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1. Discussion of Slater determinants and project 2

2. Possible topics for the last two lectures, April 26 and May 3, Diffusion
Monte Carlo calculations

• Video of lecture
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Project 2, VMC for fermions: Efficient calculation of Slater
determinants

The potentially most time-consuming part is the evaluation of the gradient
and the Laplacian of an N -particle Slater determinant.

We have to differentiate the determinant with respect to all spatial coordinates
of all particles. A brute force differentiation would involve N · d evaluations of
the entire determinant which would even worsen the already undesirable time
scaling, making it Nd ·O(N3) ∼ O(d ·N4).

This poses serious hindrances to the overall efficiency of our code.
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Matrix elements of Slater determinants
The efficiency can be improved however if we move only one electron at the

time. The Slater determinant matrix D̂ is defined by the matrix elements

dij = ϕj(xi)

where ϕj(ri) is a single particle wave function. The columns correspond to
the position of a given particle while the rows stand for the various quantum
numbers.

Efficient calculation of Slater determinants
What we need to realize is that when differentiating a Slater determinant

with respect to some given coordinate, only one row of the corresponding Slater
matrix is changed.

Therefore, by recalculating the whole determinant we risk producing redun-
dant information. The solution turns out to be an algorithm that requires to
keep track of the inverse of the Slater matrix.

Efficient calculation of Slater determinants
Let the current position in phase space be represented by the (N · d)-element

vector rold and the new suggested position by the vector rnew.
The inverse of D̂ can be expressed in terms of its cofactors Cij and its

determinant (this our notation for a determinant) |D̂|:

d−1
ij = Cji

|D̂|
(1)

Notice that the interchanged indices indicate that the matrix of cofactors is to
be transposed.

Efficient calculation of Slater determinants
If D̂ is invertible, then we must obviously have D̂−1D̂ = 1, or explicitly in

terms of the individual elements of D̂ and D̂−1:
N∑

k=1
dikd

−1
kj = δij (2)

Efficient calculation of Slater determinants
Consider the ratio, which we shall call R, between |D̂(rnew)| and |D̂(rold)|.

By definition, each of these determinants can individually be expressed in terms
of the i-th row of its cofactor matrix

R ≡ |D̂(rnew)|
|D̂(rold)|

=
∑N

j=1 dij(rnew)Cij(rnew)∑N
j=1 dij(rold)Cij(rold)

(3)
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Efficient calculation of Slater determinants
Suppose now that we move only one particle at a time, meaning that rnew

differs from rold by the position of only one, say the i-th, particle . This means
that D̂(rnew) and D̂(rold) differ only by the entries of the i-th row. Recall also
that the i-th row of a cofactor matrix Ĉ is independent of the entries of the i-th
row of its corresponding matrix D̂. In this particular case we therefore get that
the i-th row of Ĉ(rnew) and Ĉ(rold) must be equal. Explicitly, we have:

Cij(rnew) = Cij(rold) ∀ j ∈ {1, . . . , N}

Efficient calculation of Slater determinants
Inserting this into the numerator of eq. (3) and using eq. (1) to substitute the

cofactors with the elements of the inverse matrix, we get:

R =
∑N

j=1 dij(rnew)Cij(rold)∑N
j=1 dij(rold)Cij(rold)

=
∑N

j=1 dij(rnew) d−1
ji (rold)∑N

j=1 dij(rold) d−1
ji (rold)

Efficient calculation of Slater determinants
Now by eq. (2) the denominator of the rightmost expression must be unity, so

that we finally arrive at:

R =
N∑

j=1
dij(rnew) d−1

ji (rold) =
N∑

j=1
ϕj(rnew

i ) d−1
ji (rold) (4)

What this means is that in order to get the ratio when only the i-th parti-
cle has been moved, we only need to calculate the dot product of the vector
(ϕ1(rnew

i ), . . . , ϕN (rnew
i )) of single particle wave functions evaluated at this new

position with the i-th column of the inverse matrix D̂−1 evaluated at the original
position. Such an operation has a time scaling of O(N). The only extra thing
we need to do is to maintain the inverse matrix D̂−1(xold).

Efficient calculation of Slater determinants
If the new position rnew is accepted, then the inverse matrix can by suitably

updated by an algorithm having a time scaling of O(N2). This algorithm goes
as follows. First we update all but the i-th column of D̂−1. For each column
j ̸= i, we first calculate the quantity:

Sj = (D̂(rnew) × D̂−1(rold))ij =
N∑

l=1
dil(rnew) d−1

lj (rold)
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Efficient calculation of Slater determinants
The new elements of the j-th column of D̂−1 are then given by:

d−1
kj (rnew) = d−1

kj (rold) − Sj

R
d−1

ki (rold) ∀ k ∈ {1, . . . , N}
j ̸= i

Efficient calculation of Slater determinants
Finally the elements of the i-th column of D̂−1 are updated simply as follows:

d−1
ki (rnew) = 1

R
d−1

ki (rold) ∀ k ∈ {1, . . . , N}

We see from these formulas that the time scaling of an update of D̂−1 after
changing one row of D̂ is O(N2).

