a training dataset, the most common
training approach is maximizing the log-likelihood of the training data. The
log likelihood characterizes the log-probability of generating the observed data
using our generative model. Using this method our cost function is chosen
as the negative log-likelihood. The learning then consists of trying to find
parameters that maximize the probability of the dataset, and is known as
Maximum Likelihood Estimation (MLE). Denoting the parameters as θ =
a1, ..., aM , b1, ..., bN , w11, ..., wMN , the log-likelihood is given by

L({θi}) = ⟨logPθ(x)⟩data (5)
= −⟨E(x; {θi})⟩data − logZ({θi}), (6)

where we used that the normalization constant does not depend on the data,
⟨logZ({θi})⟩ = logZ({θi}) Our cost function is the negative log-likelihood,
C({θi}) = −L({θi})

Optimization / Training. The training procedure of choice often is Stochastic
Gradient Descent (SGD). It consists of a series of iterations where we update
the parameters according to the equation

θk+1 = θk − η∇C(θk) (7)

at each k-th iteration. There are a range of variants of the algorithm which
aim at making the learning rate η more adaptive so the method might be more
efficient while remaining stable.
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We now need the gradient of the cost function in order to minimize it. We
find that

∂C({θi})
∂θi

= ⟨∂E(x; θi)
∂θi

⟩data + ∂logZ({θi})
∂θi

(8)

= ⟨Oi(x)⟩data − ⟨Oi(x)⟩model, (9)

where in order to simplify notation we defined the "operator"

Oi(x) = ∂E(x; θi)
∂θi

, (10)

and used the statistical mechanics relationship between expectation values and
the log-partition function:

⟨Oi(x)⟩model = TrPθ(x)Oi(x) = −∂logZ({θi})
∂θi

. (11)

The data-dependent term in the gradient is known as the positive phase of
the gradient, while the model-dependent term is known as the negative phase of
the gradient. The aim of the training is to lower the energy of configurations
that are near observed data points (increasing their probability), and raising the
energy of configurations that are far from observed data points (decreasing their
probability).

The gradient of the negative log-likelihood cost function of a Binary-Binary
RBM is then

∂C(wij , ai, bj)
∂wij

=⟨xihj⟩data − ⟨xihj⟩model (12)

∂C(wij , ai, bj)
∂aij

=⟨xi⟩data − ⟨xi⟩model (13)

∂C(wij , ai, bj)
∂bij

=⟨hi⟩data − ⟨hi⟩model. (14)

(15)

To get the expectation values with respect to the data, we set the visible units
to each of the observed samples in the training data, then update the hidden
units according to the conditional probability found before. We then average
over all samples in the training data to calculate expectation values with respect
to the data.

Kullback-Leibler relative entropy. When the goal of the training is to
approximate a probability distribution, as it is in generative modeling, another
relevant measure is the Kullback-Leibler divergence, also known as the
relative entropy or Shannon entropy. It is a non-symmetric measure of the
dissimilarity between two probability density functions p and q. If p is the
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unkown probability which we approximate with q, we can measure the difference
by

KL(p||q) =
∫ ∞

−∞
p(x) log p(x)

q(x)dx. (16)

Thus, the Kullback-Leibler divergence between the distribution of the training
data f(x) and the model distribution p(x|θ) is

KL(f(x)||p(x|θ)) =
∫ ∞

−∞
f(x) log f(x)

p(x|θ)dx (17)

=
∫ ∞

−∞
f(x) log f(x)dx −

∫ ∞

−∞
f(x) log p(x|θ)dx (18)

=⟨log f(x)⟩f(x) − ⟨log p(x|θ)⟩f(x) (19)
=⟨log f(x)⟩data + ⟨E(x)⟩data + log Z (20)
=⟨log f(x)⟩data + CLL. (21)

The first term is constant with respect to θ since f(x) is independent of
θ. Thus the Kullback-Leibler Divergence is minimal when the second term is
minimal. The second term is the log-likelihood cost function, hence minimizing
the Kullback-Leibler divergence is equivalent to maximizing the log-likelihood.

To further understand generative models it is useful to study the gradient
of the cost function which is needed in order to minimize it using methods like
stochastic gradient descent.

The partition function is the generating function of expectation values, in
particular there are mathematical relationships between expectation values and
the log-partition function. In this case we have

⟨∂E(x; θi)
∂θi

⟩model =
∫

p(x|θ)∂E(x; θi)
∂θi

dx = −∂ log Z(θi)
∂θi

. (22)

Here ⟨·⟩model is the expectation value over the model probability distribution
p(x|θ).

