
Boltzmann machines and deep learning
and discussions of project 2

Morten Hjorth-Jensen Email morten.hjorth-jensen@fys.uio.no1,2

1Department of Physics and Center fo Computing in Science Education, University of Oslo, Oslo, Norway
2Department of Physics and Astronomy and Facility for Rare Ion Beams, Michigan State University, East Lansing, Michigan, USA

April 12

Plans for the week of April 8-12, 2024

1. Neural Networks and Boltzmann Machines

2. If time, start discussion on how to implement Slater determinants, see last
part of slides. This topic will be continued next week.

• Video of lecture

• Handwritten notes

Energy models
Last week we defined a domain X of stochastic variables X = {x0, x1, . . . , xn−1}
with a pertinent probability distribution

p(X) =
∏

xi∈X

p(xi),

where we have assumed that the random varaibles xi are all independent and
identically distributed (iid).

We will now assume that we can defined this function in terms of optimization
parameters Θ, which could be the biases and weights of deep network, and a set
of hidden variables we also assume to be random variables which also are iid.
The domain of these variables is H = {h0, h1, . . . , hm−1}.

© 1999-2024, Morten Hjorth-Jensen Email morten.hjorth-jensen@fys.uio.no. Released under
CC Attribution-NonCommercial 4.0 license

https://youtu.be/6X9OyQlBJWk
https://github.com/CompPhysics/ComputationalPhysics2/blob/gh-pages/doc/HandWrittenNotes/2024/NotesApril12.pdf

Probability model
We define a probability

p(xi, hj ;Θ) = f(xi, hj ;Θ)
Z(Θ) ,

where f(xi, hj ;Θ) is a function which we assume is larger or equal than zero
and obeys all properties required for a probability distribution and Z(Θ) is a
normalization constant. Inspired by statistical mechanics, we call it often for the
partition function. It is defined as (assuming that we have discrete probability
distributions)

Z(Θ) =
∑

xi∈X

∑
hj∈H

f(xi, hj ;Θ).

Marginal and conditional probabilities
We can in turn define the marginal probabilities

p(xi;Θ) =
∑

hj∈H f(xi, hj ;Θ)
Z(Θ) ,

and
p(hi;Θ) =

∑
xi∈X f(xi, hj ;Θ)

Z(Θ) .

Change of notation
Note the change to a vector notation. A variable like x represents now
a specific configuration. We can generate an infinity of such configurations.
The final partition function is then the sum over all such possible configurations,
that is

Z(Θ) =
∑

xi∈X

∑
hj∈H

f(xi, hj ;Θ),

changes to
Z(Θ) =

∑
x

∑
h

f(x,h;Θ).

If we have a binary set of variable xi and hj and M values of xi and N values
of hj we have in total 2M and 2N possible x and h configurations, respectively.

We see that even for the modest binary case, we can easily approach a number
of configuration which is not possible to deal with.

2

Optimization problem
At the end, we are not interested in the probabilities of the hidden variables.
The probability we thus want to optimize is

p(X;Θ) =
∏

xi∈X

p(xi;Θ) =
∏

xi∈X

(∑
hj∈H f(xi, hj ;Θ)

Z(Θ)

)
,

which we rewrite as

p(X;Θ) = 1
Z(Θ)

∏
xi∈X

 ∑
hj∈H

f(xi, hj ;Θ)

 .

Further simplifications
We simplify further by rewriting it as

p(X;Θ) = 1
Z(Θ)

∏
xi∈X

f(xi;Θ),

where we used p(xi;Θ) =
∑

hj∈H f(xi, hj ;Θ). The optimization problem is
then

arg max
Θ∈Rp

p(X;Θ).

Optimizing the logarithm instead
Computing the derivatives with respect to the parameters Θ is easier (and
equivalent) if we compute the logarithm of the probability. We will thus optimize

arg max
Θ∈Rp

log p(X;Θ),

which leads to
∇Θ log p(X;Θ) = 0.

Expression for the gradients
This leads to the following equation

∇Θ log p(X;Θ) = ∇Θ

(∑
xi∈X

log f(xi;Θ)
)

− ∇Θ logZ(Θ) = 0.

The first term is called the positive phase and we assume that we have a
model for the function f from which we can sample values. Below we will develop
an explicit model for this. The second term is called the negative phase and is
the one which leads to more difficulties.

3

The derivative of the partition function
The partition function, defined above as

Z(Θ) =
∑

xi∈X

∑
hj∈H

f(xi, hj ;Θ),

is in general the most problematic term. In principle both x and h can span large
degrees of freedom, if not even infinitely many ones, and computing the partition
function itself is often not desirable or even feasible. The above derivative of
the partition function can however be written in terms of an expectation value
which is in turn evaluated using Monte Carlo sampling and the theory of Markov
chains, popularly shortened to MCMC (or just MC2).

Explicit expression for the derivative
We can rewrite

∇Θ logZ(Θ) = ∇ΘZ(Θ)
Z(Θ) ,

which reads in more detail

∇Θ logZ(Θ) =
∇Θ

∑
xi∈X f(xi;Θ)
Z(Θ) .

We can rewrite the function f (we have assumed that is larger or equal than
zero) as f = exp log f . We can then reqrite the last equation as

∇Θ logZ(Θ) =
∑

xi∈X ∇Θ exp log f(xi;Θ)
Z(Θ) .

Final expression
Taking the derivative gives us

∇Θ logZ(Θ) =
∑

xi∈X f(xi;Θ)∇Θ log f(xi;Θ)
Z(Θ) ,

which is the expectation value of log f

∇Θ logZ(Θ) =
∑

xi∈X

p(xi;Θ)∇Θ log f(xi;Θ),

that is
∇Θ logZ(Θ) = E(log f(xi;Θ)).

This quantity is evaluated using Monte Carlo sampling, with Gibbs sampling
as the standard sampling rule. Before we discuss the explicit algorithms, we
need to remind ourselves about Markov chains and sampling rules like the
Metropolis-Hastings algorithm and Gibbs sampling.

4

Introducing the energy model
As we will see below, a typical Boltzmann machines employs a probability
distribution

p(x,h;Θ) = f(x,h;Θ)
Z(Θ) ,

where f(x,h;Θ) is given by a so-called energy model. If we assume that the
random variables xi and hj take binary values only, for example xi, hj = {0, 1},
we have a so-called binary-binary model where

f(x,h;Θ) = −E(x,h;Θ) =
∑

xi∈X

xiai +
∑

hj∈H

bjhj +
∑

xi∈X,hj∈H

xiwijhj ,

where the set of parameters are given by the biases and weights Θ = {a, b,W }.
Note the vector notation instead of xi and hj for f . The vectors x and h
represent a specific instance of stochastic variables xi and hj . These arrangements
of x and h lead to a specific energy configuration.

More compact notation
With the above definition we can write the probability as

p(x,h;Θ) = exp (aTx + bTh + xTWh)
Z(Θ) ,

where the biases a and h and the weights defined by the matrix W are the
parameters we need to optimize.

Anticipating results to be derived
Since the binary-binary energy model is linear in the parameters ai, bj and wij ,
it is easy to see that the derivatives with respect to the various optimization
parameters yield expressions used in the evaluation of gradients like

∂E(x,h;Θ)
∂wij

= −xihj ,

and
∂E(x,h;Θ)

∂ai
= −xi,

and
∂E(x,h;Θ)

∂bj
= −hj .

5

Boltzmann Machines, marginal and conditional probabilities
A generative model can learn to represent and sample from a probability distribu-
tion. The core idea is to learn a parametric model of the probability distribution
from which the training data was drawn. As an example

1. A model for images could learn to draw new examples of cats and dogs,
given a training dataset of images of cats and dogs.