The scheme is also applicable for the calculation of the ratios involving
derivatives. It turns out that differentiating the Slater determinant with respect
to the coordinates of a single particle ri changes only the i-th row of the
corresponding Slater matrix.

The gradient and the Laplacian
The gradient and the Laplacian can therefore be calculated as follows:

∇⃗i|D̂(r)|
|D̂(r)|

=
N∑

j=1
∇⃗idij(r)d−1

ji (r) =
N∑

j=1
∇⃗iϕj(ri)d−1

ji (r)

and
∇2

i |D̂(r)|
|D̂(r)|

=
N∑

j=1
∇2

i dij(r)d−1
ji (r) =

N∑
j=1

∇2
iϕj(ri) d−1

ji (r)

How to compute the derivates of the Slater determinant
Thus, to calculate all the derivatives of the Slater determinant, we only need

the derivatives of the single particle wave functions (∇⃗iϕj(ri) and ∇2
iϕj(ri)) and

the elements of the corresponding inverse Slater matrix (D̂−1(ri)). A calculation
of a single derivative is by the above result an O(N) operation. Since there are
d · N derivatives, the time scaling of the total evaluation becomes O(d · N2).
With an O(N2) updating algorithm for the inverse matrix, the total scaling is
no worse, which is far better than the brute force approach yielding O(d ·N4).

Important note: In most cases you end with closed form expressions for
the single-particle wave functions. It is then useful to calculate the various
derivatives and make separate functions for them.
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The Slater determinant, example
The Slater determinant for atomic Beryllium could for example take the form

Φ(r1, r2, , r3, r4, α, β, γ, δ) = 1√
4!

∣∣∣∣∣∣∣∣
ψ100↑(r1) ψ100↑(r2) ψ100↑(r3) ψ100↑(r4)
ψ100↓(r1) ψ100↓(r2) ψ100↓(r3) ψ100↓(r4)
ψ200↑(r1) ψ200↑(r2) ψ200↑(r3) ψ200↑(r4)
ψ200↓(r1) ψ200↓(r2) ψ200↓(r3) ψ200↓(r4)

∣∣∣∣∣∣∣∣ .
This expression can lead to problems when we omit the spin degrees of freedom,
as is common in for example many atomic physics calculations. Leaving out
the spin degrees of freedom, the problem we may encounter is that of zero
determinants. But we can rewrite it as the product of two Slater determinants,
one for spin up and one for spin down.

Rewriting the Slater determinant
We can rewrite it as

Φ(r1, r2, , r3, r4, α, β, γ, δ) = det ↑ (1, 2) det ↓ (3, 4) − det ↑ (1, 3) det ↓ (2, 4)

− det ↑ (1, 4) det ↓ (3, 2) + det ↑ (2, 3) det ↓ (1, 4) − det ↑ (2, 4) det ↓ (1, 3)
+ det ↑ (3, 4) det ↓ (1, 2),

where we have defined

det ↑ (1, 2) = 1√
2

∣∣∣∣ ψ100↑(r1) ψ100↑(r2)
ψ200↑(r1) ψ200↑(r2)

∣∣∣∣ ,
and

det ↓ (3, 4) = 1√
2

∣∣∣∣ ψ100↓(r3) ψ100↓(r4)
ψ200↓(r3) ψ200↓(r4)

∣∣∣∣ .
Note that if we again leave out the spin degrees of freedom, the determinant is
still zero!

Splitting the Slater determinant
We want to avoid to sum over spin variables, in particular when the interaction

does not depend on spin.
It can be shown, see for example Moskowitz and Kalos, Int. J. Quantum

Chem. 20 1107 (1981), that for the variational energy we can approximate the
Slater determinant as

Φ(r1, r2, , r3, r4, α, β, γ, δ) ∝ det ↑ (1, 2) det ↓ (3, 4),

or more generally as

Φ(r1, r2, . . . rN ) ∝ det ↑ det ↓,

where we have the Slater determinant as the product of a spin up part involving
the number of electrons with spin up only (2 for beryllium and 5 for neon) and
a spin down part involving the electrons with spin down.
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Not respecting the symmetry
This ansatz is not antisymmetric under the exchange of electrons with opposite

spins but it can be shown (show this) that it gives the same expectation value
for the energy as the full Slater determinant.

As long as the Hamiltonian is spin independent, the above approach gives us
the same expectation value for the energy. It is rather straightforward to see
this if you go back to the equations for the energy. We leave this as an exercise
to the eager reader.