Setting up for gradient descent calculations
Using the previous relationship we can express the gradient of the cost function
as

∂CLL

∂θi
=⟨∂E(x; θi)

∂θi
⟩data + ∂ log Z(θi)

∂θi
(23)

=⟨∂E(x; θi)
∂θi

⟩data − ⟨∂E(x; θi)
∂θi

⟩model (24)

(25)

7



This expression shows that the gradient of the log-likelihood cost function is a
difference of moments, with one calculated from the data and one calculated
from the model. The data-dependent term is called the positive phase and the
model-dependent term is called the negative phase of the gradient. We see now
that minimizing the cost function results in lowering the energy of configurations
x near points in the training data and increasing the energy of configurations not
observed in the training data. That means we increase the model’s probability
of configurations similar to those in the training data.

The gradient of the cost function also demonstrates why gradients of unsu-
pervised, generative models must be computed differently from for those of for
example FNNs. While the data-dependent expectation value is easily calculated
based on the samples xi in the training data, we must sample from the model in
order to generate samples from which to caclulate the model-dependent term.
We sample from the model by using MCMC-based methods. We can not sample
from the model directly because the partition function Z is generally intractable.

As in supervised machine learning problems, the goal is also here to perform
well on unseen data, that is to have good generalization from the training data.
The distribution f(x) we approximate is not the true distribution we wish to
estimate, it is limited to the training data. Hence, in unsupervised training as
well it is important to prevent overfitting to the training data. Thus it is common
to add regularizers to the cost function in the same manner as we discussed for
say linear regression.

Mathematical details. Because we are restricted to potential functions which
are positive it is convenient to express them as exponentials, so that

ϕC(xC) = e−EC(xC ) (26)

where E(xC) is called an energy function, and the exponential representation
is the Boltzmann distribution. The joint distribution is defined as the product of
potentials.

The joint distribution of the random variables is then

p(x) = 1
Z

∏
C

ϕC(xC)

= 1
Z

∏
C

e−EC(xC )

= 1
Z

e−
∑

C
EC(xC )

= 1
Z

e−E(x). (27)

pBM (x,h) = 1
ZBM

e− 1
T EBM (x,h), (28)
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with the partition function

ZBM =
∫ ∫

e− 1
T EBM (x̃,h̃)dx̃dh̃. (29)

T is a physics-inspired parameter named temperature and will be assumed
to be 1 unless otherwise stated. The energy function of the Boltzmann machine
determines the interactions between the nodes and is defined

EBM (x,h) = −
M,K∑

i,k

ak
i αk

i (xi) −
N,L∑
j,l

bl
jβl

j(hj) −
M,N,K,L∑

i,j,k,l

αk
i (xi)wkl

ij βl
j(hj)

−
M,M,K∑

i,m=i+1,k

αk
i (xi)vk

imαk
m(xm) −

N,N,L∑
j,n=j+1,l

βl
j(hj)ul

jnβl
n(hn). (30)

Here αk
i (xi) and βl

j(hj) are one-dimensional transfer functions or mappings
from the given input value to the desired feature value. They can be arbitrary
functions of the input variables and are independent of the parameterization
(parameters referring to weight and biases), meaning they are not affected by
training of the model. The indices k and l indicate that there can be multiple
transfer functions per variable. Furthermore, ak

i and bl
j are the visible and hidden

bias. wkl
ij are weights of the inter-layer connection terms which connect visible

and hidden units. vk
im and ul

jn are weights of the intra-layer connection terms
which connect the visible units to each other and the hidden units to each other,
respectively.

We remove the intra-layer connections by setting vim and ujn to zero. The
expression for the energy of the RBM is then

ERBM (x,h) = −
M,K∑

i,k

ak
i αk

i (xi) −
N,L∑
j,l

bl
jβl

j(hj) −
M,N,K,L∑

i,j,k,l

αk
i (xi)wkl

ij βl
j(hj).

(31)
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resulting in

PRBM (x) =
∫

PRBM (x, h̃)dh̃

= 1
ZRBM

∫
e−ERBM (x,h̃)dh̃

= 1
ZRBM

∫
e

∑
i,k

ak
i αk

i (xi)+
∑

j,l
bl

jβl
j(h̃j)+

∑
i,j,k,l

αk
i (xi)wkl

ij βl
j(h̃j)

dh̃

= 1
ZRBM

e

∑
i,k

ak
i αk

i (xi)
∫ N∏

j

e

∑
l

bl
jβl

j(h̃j)+
∑

i,k,l
αk

i (xi)wkl
ij βl

j(h̃j)
dh̃

= 1
ZRBM

e

∑
i,k

ak
i αk

i (xi)
(∫

e

∑
l

bl
1βl

1(h̃1)+
∑

i,k,l
αk

i (xi)wkl
i1 βl

1(h̃1)
dh̃1

×
∫

e

∑
l

bl
2βl

2(h̃2)+
∑

i,k,l
αk

i (xi)wkl
i2 βl

2(h̃2)
dh̃2

× ...