2. Generate a sample of an ordered or disordered Ising model phase, having
been given samples of such phases.

3. Model the trial function for Monte Carlo calculations

Generative and discriminative models
Generative and discriminative models use both gradient-descent based learning
procedures for minimizing cost functions

However, in energy based models we don’t use backpropagation and automatic
differentiation for computing gradients, instead we turn to Markov Chain Monte
Carlo methods.

A typical deep neural network has several hidden layers. A restricted Boltz-
mann machine has normally one hidden layer, however several RBMs can be
stacked to make up deep Belief Networks, of which they constitute the building
blocks.

Basics of the Boltzmann machine
A BM is what we would call an undirected probabilistic graphical model with

stochastic continuous or discrete units.

It is interpreted as a stochastic recurrent neural network where the state of
each unit(neurons/nodes) depends on the units it is connected to. The weights
in the network represent thus the strength of the interaction between various
units/nodes.

More about the basics
A standard BM network is divided into a set of observable and visible units x

and a set of unknown hidden units/nodes h.

Additionally there can be bias nodes for the hidden and visible layers. These
biases are normally set to 1.

BMs are stackable, meaning they cwe can train a BM which serves as input to
another BM. We can construct deep networks for learning complex PDFs. The
layers can be trained one after another, a feature which makes them popular in
deep learning

6

Difficult to train
However, they are often hard to train. This leads to the introduction of so-called
restricted BMs, or RBMS. Here we take away all lateral connections between
nodes in the visible layer as well as connections between nodes in the hidden
layer.

The network layers
1. A function x that represents the visible layer, a vector of M elements

(nodes). This layer represents both what the RBM might be given as
training input, and what we want it to be able to reconstruct. This might
for example be the pixels of an image, the spin values of the Ising model,
or coefficients representing speech.

2. The function h represents the hidden, or latent, layer. A vector of N
elements (nodes). Also called "feature detectors".

Goal of hidden layer
The goal of the hidden layer is to increase the model’s expressive power. We
encode complex interactions between visible variables by introducing additional,
hidden variables that interact with visible degrees of freedom in a simple manner,
yet still reproduce the complex correlations between visible degrees in the data
once marginalized over (integrated out).

The parameters
The network parameters, to be optimized/learned:

1. a represents the visible bias, a vector of same length M as x.

2. b represents the hidden bias, a vector of same length N as h.

3. W represents the interaction weights, a matrix of size M ×N .

Note that we have specified the lengths of bmx and h. These lengths define the
number of visible and hidden units, respectively.

Joint distribution
The restricted Boltzmann machine is described by a Boltzmann distribution

Prbm(x,h,Θ) = 1
Z(Θ) exp −(E(x,h,Θ)),

7

where Z is the normalization constant or partition function discussed earlier and
defined as

Z(Θ) =
∫ ∫

exp −E(x,h,Θ)dxdh.

It is common to set the temperature T to one. It is omitted in the equations
above. The energy is thus a dimensionless function.

Network Elements, the energy function
The function E(x,h,Θ) gives the energy of a configuration (pair of vectors)
(x,h). The lower the energy of a configuration, the higher the probability of
it. This function also depends on the parameters a, b and W . Thus, when we
adjust them during the learning procedure, we are adjusting the energy function
to best fit our problem.

Defining different types of RBMs
There are different variants of RBMs, and the differences lie in the types of
visible and hidden units we choose as well as in the implementation of the energy
function E(x,h,Θ). The connection between the nodes in the two layers is
given by the weights wij .

Binary-Binary RBM: RBMs were first developed using binary units in both
the visible and hidden layer. The corresponding energy function is defined as
follows:

E(x,h,Θ) = −
M∑
i

xiai −
N∑
j

bjhj −
M,N∑

i,j

xiwijhj ,

where the binary values taken on by the nodes are most commonly 0 and 1.

Gaussian-binary RBM
Another varient is the RBM where the visible units are Gaussian while the
hidden units remain binary:

E(x,h,Θ) =
M∑
i

(xi − ai)2

2σ2
i

−
N∑
j

bjhj −
M,N∑

i,j

xiwijhj

σ2
i

.

This type of RBMs are useful when we model continuous data (i.e., we wish
x to be continuous). The paramater σ2

i is meant to represent a variance and is
foten just set to one.

8

Cost function
When working with a training dataset, the most common training approach is
maximizing the log-likelihood of the training data. The log likelihood charac-
terizes the log-probability of generating the observed data using our generative
model. Using this method our cost function is chosen as the negative log-
likelihood. The learning then consists of trying to find parameters that maximize
the probability of the dataset, and is known as Maximum Likelihood Estimation
(MLE).

Denoting the parameters as Θ = a1, ..., aM , b1, ..., bN , w11, ..., wMN , the log-
likelihood is given by

L({Θi}) = ⟨logPθ(x)⟩data

= −⟨E(x; {Θi})⟩data − logZ({Θi}),

where we used that the normalization constant does not depend on the data,
⟨logZ({Θi})⟩ = logZ({Θi}) Our cost function is the negative log-likelihood,
C({Θi}) = −L({Θi})

Optimization / Training
The training procedure of choice often is Stochastic Gradient Descent (SGD). It
consists of a series of iterations where we update the parameters according to
the equation

Θk+1 = Θk − η∇C(Θk)

at each k-th iteration. There are a range of variants of the algorithm which
aim at making the learning rate η more adaptive so the method might be more
efficient while remaining stable.

Gradients
We now need the gradient of the cost function in order to minimize it. We find
that

∂C({Θi})
∂Θi

= ⟨∂E(x; Θi)
∂Θi

⟩data + ∂logZ({Θi})
∂Θi

= ⟨Oi(x)⟩data − ⟨Oi(x)⟩model.

Simplifications
In order to simplify notation we defined the "operator"

Oi(x) = ∂E(x; Θi)
∂Θi

,

9

and used the statistical mechanics relationship between expectation values and
the log-partition function:

⟨Oi(x)⟩model = TrPΘ(x)Oi(x) = −∂logZ({Θi})
∂Θi

.

Positive and negative phases
As discussed earlier, the data-dependent term in the gradient is known as the
positive phase of the gradient, while the model-dependent term is known as the
negative phase of the gradient. The aim of the training is to lower the energy of
configurations that are near observed data points (increasing their probability),
and raising the energy of configurations that are far from observed data points
(decreasing their probability).

Gradient examples
The gradient of the negative log-likelihood cost function of a Binary-Binary
RBM is then

∂C(wij , ai, bj)
∂wij

=⟨xihj⟩data − ⟨xihj⟩model

∂C(wij , ai, bj)
∂aij

=⟨xi⟩data − ⟨xi⟩model

∂C(wij , ai, bj)
∂bij

=⟨hi⟩data − ⟨hi⟩model.

To get the expectation values with respect to the data, we set the visible units
to each of the observed samples in the training data, then update the hidden
units according to the conditional probability found before. We then average
over all samples in the training data to calculate expectation values with respect
to the data.

Kullback-Leibler relative entropy
When the goal of the training is to approximate a probability distribution, as it
is in generative modeling, another relevant measure is the Kullback-Leibler
divergence, also known as the relative entropy or Shannon entropy. It is a
non-symmetric measure of the dissimilarity between two probability density
functions p and q. If p is the unkown probability which we approximate with q,
we can measure the difference by

KL(p||q) =
∫ ∞

−∞
p(x) log p(x)

q(x)dx.