Can you think of observables where not respecting the symmetry can have
consequences?

Omitting or not omitting spin degrees of freedom
If we keep the spin degrees of freedom, which obviously leads to a more general
code, we would need to flip spins as well and deal with the full Slater determinant.
The above recipe is just a mere simplification to a case where we have identical
particles, the same spatial single-particle functions and the same number of
spin-up and spin-down fermions.

Restricted versus unrestricted
This is a situation which one encounters in for example a fermionic system like
a closed-shell nucleus like oxygen-16 or a neutral noble gas like helium or neon
with the same number of spin-up and spin-down orbitals and the same spatial
single-particle functions. The example discussed above for neutral Beryllium
where we fill the hydrogen-like states 1s and 2s, is yet another case.

For those of you familiar with Hartree-Fock theory, this is often referred to
as restricted Hartree-Fock theory. Unrestricted Hartree-Fock theory represents
then the more general case.

Spin up and spin down parts
The systems we will limit ourselves to, are all systems which can be described

by a restricted basis set, We will thus factorize the full determinant |D̂| into two
smaller ones, where each can be identified with ↑ and ↓ respectively:

|D̂| = |D̂|↑ · |D̂|↓

Factorization
The combined dimensionality of the two smaller determinants equals the

dimensionality of the full determinant. Such a factorization is advantageous
in that it makes it possible to perform the calculation of the ratio R and the
updating of the inverse matrix separately for |D̂|↑ and |D̂|↓:

|D̂|new

|D̂|old
=

|D̂|new
↑

|D̂|old
↑

·
|D̂|new

↓

|D̂|old
↓
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This reduces the calculation time by a constant factor. The maximal time
reduction happens in a system of equal numbers of ↑ and ↓ particles, so that the
two factorized determinants are half the size of the original one.

Number of operations
Consider the case of moving only one particle at a time which originally had

the following time scaling for one transition:

OR(N) +Oinverse(N2)

For the factorized determinants one of the two determinants is obviously unaf-
fected by the change so that it cancels from the ratio R.

Counting the number of FLOPS
Therefore, only one determinant of size N/2 is involved in each calculation of

R and update of the inverse matrix. The scaling of each transition then becomes:

OR(N/2) +Oinverse(N2/4)

and the time scaling when the transitions for all N particles are put together:

OR(N2/2) +Oinverse(N3/4)

which gives the same reduction as in the case of moving all particles at once.

Computation of ratios
Computing the ratios discussed above requires that we maintain the inverse

of the Slater matrix evaluated at the current position. Each time a trial position
is accepted, the row number i of the Slater matrix changes and updating its
inverse has to be carried out. Getting the inverse of an N × N matrix by
Gaussian elimination has a complexity of order of O(N3) operations, a luxury
that we cannot afford for each time a particle move is accepted. We will use the
expression

d−1
kj (xnew) =


d−1

kj (xold) − d−1
ki

(xold)
R

∑N
l=1 dil(xnew)d−1

lj (xold) if j ̸= i

d−1
ki

(xold)
R

∑N
l=1 dil(xold)d−1

lj (xold) if j = i

Scaling properties
This equation scales as O(N2). The evaluation of the determinant of an N×N

matrix by standard Gaussian elimination requires O(N3) calculations. As there
are Nd independent coordinates we need to evaluate Nd Slater determinants for
the gradient (quantum force) and Nd for the Laplacian (kinetic energy). With
the updating algorithm we need only to invert the Slater determinant matrix
once. This can be done by standard LU decomposition methods.
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How to get the determinant
Determining a determinant of an N ×N matrix by standard Gaussian elim-

ination is of the order of O(N3) calculations. As there are N · d independent
coordinates we need to evaluate Nd Slater determinants for the gradient (quan-
tum force) and N · d for the Laplacian (kinetic energy)

With the updating algorithm we need only to invert the Slater determinant
matrix once. This is done by calling standard LU decomposition methods.

Expectation value of the kinetic energy
The expectation value of the kinetic energy expressed in atomic units for

electron i is
⟨K̂i⟩ = −1

2
⟨Ψ|∇2

i |Ψ⟩
⟨Ψ|Ψ⟩

,

Ki = −1
2

∇2
i Ψ
Ψ .