×
∫

e

∑
l

bl
N βl

N (h̃N )+
∑

i,k,l
αk

i (xi)wkl
iN βl

N (h̃N )
dh̃N

)
= 1

ZRBM
e

∑
i,k

ak
i αk

i (xi)
N∏
j

∫
e

∑
l

bl
jβl

j(h̃j)+
∑

i,k,l
αk

i (xi)wkl
ij βl

j(h̃j)
dh̃j

(32)

Similarly

PRBM (h) = 1
ZRBM

∫
e−ERBM (x̃,h)dx̃

= 1
ZRBM

e

∑
j,l

bl
jβl

j(hj)
M∏
i

∫
e

∑
k

ak
i αk

i (x̃i)+
∑

j,k,l
αk

i (x̃i)wkl
ij βl

j(hj)
dx̃i

(33)

Using Bayes theorem

PRBM (h|x) =PRBM (x,h)
PRBM (x)

=
1

ZRBM
e

∑
i,k

ak
i αk

i (xi)+
∑

j,l
bl

jβl
j(hj)+

∑
i,j,k,l

αk
i (xi)wkl

ij βl
j(hj)

1
ZRBM

e

∑
i,k

ak
i

αk
i

(xi) ∏N
j

∫
e

∑
l

bl
j
βl

j
(h̃j)+

∑
i,k,l

αk
i

(xi)wkl
ij

βl
j
(h̃j)

dh̃j

=
N∏
j

e

∑
l

bl
jβl

j(hj)+
∑

i,k,l
αk

i (xi)wkl
ij βl

j(hj)∫
e

∑
l

bl
j
βl

j
(h̃j)+

∑
i,k,l

αk
i

(xi)wkl
ij

βl
j
(h̃j)

dh̃j

(34)

Similarly

10



PRBM (x|h) =PRBM (x,h)
PRBM (h)

=
M∏
i

e

∑
k

ak
i αk

i (xi)+
∑

j,k,l
αk

i (xi)wkl
ij βl

j(hj)∫
e

∑
k

ak
i

αk
i

(x̃i)+
∑

j,k,l
αk

i
(x̃i)wkl

ij
βl

j
(hj)

dx̃i

(35)

The original RBM had binary visible and hidden nodes. They were showned
to be universal approximators of discrete distributions. It was also shown that
adding hidden units yields strictly improved modelling power. The common
choice of binary values are 0 and 1. However, in some physics applications, -1
and 1 might be a more natural choice. We will here use 0 and 1.

EBB(x, h) = −
M∑
i

xiai −
N∑
j

bjhj −
M,N∑

i,j

xiwijhj . (36)

pBB(x,h) = 1
ZBB

e

∑M

i
aixi+

∑N

j
bjhj+

∑M,N

ij
xiwijhj (37)

= 1
ZBB

ex
T a+bT h+xT Wh (38)

with the partition function

ZBB =
∑
x,h

ex
T a+bT h+xT Wh. (39)

Marginal Probability Density Functions. In order to find the probability
of any configuration of the visible units we derive the marginal probability density
function.
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pBB(x) =
∑
h

pBB(x,h) (40)

= 1
ZBB

∑
h

ex
T a+bT h+xT Wh

= 1
ZBB

ex
T a

∑
h

e

∑N

j
(bj+xT w∗j)hj

= 1
ZBB

ex
T a

∑
h

N∏
j

e(bj+xT w∗j)hj

= 1
ZBB

ex
T a

( ∑
h1

e(b1+xT w∗1)h1 ×
∑
h2

e(b2+xT w∗2)h2×

... ×
∑
h2

e(bN +xT w∗N )hN

)

= 1
ZBB

ex
T a

N∏
j

∑
hj

e(bj+xT w∗j)hj

= 1
ZBB

ex
T a

N∏
j

(1 + ebj+xT w∗j ). (41)

A similar derivation yields the marginal probability of the hidden units

pBB(h) = 1
ZBB

eb
T h

M∏
i

(1 + eai+wT
i∗h). (42)

Conditional Probability Density Functions. We derive the probability of
the hidden units given the visible units using Bayes’ rule
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pBB(h|x) =pBB(x,h)
pBB(x)

=
1

ZBB
ex

T a+bT h+xT Wh

1
ZBB

exT a
∏N

j (1 + ebj+xT w∗j )

= ex
T ae

∑N

j
(bj+xT w∗j)hj

exT a
∏N

j (1 + ebj+xT w∗j )

=
N∏
j

e(bj+xT w∗j)hj

1 + ebj+xT w∗j

=
N∏
j

pBB(hj |x). (43)

From this we find the probability of a hidden unit being "on" or "off":

pBB(hj = 1|x) = e(bj+xT w∗j)hj

1 + ebj+xT w∗j
(44)

= e(bj+xT w∗j)

1 + ebj+xT w∗j
(45)