10

Kullback-Leibler divergence
Thus, the Kullback-Leibler divergence between the distribution of the training
data f(x) and the model distribution p(x|Θ) is

KL(f(x)||p(x|Θ)) =
∫ ∞

−∞
f(x) log f(x)

p(x|Θ)dx

=
∫ ∞

−∞
f(x) log f(x)dx −

∫ ∞

−∞
f(x) log p(x|Θ)dx

=⟨log f(x)⟩f(x) − ⟨log p(x|Θ)⟩f(x)

=⟨log f(x)⟩data + ⟨E(x)⟩data + logZ
=⟨log f(x)⟩data + CLL.

Maximizing log-likelihood
The first term is constant with respect to Θ since f(x) is independent of Θ.
Thus the Kullback-Leibler Divergence is minimal when the second term is
minimal. The second term is the log-likelihood cost function, hence minimizing
the Kullback-Leibler divergence is equivalent to maximizing the log-likelihood.

To further understand generative models it is useful to study the gradient
of the cost function which is needed in order to minimize it using methods like
stochastic gradient descent.

More on the partition function
The partition function is the generating function of expectation values, in
particular there are mathematical relationships between expectation values and
the log-partition function. In this case we have

⟨∂E(x; Θi)
∂Θi

⟩model =
∫
p(x|Θ)∂E(x; Θi)

∂Θi
dx = −∂ logZ(Θi)

∂Θi
.

Here ⟨·⟩model is the expectation value over the model probability distribution
p(x|Θ).

Setting up for gradient descent calculations
Using the previous relationship we can express the gradient of the cost function
as

∂CLL

∂Θi
=⟨∂E(x; Θi)

∂Θi
⟩data + ∂ logZ(Θi)

∂Θi

=⟨∂E(x; Θi)
∂Θi

⟩data − ⟨∂E(x; Θi)
∂Θi

⟩model

11

Difference of moments
This expression shows that the gradient of the log-likelihood cost function is a
difference of moments, with one calculated from the data and one calculated
from the model. The data-dependent term is called the positive phase and the
model-dependent term is called the negative phase of the gradient. We see now
that minimizing the cost function results in lowering the energy of configurations
x near points in the training data and increasing the energy of configurations not
observed in the training data. That means we increase the model’s probability
of configurations similar to those in the training data.

More observations
The gradient of the cost function also demonstrates why gradients of unsupervised,
generative models must be computed differently from for those of for example
FNNs. While the data-dependent expectation value is easily calculated based on
the samples xi in the training data, we must sample from the model in order to
generate samples from which to caclulate the model-dependent term. We sample
from the model by using MCMC-based methods. We can not sample from the
model directly because the partition function Z is generally intractable.

Adding hyperparameters
As in supervised machine learning problems, the goal is also here to perform
well on unseen data, that is to have good generalization from the training data.
The distribution f(x) we approximate is not the true distribution we wish to
estimate, it is limited to the training data. Hence, in unsupervised training as
well it is important to prevent overfitting to the training data. Thus it is common
to add regularizers to the cost function in the same manner as we discussed for
say linear regression.

Mathematical details
Because we are restricted to potential functions which are positive it is convenient
to express them as exponentials.

The original RBM had binary visible and hidden nodes. They were showned
to be universal approximators of discrete distributions. It was also shown that
adding hidden units yields strictly improved modelling power.

Binary-binary (BB) RBMs
The common choice of binary values are 0 and 1. However, in some physics
applications, -1 and 1 might be a more natural choice. We will here use 0 and 1.
We habe the energy function

12

EBB(x,h,Θ) = −
M∑
i

xiai −
N∑
j

bjhj −
M,N∑

i,j

xiwijhj .

Marginal probability
We have the binary-binary marginal probability defined as

pBB(x,h,Θ) = 1
ZBB(Θ)e

∑M

i
aixi+

∑N

j
bjhj+

∑M,N

ij
xiwijhj

= 1
ZBB(Θ)e

aT x+bT h+xT Wh

with the partition function

ZBB(Θ) =
∑
x,h

ea
T x+bT h+xT Wh.

Marginal Probability Density Function for the visible units
In order to find the probability of any configuration of the visible units we derive
the marginal probability density function.

pBB(x,Θ) =
∑
h

pBB(x,h,Θ)

= 1
ZBB

∑
h

ea
T x+bT h+xT Wh

= 1
ZBB

ea
T x
∑
h

e

∑N

j
(bj+xT w∗j)hj

= 1
ZBB

ea
T x
∑
h

N∏
j

e(bj+xT w∗j)hj

= 1
ZBB

ea
T x

(∑
h1

e(b1+xT w∗1)h1 ×
∑
h2

e(b2+xT w∗2)h2×

...×
∑
h2

e(bN +xT w∗N)hN

)

= 1
ZBB

ea
T x

N∏
j

∑
hj

e(bj+xT w∗j)hj

= 1
ZBB

ea
T x

N∏
j

(1 + ebj+xT w∗j).

13

Marginal probability for hidden units
A similar derivation yields the marginal probability of the hidden units

pBB(h,Θ) = 1
ZBB(Θ)e

bT h
M∏
i

(1 + eai+wT
i∗h).

Conditional Probability Density Functions
We derive the probability of the hidden units given the visible units using Bayes’
rule (we drop the explicit Θ dependence)

pBB(h|x) =pBB(x,h)
pBB(x)

=
1

ZBB
ea

T x+bT h+xT Wh

1
ZBB

eaT x
∏N

j (1 + ebj+xT w∗j)

= ea
T xe

∑N

j
(bj+xT w∗j)hj

eaT x
∏N

j (1 + ebj+xT w∗j)

=
N∏
j

e(bj+xT w∗j)hj

1 + ebj+xT w∗j

=
N∏
j

pBB(hj |x).

On and off probabilities
From this we find the probability of a hidden unit being "on" or "off":

pBB(hj = 1|x) = e(bj+xT w∗j)hj

1 + ebj+xT w∗j

= e(bj+xT w∗j)

1 + ebj+xT w∗j

= 1
1 + e−(bj+xT w∗j) ,

and

pBB(hj = 0|x) = 1
1 + ebj+xT w∗j

.

14

Conditional probability for visible units
Similarly we have that the conditional probability of the visible units given the
hidden are

pBB(x|h) =
M∏
i

e(ai+wT
i∗h)xi

1 + eai+wT
i∗h

=
M∏
i

pBB(xi|h).

We have

pBB(xi = 1|h) = 1
1 + e−(ai+wT

i∗h)

pBB(xi = 0|h) = 1
1 + eai+wT

i∗h
.

Gaussian-Binary Restricted Boltzmann Machines
Inserting into the expression for ERBM (x,h,Θ) in equation results in the energy

EGB(x,h,Θ) =
M∑
i

(xi − ai)2

2σ2
i

−
N∑
j

bjhj −
M,N∑

ij

xiwijhj

σ2
i

=||x − a

2σ ||2 − bTh − (x

σ2)TWh.

Joint Probability Density Function

pGB(x,h,Θ) = 1
ZGB

e−|| x−a
2σ ||2+bT h+(x

σ2)T Wh

= 1
ZGB

e
−
∑M

i

(xi−ai)2

2σ2
i

+
∑N

j
bjhj+

∑M,N

ij

xiwij hj

σ2
i

= 1
ZGB

M,N∏
ij

e
− (xi−ai)2

2σ2
i

+bjhj+
xiwij hj

σ2
i .

Partition function
The partition function is given by

ZGB =
∫ H̃∑

h̃

e−|| x̃−a
2σ ||2+bT h̃+(x̃

σ2)T Wh̃dx̃.

15

Marginal Probability Density Functions
We proceed to find the marginal probability densitites of the Gaussian-binary
RBM. We first marginalize over the binary hidden units to find pGB(x)

pGB(x) =
H̃∑
h̃

pGB(x, h̃)

= 1
ZGB

H̃∑
h̃

e−|| x−a
2σ ||2+bT h̃+(x

σ2)T Wh̃

= 1
ZGB

e−|| x−a
2σ ||2

N∏
j

(1 + ebj+(x
σ2)T w∗j).

Then the visible units
We next marginalize over the visible units. This is the first time we marginalize
over continuous values. We rewrite the exponential factor dependent on x as a
Gaussian function before we integrate in the last step.

16

pGB(h) =
∫
pGB(x̃,h)dx̃

= 1
ZGB

∫
e−|| x̃−a

2σ ||2+bT h+(x̃
σ2)T Whdx̃

= 1
ZGB

eb
T h

∫ M∏
i

e
− (x̃i−ai)2

2σ2
i

+
x̃iw

T
i∗h

σ2
i dx̃

= 1
ZGB

eb
T h

(∫
e

− (x̃1−a1)2

2σ2
1

+
x̃1wT

1∗h

σ2
1 dx̃1

×
∫
e

− (x̃2−a2)2

2σ2
2

+
x̃2wT

2∗h

σ2
2 dx̃2

× ...

×
∫
e

− (x̃M −aM)2

2σ2
M

+
x̃M wT

M∗h

σ2
M dx̃M

)
= 1
ZGB

eb
T h

M∏
i

∫
e

−
(x̃i−ai)2−2x̃iw

T
i∗h

2σ2
i dx̃i

= 1
ZGB

eb
T h

M∏
i

∫
e

−
x̃2

i
−2x̃i(ai+x̃iw

T
i∗h)+a2

i
2σ2

i dx̃i

= 1
ZGB

eb
T h

M∏
i

∫
e

−
x̃2

i
−2x̃i(ai+wT

i∗h)+(ai+wT
i∗h)2−(ai+wT

i∗h)2+a2
i

2σ2
i dx̃i

= 1
ZGB

eb
T h

M∏
i

∫
e

−
(x̃i−(ai+wT

i∗h))2−a2
i

−2aiw
T
i∗h−(wT

i∗h)2+a2
i

2σ2
i dx̃i

= 1
ZGB

eb
T h

M∏
i

e

2aiw
T
i∗h+(wT

i∗h)2

2σ2
i

∫
e

−
(x̃i−ai−wT

i∗h)2

2σ2
i dx̃i

= 1
ZGB

eb
T h

M∏
i

√
2πσ2

i e

2aiw
T
i∗h+(wT

i∗h)2

2σ2
i .

17

Conditional Probability Density Functions
We finish by deriving the conditional probabilities.

pGB(h|x) =pGB(x,h)
pGB(x)

=
1

ZGB
e−|| x−a

2σ ||2+bT h+(x
σ2)T Wh

1
ZGB

e−|| x−a
2σ ||2 ∏N

j (1 + ebj+(x
σ2)T w∗j)

=
N∏
j

e(bj+(x
σ2)T w∗j)hj

1 + ebj+(x
σ2)T w∗j

=
N∏
j

pGB(hj |x).

Hidden units
The conditional probability of a binary hidden unit hj being on or off again
takes the form of a sigmoid function

pGB(hj = 1|x) = ebj+(x
σ2)T w∗j

1 + ebj+(x
σ2)T w∗j

= 1
1 + e−bj−(x

σ2)T w∗j

pGB(hj = 0|x) = 1
1 + ebj+(x

σ2)T w∗j
.

Visible units
The conditional probability of the continuous x now has another form, however.

18

pGB(x|h) =pGB(x,h)
pGB(h)

=
1

ZGB
e−|| x−a

2σ ||2+bT h+(x
σ2)T Wh

1
ZGB

ebT h
∏M

i

√
2πσ2

i e

2aiw
T
i∗h+(wT

i∗h)2

2σ2
i

=
M∏
i

1√
2πσ2

i

e
− (xi−ai)2

2σ2
i

+
xiw

T
i∗h

2σ2
i

e

2aiw
T
i∗h+(wT

i∗h)2

2σ2
i

=
M∏
i

1√
2πσ2

i

e
−

x2
i

−2aixi+a2
i

−2xiw
T
i∗h

2σ2
i

e

2aiw
T
i∗h+(wT

i∗h)2

2σ2
i

=
M∏
i

1√
2πσ2

i

e
−

x2
i

−2aixi+a2
i

−2xiw
T
i∗h+2aiw

T
i∗h+(wT

i∗h)2

2σ2
i

=
M∏
i

1√
2πσ2

i

e
−

(xi−bi−wT
i∗h)2

2σ2
i

=
M∏
i

N (xi|bi + wT
i∗h, σ

2
i)

⇒ pGB(xi|h) =N (xi|bi + wT
i∗h, σ

2
i).

Comments
The form of these conditional probabilities explains the name "Gaussian" and
the form of the Gaussian-binary energy function. We see that the conditional
probability of xi given h is a normal distribution with mean bi + wT

i∗h and
variance σ2

i .
For the quantum mechanical calculations however, there are several ingredi-

ents which simplify our calculations.

Neural Quantum States
The wavefunction should be a probability amplitude depending on x. The RBM
model is given by the joint distribution of x and h

Frbm(x,h) = 1
Z
e− 1

T0
E(x,h)

To find the marginal distribution of x we set:

19

Frbm(x) =
∑

h

Frbm(x,h)

= 1
Z

∑
h

e−E(x,h)

Model for the trial wave function
Now this is what we use to represent the wave function, calling it a neural-network
quantum state (NQS)

Ψ(X) = Frbm(x)

= 1
Z

∑
h

e−E(x,h)

= 1
Z

∑
{hj}

e
−
∑M

i

(xi−ai)2

2σ2 +
∑N

j
bjhj+

∑M,N

i,j

xiwij hj

σ2

= 1
Z
e−
∑M

i

(xi−ai)2

2σ2

N∏
j

(1 + ebj+
∑M

i

xiwij

σ2)

Allowing for complex valued functions
The above wavefunction is the most general one because it allows for complex
valued wavefunctions. However it fundamentally changes the probabilistic foun-
dation of the RBM, because what is usually a probability in the RBM framework
is now a an amplitude. This means that a lot of the theoretical framework usually
used to interpret the model, i.e. graphical models, conditional probabilities, and
Markov random fields, breaks down.

Squared wave function
If we assume the wavefunction to be positive definite, however, we can use the
RBM to represent the squared wavefunction, and thereby a probability. This
also makes it possible to sample from the model using Gibbs sampling, because
we can obtain the conditional probabilities.

20

|Ψ(X)|2 = Frbm(X)

⇒ Ψ(X) =
√
Frbm(X)

= 1√
Z

√∑
{hj}

e−E(X,h)

= 1√
Z

√√√√∑
{hj}

e
−
∑M

i

(Xi−ai)2

2σ2 +
∑N

j
bjhj+

∑M,N

i,j

Xiwij hj

σ2

= 1√
Z
e−
∑M

i

(Xi−ai)2

4σ2

√√√√∑
{hj}

N∏
j

ebjhj+
∑M

i

Xiwij hj

σ2

= 1√
Z
e−
∑M

i

(Xi−ai)2

4σ2

√√√√ N∏
j

∑
hj

ebjhj+
∑M

i

Xiwij hj

σ2

= 1√
Z
e−
∑M

i

(Xi−ai)2

4σ2

N∏
j

√
e0 + ebj+

∑M

i

Xiwij

σ2

= 1√
Z
e−
∑M

i

(Xi−ai)2

4σ2

N∏
j

√
1 + ebj+

∑M

i

Xiwij

σ2

Cost function
This is where we deviate from what is common in machine learning. Rather
than defining a cost function based on some dataset, our cost function is the
energy of the quantum mechanical system. From the variational principle we
know that minimizing this energy should lead to the ground state wavefunction.
As stated previously the local energy is given by

EL = 1
ΨĤΨ.