= 1
1 + e−(bj+xT w∗j) , (46)

and

pBB(hj = 0|x) = 1
1 + ebj+xT w∗j

. (47)

Similarly we have that the conditional probability of the visible units given
the hidden are

pBB(x|h) =
M∏
i

e(ai+wT
i∗h)xi

1 + eai+wT
i∗h

(48)

=
M∏
i

pBB(xi|h). (49)

pBB(xi = 1|h) = 1
1 + e−(ai+wT

i∗h) (50)

pBB(xi = 0|h) = 1
1 + eai+wT

i∗h
. (51)
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Gaussian-Binary Restricted Boltzmann Machines. Inserting into the
expression for ERBM (x,h) in equation results in the energy

EGB(x,h) =
M∑
i

(xi − ai)2

2σ2
i

−
N∑
j

bjhj −
M,N∑

ij

xiwijhj

σ2
i

=||x − a

2σ ||2 − bTh − ( x

σ2 )TWh. (52)

Joint Probability Density Function.

pGB(x,h) = 1
ZGB

e−|| x−a
2σ ||2+bT h+( x

σ2 )T Wh

= 1
ZGB

e
−

∑M

i

(xi−ai)2

2σ2
i

+
∑N

j
bjhj+

∑M,N

ij

xiwij hj

σ2
i

= 1
ZGB

M,N∏
ij

e
− (xi−ai)2

2σ2
i

+bjhj+
xiwij hj

σ2
i , (53)

with the partition function given by

ZGB =
∫ H̃∑

h̃

e−|| x̃−a
2σ ||2+bT h̃+( x̃

σ2 )T Wh̃dx̃. (54)

Marginal Probability Density Functions. We proceed to find the marginal
probability densitites of the Gaussian-binary RBM. We first marginalize over
the binary hidden units to find pGB(x)

pGB(x) =
H̃∑
h̃

pGB(x, h̃)

= 1
ZGB

H̃∑
h̃

e−|| x−a
2σ ||2+bT h̃+( x

σ2 )T Wh̃

= 1
ZGB

e−|| x−a
2σ ||2

N∏
j

(1 + ebj+( x
σ2 )T w∗j ). (55)

We next marginalize over the visible units. This is the first time we marginal-
ize over continuous values. We rewrite the exponential factor dependent on x as
a Gaussian function before we integrate in the last step.
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pGB(h) =
∫

pGB(x̃,h)dx̃

= 1
ZGB

∫
e−|| x̃−a

2σ ||2+bT h+( x̃
σ2 )T Whdx̃

= 1
ZGB

eb
T h

∫ M∏
i

e
− (x̃i−ai)2

2σ2
i

+
x̃iw

T
i∗h

σ2
i dx̃

= 1
ZGB

eb
T h

(∫
e

− (x̃1−a1)2

2σ2
1

+
x̃1wT

1∗h

σ2
1 dx̃1

×
∫

e
− (x̃2−a2)2

2σ2
2

+
x̃2wT

2∗h

σ2
2 dx̃2

× ...

×
∫

e
− (x̃M −aM )2

2σ2
M

+
x̃M wT

M∗h

σ2
M dx̃M

)
= 1

ZGB
eb

T h
M∏
i

∫
e

−
(x̃i−ai)2−2x̃iw

T
i∗h

2σ2
i dx̃i

= 1
ZGB

eb
T h

M∏
i

∫
e

−
x̃2

i
−2x̃i(ai+x̃iw

T
i∗h)+a2

i
2σ2

i dx̃i

= 1
ZGB

eb
T h

M∏
i

∫
e

−
x̃2

i
−2x̃i(ai+wT

i∗h)+(ai+wT
i∗h)2−(ai+wT

i∗h)2+a2
i

2σ2
i dx̃i

= 1
ZGB

eb
T h

M∏
i

∫
e

−
(x̃i−(ai+wT

i∗h))2−a2
i

−2aiw
T
i∗h−(wT

i∗h)2+a2
i

2σ2
i dx̃i

= 1
ZGB

eb
T h

M∏
i

e

2aiw
T
i∗h+(wT

i∗h)2

2σ2
i

∫
e

−
(x̃i−ai−wT

i∗h)2

2σ2
i dx̃i

= 1
ZGB

eb
T h

M∏
i

√
2πσ2

i e

2aiw
T
i∗h+(wT

i∗h)2

2σ2
i . (56)
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Conditional Probability Density Functions. We finish by deriving the
conditional probabilities.

pGB(h|x) =pGB(x,h)
pGB(x)

=
1

ZGB
e−|| x−a

2σ ||2+bT h+( x
σ2 )T Wh

1
ZGB

e−|| x−a
2σ ||2 ∏N

j (1 + ebj+( x
σ2 )T w∗j )

=
N∏
j

e(bj+( x
σ2 )T w∗j)hj

1 + ebj+( x
σ2 )T w∗j

=
N∏
j

pGB(hj |x). (57)

The conditional probability of a binary hidden unit hj being on or off again
takes the form of a sigmoid function

pGB(hj = 1|x) = ebj+( x
σ2 )T w∗j

1 + ebj+( x
σ2 )T w∗j

= 1
1 + e−bj−( x

σ2 )T w∗j
(58)

pGB(hj = 0|x) = 1
1 + ebj+( x

σ2 )T w∗j
. (59)

The conditional probability of the continuous x now has another form,
however.
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pGB(x|h) =pGB(x,h)
pGB(h)

=
1

ZGB
e−|| x−a

2σ ||2+bT h+( x
σ2 )T Wh

1
ZGB

ebT h
∏M

i

√
2πσ2

i e

2aiw
T
i∗h+(wT

i∗h)2

2σ2
i

=
M∏
i

1√
2πσ2

i

e
− (xi−ai)2

2σ2
i

+
xiw

T
i∗h

2σ2
i

e

2aiw
T
i∗h+(wT

i∗h)2

2σ2
i

=
M∏
i

1√
2πσ2

i

e
−

x2
i

−2aixi+a2
i

−2xiw
T
i∗h

2σ2
i

e

2aiw
T
i∗h+(wT

i∗h)2

2σ2
i

=
M∏
i

1√
2πσ2

i

e
−

x2
i

−2aixi+a2
i

−2xiw
T
i∗h+2aiw

T
i∗h+(wT

i∗h)2

2σ2
i

=
M∏
i

1√
2πσ2

i

e
−

(xi−bi−wT
i∗h)2

2σ2
i

=
M∏
i

N (xi|bi + wT
i∗h, σ2

i ) (60)

⇒ pGB(xi|h) =N (xi|bi + wT
i∗h, σ2

i ). (61)

The form of these conditional probabilities explains the name "Gaussian" and
the form of the Gaussian-binary energy function. We see that the conditional
probability of xi given h is a normal distribution with mean bi + wT

i∗h and
variance σ2

i .

Neural Quantum States
The wavefunction should be a probability amplitude depending on x. The RBM
model is given by the joint distribution of x and h

Frbm(x, h) = 1
Z

e− 1
T0

E(x,h) (62)

To find the marginal distribution of x we set:

Frbm(x) =
∑

h

Frbm(x, h) (63)

= 1
Z

∑
h

e−E(x,h) (64)
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Now this is what we use to represent the wave function, calling it a neural-
network quantum state (NQS)

Ψ(X) = Frbm(x) (65)

= 1
Z

∑
h

e−E(x,h) (66)

= 1
Z

∑
{hj}

e
−

∑M

i

(xi−ai)2

2σ2 +
∑N

j
bjhj+

∑M,N

i,j

xiwij hj

σ2 (67)

= 1
Z

e−
∑M

i

(xi−ai)2

2σ2

N∏
j

(1 + ebj+
∑M

i

xiwij

σ2 ) (68)

(69)

The above wavefunction is the most general one because it allows for complex
valued wavefunctions. However it fundamentally changes the probabilistic foun-
dation of the RBM, because what is usually a probability in the RBM framework
is now a an amplitude. This means that a lot of the theoretical framework usually
used to interpret the model, i.e. graphical models, conditional probabilities, and
Markov random fields, breaks down. If we assume the wavefunction to be postive
definite, however, we can use the RBM to represent the squared wavefunction,
and thereby a probability. This also makes it possible to sample from the model
using Gibbs sampling, because we can obtain the conditional probabilities.
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|Ψ(X)|2 = Frbm(X) (70)

⇒ Ψ(X) =
√

Frbm(X) (71)

= 1√
Z

√∑
{hj}

e−E(X,h) (72)

= 1√
Z

√√√√∑
{hj}

e
−

∑M

i

(Xi−ai)2

2σ2 +
∑N

j
bjhj+

∑M,N

i,j

Xiwij hj

σ2 (73)

= 1√
Z

e−
∑M

i

(Xi−ai)2

4σ2

√√√√∑
{hj}

N∏
j

ebjhj+
∑M

i

Xiwij hj

σ2 (74)

= 1√
Z

e−
∑M

i

(Xi−ai)2

4σ2

√√√√ N∏
j

∑
hj

ebjhj+
∑M

i

Xiwij hj

σ2 (75)

= 1√
Z

e−
∑M

i

(Xi−ai)2

4σ2

N∏
j

√
e0 + ebj+

∑M

i

Xiwij

σ2 (76)

= 1√
Z

e−
∑M

i

(Xi−ai)2

4σ2

N∏
j

√
1 + ebj+

∑M

i

Xiwij

σ2 (77)

(78)