And the gradient

Gi = ∂⟨EL⟩
∂αi

= 2(⟨EL
1
Ψ
∂Ψ
∂αi

⟩ − ⟨EL⟩⟨ 1
Ψ
∂Ψ
∂αi

⟩),

where αi = a1, ..., aM , b1, ..., bN , w11, ..., wMN .

Additional details
We use that 1

Ψ
∂Ψ
∂αi

= ∂ ln Ψ
∂αi

, and find

21

ln Ψ(X) = − lnZ −
M∑
m

(Xm − am)2

2σ2 +
N∑
n

ln(1 + ebn+
∑M

i

Xiwin
σ2).

Final equation
This gives

∂

∂am
ln Ψ = 1

σ2 (Xm − am)

∂

∂bn
ln Ψ = 1

e−bn− 1
σ2

∑M

i
Xiwin + 1

∂

∂wmn
ln Ψ = Xm

σ2(e−bn− 1
σ2

∑M

i
Xiwin + 1)

.

Code example
This part is best seen using the jupyter-notebook

2-electron VMC code for 2dim quantum dot with importance sampling
Using gaussian rng for new positions and Metropolis- Hastings
Added restricted boltzmann machine method for dealing with the wavefunction
RBM code based heavily off of:
https://github.com/CompPhysics/ComputationalPhysics2/tree/gh-pages/doc/Programs/BoltzmannMachines/MLcpp/src/CppCode/ob
from math import exp, sqrt
from random import random, seed, normalvariate
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from matplotlib import cm
from matplotlib.ticker import LinearLocator, FormatStrFormatter
import sys

Trial wave function for the 2-electron quantum dot in two dims
def WaveFunction(r,a,b,w):

sigma=1.0
sig2 = sigma**2
Psi1 = 0.0
Psi2 = 1.0
Q = Qfac(r,b,w)

for iq in range(NumberParticles):
for ix in range(Dimension):

Psi1 += (r[iq,ix]-a[iq,ix])**2

for ih in range(NumberHidden):
Psi2 *= (1.0 + np.exp(Q[ih]))

Psi1 = np.exp(-Psi1/(2*sig2))

22

return Psi1*Psi2

Local energy for the 2-electron quantum dot in two dims, using analytical local energy
def LocalEnergy(r,a,b,w):

sigma=1.0
sig2 = sigma**2
locenergy = 0.0

Q = Qfac(r,b,w)

for iq in range(NumberParticles):
for ix in range(Dimension):

sum1 = 0.0
sum2 = 0.0
for ih in range(NumberHidden):

sum1 += w[iq,ix,ih]/(1+np.exp(-Q[ih]))
sum2 += w[iq,ix,ih]**2 * np.exp(Q[ih]) / (1.0 + np.exp(Q[ih]))**2

dlnpsi1 = -(r[iq,ix] - a[iq,ix]) /sig2 + sum1/sig2
dlnpsi2 = -1/sig2 + sum2/sig2**2
locenergy += 0.5*(-dlnpsi1*dlnpsi1 - dlnpsi2 + r[iq,ix]**2)

if(interaction==True):
for iq1 in range(NumberParticles):

for iq2 in range(iq1):
distance = 0.0
for ix in range(Dimension):

distance += (r[iq1,ix] - r[iq2,ix])**2

locenergy += 1/sqrt(distance)

return locenergy

Derivate of wave function ansatz as function of variational parameters
def DerivativeWFansatz(r,a,b,w):

sigma=1.0
sig2 = sigma**2

Q = Qfac(r,b,w)

WfDer = np.empty((3,),dtype=object)
WfDer = [np.copy(a),np.copy(b),np.copy(w)]

WfDer[0] = (r-a)/sig2
WfDer[1] = 1 / (1 + np.exp(-Q))

for ih in range(NumberHidden):
WfDer[2][:,:,ih] = w[:,:,ih] / (sig2*(1+np.exp(-Q[ih])))

return WfDer

Setting up the quantum force for the two-electron quantum dot, recall that it is a vector
def QuantumForce(r,a,b,w):

sigma=1.0
sig2 = sigma**2

qforce = np.zeros((NumberParticles,Dimension), np.double)
sum1 = np.zeros((NumberParticles,Dimension), np.double)

23

Q = Qfac(r,b,w)

for ih in range(NumberHidden):
sum1 += w[:,:,ih]/(1+np.exp(-Q[ih]))

qforce = 2*(-(r-a)/sig2 + sum1/sig2)

return qforce

def Qfac(r,b,w):
Q = np.zeros((NumberHidden), np.double)
temp = np.zeros((NumberHidden), np.double)

for ih in range(NumberHidden):
temp[ih] = (r*w[:,:,ih]).sum()

Q = b + temp

return Q

Computing the derivative of the energy and the energy
def EnergyMinimization(a,b,w):

NumberMCcycles= 10000
Parameters in the Fokker-Planck simulation of the quantum force
D = 0.5
TimeStep = 0.05
positions
PositionOld = np.zeros((NumberParticles,Dimension), np.double)
PositionNew = np.zeros((NumberParticles,Dimension), np.double)
Quantum force
QuantumForceOld = np.zeros((NumberParticles,Dimension), np.double)
QuantumForceNew = np.zeros((NumberParticles,Dimension), np.double)

seed for rng generator
seed()
energy = 0.0
DeltaE = 0.0

EnergyDer = np.empty((3,),dtype=object)
DeltaPsi = np.empty((3,),dtype=object)
DerivativePsiE = np.empty((3,),dtype=object)
EnergyDer = [np.copy(a),np.copy(b),np.copy(w)]
DeltaPsi = [np.copy(a),np.copy(b),np.copy(w)]
DerivativePsiE = [np.copy(a),np.copy(b),np.copy(w)]
for i in range(3): EnergyDer[i].fill(0.0)
for i in range(3): DeltaPsi[i].fill(0.0)
for i in range(3): DerivativePsiE[i].fill(0.0)

#Initial position
for i in range(NumberParticles):

for j in range(Dimension):
PositionOld[i,j] = normalvariate(0.0,1.0)*sqrt(TimeStep)

wfold = WaveFunction(PositionOld,a,b,w)
QuantumForceOld = QuantumForce(PositionOld,a,b,w)

#Loop over MC MCcycles
for MCcycle in range(NumberMCcycles):

#Trial position moving one particle at the time
for i in range(NumberParticles):

24

for j in range(Dimension):
PositionNew[i,j] = PositionOld[i,j]+normalvariate(0.0,1.0)*sqrt(TimeStep)+\

QuantumForceOld[i,j]*TimeStep*D
wfnew = WaveFunction(PositionNew,a,b,w)
QuantumForceNew = QuantumForce(PositionNew,a,b,w)

GreensFunction = 0.0
for j in range(Dimension):

GreensFunction += 0.5*(QuantumForceOld[i,j]+QuantumForceNew[i,j])*\
(D*TimeStep*0.5*(QuantumForceOld[i,j]-QuantumForceNew[i,j])-\
PositionNew[i,j]+PositionOld[i,j])

GreensFunction = exp(GreensFunction)
ProbabilityRatio = GreensFunction*wfnew**2/wfold**2
#Metropolis-Hastings test to see whether we accept the move
if random() <= ProbabilityRatio:

for j in range(Dimension):
PositionOld[i,j] = PositionNew[i,j]
QuantumForceOld[i,j] = QuantumForceNew[i,j]

wfold = wfnew
#print("wf new: ", wfnew)
#print("force on 1 new:", QuantumForceNew[0,:])
#print("pos of 1 new: ", PositionNew[0,:])
#print("force on 2 new:", QuantumForceNew[1,:])
#print("pos of 2 new: ", PositionNew[1,:])
DeltaE = LocalEnergy(PositionOld,a,b,w)
DerPsi = DerivativeWFansatz(PositionOld,a,b,w)