Cost function. This is where we deviate from what is common in machine
learning. Rather than defining a cost function based on some dataset, our cost
function is the energy of the quantum mechanical system. From the variational
principle we know that minizing this energy should lead to the ground state
wavefunction. As stated previously the local energy is given by

EL = 1
ΨĤΨ, (79)

and the gradient is

Gi = ∂⟨EL⟩
∂αi

= 2(⟨EL
1
Ψ

∂Ψ
∂αi

⟩ − ⟨EL⟩⟨ 1
Ψ

∂Ψ
∂αi

⟩), (80)

where αi = a1, ..., aM , b1, ..., bN , w11, ..., wMN .
We use that 1

Ψ
∂Ψ
∂αi

= ∂ ln Ψ
∂αi

, and find

ln Ψ(X) = − ln Z −
M∑
m

(Xm − am)2

2σ2 +
N∑
n

ln(1 + ebn+
∑M

i

Xiwin
σ2 ). (81)
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This gives

∂

∂am
ln Ψ = 1

σ2 (Xm − am) (82)

∂

∂bn
ln Ψ = 1

e−bn− 1
σ2

∑M

i
Xiwin + 1

(83)

∂

∂wmn
ln Ψ = Xm

σ2(e−bn− 1
σ2

∑M

i
Xiwin + 1)

. (84)

If Ψ =
√

Frbm we have

ln Ψ(X) = −1
2 ln Z −

M∑
m

(Xm − am)2

4σ2 + 1
2

N∑
n

ln(1 + ebn+
∑M

i

Xiwin
σ2 ), (85)

which results in

∂

∂am
ln Ψ = 1

2σ2 (Xm − am) (86)

∂

∂bn
ln Ψ = 1

2(e−bn− 1
σ2

∑M

i
Xiwin + 1)

(87)

∂

∂wmn
ln Ψ = Xm

2σ2(e−bn− 1
σ2

∑M

i
Xiwin + 1)

. (88)

Let us assume again that our Hamiltonian is

Ĥ =
P∑
p

(−1
2∇2

p + 1
2ω2r2

p) +
∑
p<q

1
rpq

, (89)

where the first summation term represents the standard harmonic oscillator
part and the latter the repulsive interaction between two electrons. Natural
units (ℏ = c = e = me = 1) are used, and P is the number of particles. This
gives us the following expression for the local energy (D being the number of
dimensions)
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EL = 1
ΨHΨ (90)

= 1
Ψ(

P∑
p

(−1
2∇2

p + 1
2ω2r2

p) +
∑
p<q

1
rpq

)Ψ (91)

= −1
2

1
Ψ

P∑
p

∇2
pΨ + 1

2ω2
P∑
p

r2
p +

∑
p<q

1
rpq

(92)

= −1
2

1
Ψ

P∑
p

D∑
d

∂2Ψ
∂x2

pd

+ 1
2ω2

P∑
p

r2
p +

∑
p<q

1
rpq

(93)

= 1
2

P∑
p

D∑
d

(−( ∂

∂xpd
ln Ψ)2 − ∂2

∂x2
pd

ln Ψ + ω2x2
pd) +

∑
p<q

1
rpq

. (94)

(95)

Letting each visible node in the Boltzmann machine represent one coordinate
of one particle, we obtain

EL = 1
2

M∑
m

(−( ∂

∂vm
ln Ψ)2 − ∂2

∂v2
m

ln Ψ + ω2v2
m) +

∑
p<q

1
rpq

, (96)

where we have that

∂

∂xm
ln Ψ = − 1

σ2 (xm − am) + 1
σ2

N∑
n

wmn

e−bn− 1
σ2

∑M

i
xiwin + 1

(97)

∂2

∂x2
m

ln Ψ = − 1
σ2 + 1

σ4

N∑
n

ω2
mn

ebn+ 1
σ2

∑M

i
xiwin

(ebn+ 1
σ2

∑M

i
xiwin + 1)2

. (98)

We now have all the expressions neeeded to calculate the gradient of the
expected local energy with respect to the RBM parameters ∂⟨EL⟩

∂αi
.

If we use Ψ =
√

Frbm we obtain

∂

∂xm
ln Ψ = − 1

2σ2 (xm − am) + 1
2σ2

N∑
n

wmn

e−bn− 1
σ2

∑M

i
xiwin + 1

(99)

∂2

∂x2
m

ln Ψ = − 1
2σ2 + 1

2σ4

N∑
n

ω2
mn

ebn+ 1
σ2

∑M

i
xiwin

(ebn+ 1
σ2

∑M

i
xiwin + 1)2

. (100)

The difference between this equation and the previous one is that we multiply
by a factor 1/2.

split
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Python version for the two non-interacting particles
# 2-electron VMC code for 2dim quantum dot with importance sampling
# Using gaussian rng for new positions and Metropolis- Hastings
# Added restricted boltzmann machine method for dealing with the wavefunction
# RBM code based heavily off of:
# https://github.com/CompPhysics/ComputationalPhysics2/tree/gh-pages/doc/Programs/BoltzmannMachines/MLcpp/src/CppCode/ob
from math import exp, sqrt
from random import random, seed, normalvariate
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from matplotlib import cm
from matplotlib.ticker import LinearLocator, FormatStrFormatter
import sys

# Trial wave function for the 2-electron quantum dot in two dims
def WaveFunction(r,a,b,w):

sigma=1.0
sig2 = sigma**2
Psi1 = 0.0
Psi2 = 1.0
Q = Qfac(r,b,w)

for iq in range(NumberParticles):
for ix in range(Dimension):

Psi1 += (r[iq,ix]-a[iq,ix])**2

for ih in range(NumberHidden):
Psi2 *= (1.0 + np.exp(Q[ih]))

Psi1 = np.exp(-Psi1/(2*sig2))

return Psi1*Psi2

# Local energy for the 2-electron quantum dot in two dims, using analytical local energy
def LocalEnergy(r,a,b,w):

sigma=1.0
sig2 = sigma**2
locenergy = 0.0

Q = Qfac(r,b,w)

for iq in range(NumberParticles):
for ix in range(Dimension):

sum1 = 0.0
sum2 = 0.0
for ih in range(NumberHidden):

sum1 += w[iq,ix,ih]/(1+np.exp(-Q[ih]))
sum2 += w[iq,ix,ih]**2 * np.exp(Q[ih]) / (1.0 + np.exp(Q[ih]))**2

dlnpsi1 = -(r[iq,ix] - a[iq,ix]) /sig2 + sum1/sig2
dlnpsi2 = -1/sig2 + sum2/sig2**2
locenergy += 0.5*(-dlnpsi1*dlnpsi1 - dlnpsi2 + r[iq,ix]**2)

if(interaction==True):
for iq1 in range(NumberParticles):

for iq2 in range(iq1):
distance = 0.0
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for ix in range(Dimension):
distance += (r[iq1,ix] - r[iq2,ix])**2

locenergy += 1/sqrt(distance)

return locenergy

# Derivate of wave function ansatz as function of variational parameters
def DerivativeWFansatz(r,a,b,w):

sigma=1.0
sig2 = sigma**2

Q = Qfac(r,b,w)

WfDer = np.empty((3,),dtype=object)
WfDer = [np.copy(a),np.copy(b),np.copy(w)]

WfDer[0] = (r-a)/sig2
WfDer[1] = 1 / (1 + np.exp(-Q))

for ih in range(NumberHidden):
WfDer[2][:,:,ih] = w[:,:,ih] / (sig2*(1+np.exp(-Q[ih])))

return WfDer

# Setting up the quantum force for the two-electron quantum dot, recall that it is a vector
def QuantumForce(r,a,b,w):

sigma=1.0
sig2 = sigma**2

qforce = np.zeros((NumberParticles,Dimension), np.double)
sum1 = np.zeros((NumberParticles,Dimension), np.double)

Q = Qfac(r,b,w)

for ih in range(NumberHidden):
sum1 += w[:,:,ih]/(1+np.exp(-Q[ih]))

qforce = 2*(-(r-a)/sig2 + sum1/sig2)

return qforce

def Qfac(r,b,w):
Q = np.zeros((NumberHidden), np.double)
temp = np.zeros((NumberHidden), np.double)

for ih in range(NumberHidden):
temp[ih] = (r*w[:,:,ih]).sum()

Q = b + temp

return Q

# Computing the derivative of the energy and the energy
def EnergyMinimization(a,b,w):

NumberMCcycles= 10000
# Parameters in the Fokker-Planck simulation of the quantum force
D = 0.5
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TimeStep = 0.05
# positions
PositionOld = np.zeros((NumberParticles,Dimension), np.double)
PositionNew = np.zeros((NumberParticles,Dimension), np.double)
# Quantum force
QuantumForceOld = np.zeros((NumberParticles,Dimension), np.double)
QuantumForceNew = np.zeros((NumberParticles,Dimension), np.double)

# seed for rng generator
seed()
energy = 0.0
DeltaE = 0.0

EnergyDer = np.empty((3,),dtype=object)
DeltaPsi = np.empty((3,),dtype=object)
DerivativePsiE = np.empty((3,),dtype=object)
EnergyDer = [np.copy(a),np.copy(b),np.copy(w)]
DeltaPsi = [np.copy(a),np.copy(b),np.copy(w)]
DerivativePsiE = [np.copy(a),np.copy(b),np.copy(w)]
for i in range(3): EnergyDer[i].fill(0.0)
for i in range(3): DeltaPsi[i].fill(0.0)
for i in range(3): DerivativePsiE[i].fill(0.0)