DeltaPsi[0] += DerPsi[0]
DeltaPsi[1] += DerPsi[1]
DeltaPsi[2] += DerPsi[2]

energy += DeltaE

DerivativePsiE[0] += DerPsi[0]*DeltaE
DerivativePsiE[1] += DerPsi[1]*DeltaE
DerivativePsiE[2] += DerPsi[2]*DeltaE

We calculate mean values
energy /= NumberMCcycles
DerivativePsiE[0] /= NumberMCcycles
DerivativePsiE[1] /= NumberMCcycles
DerivativePsiE[2] /= NumberMCcycles
DeltaPsi[0] /= NumberMCcycles
DeltaPsi[1] /= NumberMCcycles
DeltaPsi[2] /= NumberMCcycles
EnergyDer[0] = 2*(DerivativePsiE[0]-DeltaPsi[0]*energy)
EnergyDer[1] = 2*(DerivativePsiE[1]-DeltaPsi[1]*energy)
EnergyDer[2] = 2*(DerivativePsiE[2]-DeltaPsi[2]*energy)
return energy, EnergyDer

#Here starts the main program with variable declarations
NumberParticles = 2
Dimension = 2
NumberHidden = 2

interaction=False

guess for parameters
a=np.random.normal(loc=0.0, scale=0.001, size=(NumberParticles,Dimension))

25

b=np.random.normal(loc=0.0, scale=0.001, size=(NumberHidden))
w=np.random.normal(loc=0.0, scale=0.001, size=(NumberParticles,Dimension,NumberHidden))
Set up iteration using stochastic gradient method
Energy = 0
EDerivative = np.empty((3,),dtype=object)
EDerivative = [np.copy(a),np.copy(b),np.copy(w)]
Learning rate eta, max iterations, need to change to adaptive learning rate
eta = 0.001
MaxIterations = 50
iter = 0
np.seterr(invalid='raise')
Energies = np.zeros(MaxIterations)
EnergyDerivatives1 = np.zeros(MaxIterations)
EnergyDerivatives2 = np.zeros(MaxIterations)

while iter < MaxIterations:
Energy, EDerivative = EnergyMinimization(a,b,w)
agradient = EDerivative[0]
bgradient = EDerivative[1]
wgradient = EDerivative[2]
a -= eta*agradient
b -= eta*bgradient
w -= eta*wgradient
Energies[iter] = Energy
print("Energy:",Energy)
#EnergyDerivatives1[iter] = EDerivative[0]
#EnergyDerivatives2[iter] = EDerivative[1]
#EnergyDerivatives3[iter] = EDerivative[2]

iter += 1

#nice printout with Pandas
import pandas as pd
from pandas import DataFrame
pd.set_option('max_columns', 6)
data ={'Energy':Energies}#,'A Derivative':EnergyDerivatives1,'B Derivative':EnergyDerivatives2,'Weights Derivative':EnergyDerivatives3}

frame = pd.DataFrame(data)
print(frame)

Project 2, VMC for fermions: Efficient calculation of Slater
determinants

The potentially most time-consuming part is the evaluation of the gradient
and the Laplacian of an N -particle Slater determinant.

We have to differentiate the determinant with respect to all spatial coordinates
of all particles. A brute force differentiation would involve N · d evaluations of
the entire determinant which would even worsen the already undesirable time
scaling, making it Nd ·O(N3) ∼ O(d ·N4).

This poses serious hindrances to the overall efficiency of our code.

26

Matrix elements of Slater determinants
The efficiency can be improved however if we move only one electron at the

time. The Slater determinant matrix D̂ is defined by the matrix elements

dij = ϕj(xi)

where ϕj(ri) is a single particle wave function. The columns correspond to
the position of a given particle while the rows stand for the various quantum
numbers.

Efficient calculation of Slater determinants
What we need to realize is that when differentiating a Slater determinant

with respect to some given coordinate, only one row of the corresponding Slater
matrix is changed.

Therefore, by recalculating the whole determinant we risk producing redun-
dant information. The solution turns out to be an algorithm that requires to
keep track of the inverse of the Slater matrix.

Efficient calculation of Slater determinants
Let the current position in phase space be represented by the (N · d)-element

vector rold and the new suggested position by the vector rnew.
The inverse of D̂ can be expressed in terms of its cofactors Cij and its

determinant (this our notation for a determinant) |D̂|:

d−1
ij = Cji

|D̂|
(1)

Notice that the interchanged indices indicate that the matrix of cofactors is to
be transposed.

Efficient calculation of Slater determinants
If D̂ is invertible, then we must obviously have D̂−1D̂ = 1, or explicitly in

terms of the individual elements of D̂ and D̂−1:
N∑

k=1
dikd

−1
kj = δij (2)

Efficient calculation of Slater determinants
Consider the ratio, which we shall call R, between |D̂(rnew)| and |D̂(rold)|.

By definition, each of these determinants can individually be expressed in terms
of the i-th row of its cofactor matrix

R ≡ |D̂(rnew)|
|D̂(rold)|

=
∑N

j=1 dij(rnew)Cij(rnew)∑N
j=1 dij(rold)Cij(rold)

(3)

27

Efficient calculation of Slater determinants
Suppose now that we move only one particle at a time, meaning that rnew

differs from rold by the position of only one, say the i-th, particle . This means
that D̂(rnew) and D̂(rold) differ only by the entries of the i-th row. Recall also
that the i-th row of a cofactor matrix Ĉ is independent of the entries of the i-th
row of its corresponding matrix D̂. In this particular case we therefore get that
the i-th row of Ĉ(rnew) and Ĉ(rold) must be equal. Explicitly, we have:

Cij(rnew) = Cij(rold) ∀ j ∈ {1, . . . , N} (4)

Efficient calculation of Slater determinants
Inserting this into the numerator of eq. (3) and using eq. (1) to substitute the

cofactors with the elements of the inverse matrix, we get:

R =
∑N

j=1 dij(rnew)Cij(rold)∑N
j=1 dij(rold)Cij(rold)

=
∑N

j=1 dij(rnew) d−1
ji (rold)∑N

j=1 dij(rold) d−1
ji (rold)

(5)

Efficient calculation of Slater determinants
Now by eq. (2) the denominator of the rightmost expression must be unity, so

that we finally arrive at:

R =
N∑

j=1
dij(rnew) d−1

ji (rold) =
N∑

j=1
ϕj(rnew

i) d−1
ji (rold) (6)

What this means is that in order to get the ratio when only the i-th parti-
cle has been moved, we only need to calculate the dot product of the vector
(ϕ1(rnew

i), . . . , ϕN (rnew
i)) of single particle wave functions evaluated at this new

position with the i-th column of the inverse matrix D̂−1 evaluated at the original
position. Such an operation has a time scaling of O(N). The only extra thing
we need to do is to maintain the inverse matrix D̂−1(xold).

Efficient calculation of Slater determinants
If the new position rnew is accepted, then the inverse matrix can by suitably

updated by an algorithm having a time scaling of O(N2). This algorithm goes
as follows. First we update all but the i-th column of D̂−1. For each column
j ̸= i, we first calculate the quantity:

Sj = (D̂(rnew) × D̂−1(rold))ij =
N∑

l=1
dil(rnew) d−1

lj (rold) (7)

28

Efficient calculation of Slater determinants
The new elements of the j-th column of D̂−1 are then given by:

d−1
kj (rnew) = d−1

kj (rold) − Sj

R
d−1

ki (rold) ∀ k ∈ {1, . . . , N}
j ̸= i

(8)

Efficient calculation of Slater determinants
Finally the elements of the i-th column of D̂−1 are updated simply as follows:

d−1
ki (rnew) = 1

R
d−1

ki (rold) ∀ k ∈ {1, . . . , N} (9)

We see from these formulas that the time scaling of an update of D̂−1 after
changing one row of D̂ is O(N2).

The scheme is also applicable for the calculation of the ratios involving
derivatives. It turns out that differentiating the Slater determinant with respect
to the coordinates of a single particle ri changes only the i-th row of the
corresponding Slater matrix.

The gradient and the Laplacian
The gradient and the Laplacian can therefore be calculated as follows:

∇⃗i|D̂(r)|
|D̂(r)|

=
N∑

j=1
∇⃗idij(r)d−1

ji (r) =
N∑

j=1
∇⃗iϕj(ri)d−1

ji (r)

and
∇2

i |D̂(r)|
|D̂(r)|

=
N∑

j=1
∇2

i dij(r)d−1
ji (r) =

N∑
j=1

∇2
iϕj(ri) d−1

ji (r)

How to compute the derivates of the Slater determinant
Thus, to calculate all the derivatives of the Slater determinant, we only need

the derivatives of the single particle wave functions (∇⃗iϕj(ri) and ∇2
iϕj(ri)) and

the elements of the corresponding inverse Slater matrix (D̂−1(ri)). A calculation
of a single derivative is by the above result an O(N) operation. Since there are
d · N derivatives, the time scaling of the total evaluation becomes O(d · N2).
With an O(N2) updating algorithm for the inverse matrix, the total scaling is
no worse, which is far better than the brute force approach yielding O(d ·N4).

Important note: In most cases you end with closed form expressions for
the single-particle wave functions. It is then useful to calculate the various
derivatives and make separate functions for them.

29

The Slater determinant
The Slater determinant takes the form

Φ(r1, r2, , r3, r4, α, β, γ, δ) = 1√
4!

∣∣∣∣∣∣∣∣
ψ100↑(r1) ψ100↑(r2) ψ100↑(r3) ψ100↑(r4)
ψ100↓(r1) ψ100↓(r2) ψ100↓(r3) ψ100↓(r4)
ψ200↑(r1) ψ200↑(r2) ψ200↑(r3) ψ200↑(r4)
ψ200↓(r1) ψ200↓(r2) ψ200↓(r3) ψ200↓(r4)

∣∣∣∣∣∣∣∣ .
The Slater determinant as written is zero since the spatial wave functions for the
spin up and spin down states are equal. But we can rewrite it as the product of
two Slater determinants, one for spin up and one for spin down.

Rewriting the Slater determinant
We can rewrite it as

Φ(r1, r2, , r3, r4, α, β, γ, δ) = det ↑ (1, 2) det ↓ (3, 4) − det ↑ (1, 3) det ↓ (2, 4)

− det ↑ (1, 4) det ↓ (3, 2) + det ↑ (2, 3) det ↓ (1, 4) − det ↑ (2, 4) det ↓ (1, 3)

+ det ↑ (3, 4) det ↓ (1, 2),

where we have defined

det ↑ (1, 2) = 1√
2

∣∣∣∣ ψ100↑(r1) ψ100↑(r2)
ψ200↑(r1) ψ200↑(r2)

∣∣∣∣ ,
and

det ↓ (3, 4) = 1√
2

∣∣∣∣ ψ100↓(r3) ψ100↓(r4)
ψ200↓(r3) ψ200↓(r4)

∣∣∣∣ .
The total determinant is still zero!

Splitting the Slater determinant
We want to avoid to sum over spin variables, in particular when the interaction

does not depend on spin.
It can be shown, see for example Moskowitz and Kalos, Int. J. Quantum

Chem. 20 1107 (1981), that for the variational energy we can approximate the
Slater determinant as

Φ(r1, r2, , r3, r4, α, β, γ, δ) ∝ det ↑ (1, 2) det ↓ (3, 4),

or more generally as

Φ(r1, r2, . . . rN) ∝ det ↑ det ↓,

where we have the Slater determinant as the product of a spin up part involving
the number of electrons with spin up only (2 for beryllium and 5 for neon) and
a spin down part involving the electrons with spin down.

30

http://onlinelibrary.wiley.com/doi/10.1002/qua.560200508/abstract
http://onlinelibrary.wiley.com/doi/10.1002/qua.560200508/abstract

This ansatz is not antisymmetric under the exchange of electrons with
opposite spins but it can be shown (show this) that it gives the same expectation
value for the energy as the full Slater determinant.

As long as the Hamiltonian is spin independent, the above is correct. It is
rather straightforward to see this if you go back to the equations for the energy
discussed earlier this semester.

Spin up and spin down parts
We will thus factorize the full determinant |D̂| into two smaller ones, where

each can be identified with ↑ and ↓ respectively:

|D̂| = |D̂|↑ · |D̂|↓

Factorization
The combined dimensionality of the two smaller determinants equals the

dimensionality of the full determinant. Such a factorization is advantageous
in that it makes it possible to perform the calculation of the ratio R and the
updating of the inverse matrix separately for |D̂|↑ and |D̂|↓:

|D̂|new

|D̂|old
=

|D̂|new
↑

|D̂|old
↑

·
|D̂|new

↓

|D̂|old
↓

This reduces the calculation time by a constant factor. The maximal time
reduction happens in a system of equal numbers of ↑ and ↓ particles, so that the
two factorized determinants are half the size of the original one.

Number of operations
Consider the case of moving only one particle at a time which originally had

the following time scaling for one transition:

OR(N) +Oinverse(N2)

For the factorized determinants one of the two determinants is obviously unaf-
fected by the change so that it cancels from the ratio R.

Counting the number of FLOPS
Therefore, only one determinant of size N/2 is involved in each calculation of

R and update of the inverse matrix. The scaling of each transition then becomes:

OR(N/2) +Oinverse(N2/4)

and the time scaling when the transitions for all N particles are put together:

OR(N2/2) +Oinverse(N3/4)

which gives the same reduction as in the case of moving all particles at once.

31

Computation of ratios
Computing the ratios discussed above requires that we maintain the inverse

of the Slater matrix evaluated at the current position. Each time a trial position
is accepted, the row number i of the Slater matrix changes and updating its
inverse has to be carried out. Getting the inverse of an N × N matrix by
Gaussian elimination has a complexity of order of O(N3) operations, a luxury
that we cannot afford for each time a particle move is accepted. We will use the
expression

d−1
kj (xnew) =

d−1

kj (xold) − d−1
ki

(xold)
R

∑N
l=1 dil(xnew)d−1

lj (xold) if j ̸= i

d−1
ki

(xold)
R

∑N
l=1 dil(xold)d−1

lj (xold) if j = i

Scaling properties
This equation scales as O(N2). The evaluation of the determinant of an N×N

matrix by standard Gaussian elimination requires O(N3) calculations. As there
are Nd independent coordinates we need to evaluate Nd Slater determinants for
the gradient (quantum force) and Nd for the Laplacian (kinetic energy). With
the updating algorithm we need only to invert the Slater determinant matrix
once. This can be done by standard LU decomposition methods.

How to get the determinant
Determining a determinant of an N ×N matrix by standard Gaussian elim-

ination is of the order of O(N3) calculations. As there are N · d independent
coordinates we need to evaluate Nd Slater determinants for the gradient (quan-
tum force) and N · d for the Laplacian (kinetic energy)

With the updating algorithm we need only to invert the Slater determinant
matrix once. This is done by calling standard LU decomposition methods.