#Initial position
for i in range(NumberParticles):

for j in range(Dimension):
PositionOld[i,j] = normalvariate(0.0,1.0)*sqrt(TimeStep)

wfold = WaveFunction(PositionOld,a,b,w)
QuantumForceOld = QuantumForce(PositionOld,a,b,w)

#Loop over MC MCcycles
for MCcycle in range(NumberMCcycles):

#Trial position moving one particle at the time
for i in range(NumberParticles):

for j in range(Dimension):
PositionNew[i,j] = PositionOld[i,j]+normalvariate(0.0,1.0)*sqrt(TimeStep)+\

QuantumForceOld[i,j]*TimeStep*D
wfnew = WaveFunction(PositionNew,a,b,w)
QuantumForceNew = QuantumForce(PositionNew,a,b,w)

GreensFunction = 0.0
for j in range(Dimension):

GreensFunction += 0.5*(QuantumForceOld[i,j]+QuantumForceNew[i,j])*\
(D*TimeStep*0.5*(QuantumForceOld[i,j]-QuantumForceNew[i,j])-\
PositionNew[i,j]+PositionOld[i,j])

GreensFunction = exp(GreensFunction)
ProbabilityRatio = GreensFunction*wfnew**2/wfold**2
#Metropolis-Hastings test to see whether we accept the move
if random() <= ProbabilityRatio:

for j in range(Dimension):
PositionOld[i,j] = PositionNew[i,j]
QuantumForceOld[i,j] = QuantumForceNew[i,j]

wfold = wfnew
#print("wf new: ", wfnew)
#print("force on 1 new:", QuantumForceNew[0,:])
#print("pos of 1 new: ", PositionNew[0,:])
#print("force on 2 new:", QuantumForceNew[1,:])
#print("pos of 2 new: ", PositionNew[1,:])
DeltaE = LocalEnergy(PositionOld,a,b,w)
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DerPsi = DerivativeWFansatz(PositionOld,a,b,w)

DeltaPsi[0] += DerPsi[0]
DeltaPsi[1] += DerPsi[1]
DeltaPsi[2] += DerPsi[2]

energy += DeltaE

DerivativePsiE[0] += DerPsi[0]*DeltaE
DerivativePsiE[1] += DerPsi[1]*DeltaE
DerivativePsiE[2] += DerPsi[2]*DeltaE

# We calculate mean values
energy /= NumberMCcycles
DerivativePsiE[0] /= NumberMCcycles
DerivativePsiE[1] /= NumberMCcycles
DerivativePsiE[2] /= NumberMCcycles
DeltaPsi[0] /= NumberMCcycles
DeltaPsi[1] /= NumberMCcycles
DeltaPsi[2] /= NumberMCcycles
EnergyDer[0] = 2*(DerivativePsiE[0]-DeltaPsi[0]*energy)
EnergyDer[1] = 2*(DerivativePsiE[1]-DeltaPsi[1]*energy)
EnergyDer[2] = 2*(DerivativePsiE[2]-DeltaPsi[2]*energy)
return energy, EnergyDer

#Here starts the main program with variable declarations
NumberParticles = 2
Dimension = 2
NumberHidden = 2

interaction=False

# guess for parameters
a=np.random.normal(loc=0.0, scale=0.001, size=(NumberParticles,Dimension))
b=np.random.normal(loc=0.0, scale=0.001, size=(NumberHidden))
w=np.random.normal(loc=0.0, scale=0.001, size=(NumberParticles,Dimension,NumberHidden))
# Set up iteration using stochastic gradient method
Energy = 0
EDerivative = np.empty((3,),dtype=object)
EDerivative = [np.copy(a),np.copy(b),np.copy(w)]
# Learning rate eta, max iterations, need to change to adaptive learning rate
eta = 0.001
MaxIterations = 50
iter = 0
np.seterr(invalid='raise')
Energies = np.zeros(MaxIterations)
EnergyDerivatives1 = np.zeros(MaxIterations)
EnergyDerivatives2 = np.zeros(MaxIterations)

while iter < MaxIterations:
Energy, EDerivative = EnergyMinimization(a,b,w)
agradient = EDerivative[0]
bgradient = EDerivative[1]
wgradient = EDerivative[2]
a -= eta*agradient
b -= eta*bgradient
w -= eta*wgradient
Energies[iter] = Energy
print("Energy:",Energy)
#EnergyDerivatives1[iter] = EDerivative[0]
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#EnergyDerivatives2[iter] = EDerivative[1]
#EnergyDerivatives3[iter] = EDerivative[2]

iter += 1

#nice printout with Pandas
import pandas as pd
from pandas import DataFrame
pd.set_option('max_columns', 6)
data ={'Energy':Energies}#,'A Derivative':EnergyDerivatives1,'B Derivative':EnergyDerivatives2,'Weights Derivative':EnergyDerivatives3}

frame = pd.DataFrame(data)
print(frame)

26