Expectation value of the kinetic energy
The expectation value of the kinetic energy expressed in atomic units for

electron i is
⟨K̂i⟩ = −1

2
⟨Ψ|∇2

i |Ψ⟩
⟨Ψ|Ψ⟩

,

Ki = −1
2

∇2
i Ψ
Ψ . (10)

∇2Ψ
Ψ = ∇2(ΨD ΨC)

ΨD ΨC
= ∇ · [∇(ΨD ΨC)]

ΨD ΨC
= ∇ · [ΨC∇ΨD + ΨD∇ΨC]

ΨD ΨC

= ∇ΨC · ∇ΨD + ΨC∇2ΨD + ∇ΨD · ∇ΨC + ΨD∇2ΨC

ΨD ΨC

(11)

32

∇2Ψ
Ψ = ∇2ΨD

ΨD
+ ∇2ΨC

ΨC
+ 2∇ΨD

ΨD
· ∇ΨC

ΨC
(12)

Second derivative of the Jastrow factor
The second derivative of the Jastrow factor divided by the Jastrow factor (the

way it enters the kinetic energy) is

[
∇2ΨC

ΨC

]
x

= 2
N∑

k=1

k−1∑
i=1

∂2gik

∂x2
k

+
N∑

k=1

(
k−1∑
i=1

∂gik

∂xk
−

N∑
i=k+1

∂gki

∂xi

)2

Functional form
But we have a simple form for the function, namely

ΨC =
∏
i<j

exp f(rij) = exp

∑
i<j

arij

1 + βrij

,
and it is easy to see that for particle k we have

∇2
kΨC

ΨC
=
∑
ij ̸=k

(rk − ri)(rk − rj)
rkirkj

f ′(rki)f ′(rkj) +
∑
j ̸=k

(
f ′′(rkj) + 2

rkj
f ′(rkj)

)

Second derivative of the Jastrow factor
Using

f(rij) = arij

1 + βrij
,

and g′(rkj) = dg(rkj)/drkj and g′′(rkj) = d2g(rkj)/dr2
kj we find that for particle

k we have

∇2
kΨC

ΨC
=
∑
ij ̸=k

(rk − ri)(rk − rj)
rkirkj

a

(1 + βrki)2
a

(1 + βrkj)2 +
∑
j ̸=k

(
2a

rkj(1 + βrkj)2 − 2aβ
(1 + βrkj)3

)

Gradient and Laplacian
The gradient and Laplacian can be calculated as follows:

∇i|D̂(r)|
|D̂(r)|

=
N∑

j=1
∇⃗idij(r) d−1

ji (r) =
N∑

j=1
∇⃗iϕj(ri) d−1

ji (r)

and
∇2

i |D̂(r)|
|D̂(r)|

=
N∑

j=1
∇2

i dij(r) d−1
ji (r) =

N∑
j=1

∇2
iϕj(ri) d−1

ji (r)

33

The gradient for the determinant
The gradient for the determinant is

∇i|D̂(r)|
|D̂(r)|

=
N∑

j=1
∇idij(r) d−1

ji (r) =
N∑

j=1
∇iϕj(ri) d−1

ji (r).

Jastrow gradient in quantum force
We have

ΨC =
∏
i<j

g(rij) = exp

∑
i<j

arij

1 + βrij

,
the gradient needed for the quantum force and local energy is easy to compute.
We get for particle k

∇kΨC

ΨC
=
∑
j ̸=k

rkj

rkj

a

(1 + βrkj)2 ,

which is rather easy to code. Remember to sum over all particles when you
compute the local energy.

Metropolis Hastings part
We need to compute the ratio between wave functions, in particular for the

Slater determinants.

R =
N∑

j=1
dij(rnew) d−1

ji (rold) =
N∑

j=1
ϕj(rnew

i) d−1
ji (rold)

What this means is that in order to get the ratio when only the i-th parti-
cle has been moved, we only need to calculate the dot product of the vector
(ϕ1(rnew

i), . . . , ϕN (rnew
i)) of single particle wave functions evaluated at this new

position with the i-th column of the inverse matrix D̂−1 evaluated at the original
position. Such an operation has a time scaling of O(N). The only extra thing
we need to do is to maintain the inverse matrix D̂−1(xold).

Proof for updating algorithm for Slater determinant
As a starting point we may consider that each time a new position is suggested

in the Metropolis algorithm, a row of the current Slater matrix experiences some
kind of perturbation. Hence, the Slater matrix with its orbitals evaluated at the
new position equals the old Slater matrix plus a perturbation matrix,

djk(xnew) = djk(xold) + ∆jk, (13)

where
∆jk = δik[ϕj(xnew

i) − ϕj(xold
i)] = δik(∆ϕ)j . (14)

34

Proof for updating algorithm for Slater determinant
Computing the inverse of the transposed matrix we arrive at

dkj(xnew)−1 = [dkj(xold) + ∆kj]−1. (15)

Proof for updating algorithm for Slater determinant
The evaluation of the right hand side (rhs) term above is carried out by

applying the identity (A+B)−1 = A−1 − (A+B)−1BA−1. In compact notation
it yields

[DT (xnew)]−1 = [DT (xold) + ∆T]−1

= [DT (xold)]−1 − [DT (xold) + ∆T]−1∆T [DT (xold)]−1

= [DT (xold)]−1 − [DT (xnew)]−1︸ ︷︷ ︸
By Eq.15

∆T [DT (xold)]−1.

Proof for updating algorithm for Slater determinant
Using index notation, the last result may be expanded by

d−1
kj (xnew) = d−1

kj (xold) −
∑

l

∑
m

d−1
km(xnew)∆T

mld
−1
lj (xold)

= d−1
kj (xold) −

∑
l

∑
m

d−1
km(xnew)∆lmd

−1
lj (xcur)

= d−1
kj (xold) −

∑
l

∑
m

d−1
km(xnew)δim(∆ϕ)ld

−1
lj (xold)

= d−1
kj (xold) − d−1

ki (xnew)
N∑

l=1
(∆ϕ)ld

−1
lj (xold)

= d−1
kj (xold) − d−1

ki (xnew)
N∑

l=1
[ϕl(rnew

i) − ϕl(rold
i)]D−1

lj (xold).

Proof for updating algorithm for Slater determinant
Using

D−1(xold) = adjD
|D(xold)| and D−1(xnew) = adjD

|D(xnew)| ,

and dividing these two equations we get

D−1(xold)
D−1(xnew) = |D(xnew)|

|D(xold)| = R ⇒ d−1
ki (xnew) =

d−1
ki (xold)
R

.

35

Proof for updating algorithm for Slater determinant
We have

d−1
kj (xnew) = d−1

kj (xold) −
d−1

ki (xold)
R

N∑
l=1

[ϕl(rnew
i) − ϕl(rold

i)]d−1
lj (xold),

or

d−1
kj (xnew) = d−1

kj (xold) −
d−1

ki (xold)
R

N∑
l=1

ϕl(rnew
i)d−1

lj (xold)

+
d−1

ki (xold)
R

N∑
l=1

ϕl(rold
i)d−1

lj (xold)

= d−1
kj (xold) −

d−1
ki (xold)
R

N∑
l=1

dil(xnew)d−1
lj (xold)

+
d−1

ki (xold)
R

N∑
l=1

dil(xold)d−1
lj (xold).

Proof for updating algorithm for Slater determinant
In this equation, the first line becomes zero for j = i and the second for j ≠ i.

Therefore, the update of the inverse for the new Slater matrix is given by

d−1
kj (xnew) =

d−1

kj (xold) − d−1
ki

(xold)
R

∑N
l=1 dil(xnew)d−1

lj (xold) if j ̸= i

d−1
ki

(xold)
R

∑N
l=1 dil(xold)d−1

lj (xold) if j = i

36