∇2Ψ
Ψ = ∇2(ΨD ΨC)

ΨD ΨC
= ∇ · [∇(ΨD ΨC)]

ΨD ΨC
= ∇ · [ΨC∇ΨD + ΨD∇ΨC ]

ΨD ΨC

= ∇ΨC · ∇ΨD + ΨC∇2ΨD + ∇ΨD · ∇ΨC + ΨD∇2ΨC

ΨD ΨC

(5)

∇2Ψ
Ψ = ∇2ΨD

ΨD
+ ∇2ΨC

ΨC
+ 2∇ΨD

ΨD
· ∇ΨC

ΨC
(6)

Second derivative of the Jastrow factor
The second derivative of the Jastrow factor divided by the Jastrow factor (the

way it enters the kinetic energy) is[
∇2ΨC

ΨC

]
x

= 2
N∑

k=1

k−1∑
i=1

∂2gik

∂x2
k

+
N∑

k=1

(
k−1∑
i=1

∂gik

∂xk
−

N∑
i=k+1

∂gki

∂xi

)2

Functional form
But we have a simple form for the function, namely

ΨC =
∏
i<j

exp f(rij) = exp

∑
i<j

arij

1 + βrij

,
and it is easy to see that for particle k we have

∇2
kΨC

ΨC
=
∑
ij ̸=k

(rk − ri)(rk − rj)
rkirkj

f ′(rki)f ′(rkj) +
∑
j ̸=k

(
f ′′(rkj) + 2

rkj
f ′(rkj)

)
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Second derivative of the Jastrow factor
Using

f(rij) = arij

1 + βrij
,

and g′(rkj) = dg(rkj)/drkj and g′′(rkj) = d2g(rkj)/dr2
kj we find that for particle

k we have

∇2
kΨC

ΨC
=
∑
ij ̸=k

(rk − ri)(rk − rj)
rkirkj

a

(1 + βrki)2
a

(1 + βrkj)2 +
∑
j ̸=k

(
2a

rkj(1 + βrkj)2 − 2aβ
(1 + βrkj)3

)

Gradient and Laplacian
The gradient and Laplacian can be calculated as follows:

∇i|D̂(r)|
|D̂(r)|

=
N∑

j=1
∇⃗idij(r) d−1

ji (r) =
N∑

j=1
∇⃗iϕj(ri) d−1

ji (r)

and
∇2

i |D̂(r)|
|D̂(r)|

=
N∑

j=1
∇2

i dij(r) d−1
ji (r) =

N∑
j=1

∇2
iϕj(ri) d−1

ji (r)

The gradient for the determinant
The gradient for the determinant is

∇i|D̂(r)|
|D̂(r)|

=
N∑

j=1
∇idij(r) d−1

ji (r) =
N∑

j=1
∇iϕj(ri) d−1

ji (r).

Jastrow gradient in quantum force
We have

ΨC =
∏
i<j

g(rij) = exp

∑
i<j

arij

1 + βrij

,
the gradient needed for the quantum force and local energy is easy to compute.
We get for particle k

∇kΨC

ΨC
=
∑
j ̸=k

rkj

rkj

a

(1 + βrkj)2 ,

which is rather easy to code. Remember to sum over all particles when you
compute the local energy.
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Metropolis Hastings part
We need to compute the ratio between wave functions, in particular for the

Slater determinants.

R =
N∑

j=1
dij(rnew) d−1

ji (rold) =
N∑

j=1
ϕj(rnew

i ) d−1
ji (rold)

What this means is that in order to get the ratio when only the i-th parti-
cle has been moved, we only need to calculate the dot product of the vector
(ϕ1(rnew

i ), . . . , ϕN (rnew
i )) of single particle wave functions evaluated at this new

position with the i-th column of the inverse matrix D̂−1 evaluated at the original
position. Such an operation has a time scaling of O(N). The only extra thing
we need to do is to maintain the inverse matrix D̂−1(xold).

Proof for updating algorithm for Slater determinant
As a starting point we may consider that each time a new position is suggested

in the Metropolis algorithm, a row of the current Slater matrix experiences some
kind of perturbation. Hence, the Slater matrix with its orbitals evaluated at the
new position equals the old Slater matrix plus a perturbation matrix,

djk(xnew) = djk(xold) + ∆jk,

where
∆jk = δik[ϕj(xnew

i ) − ϕj(xold
i )] = δik(∆ϕ)j .

Proof for updating algorithm for Slater determinant
Computing the inverse of the transposed matrix we arrive at

dkj(xnew)−1 = [dkj(xold) + ∆kj ]−1. (7)

Proof for updating algorithm for Slater determinant
The evaluation of the right hand side (rhs) term above is carried out by

applying the identity (A+B)−1 = A−1 − (A+B)−1BA−1. In compact notation
it yields

[DT (xnew)]−1 = [DT (xold) + ∆T ]−1

= [DT (xold)]−1 − [DT (xold) + ∆T ]−1∆T [DT (xold)]−1

= [DT (xold)]−1 − [DT (xnew)]−1︸ ︷︷ ︸
By Eq.7

∆T [DT (xold)]−1.
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Proof for updating algorithm for Slater determinant
Using index notation, the last result may be expanded by

d−1
kj (xnew) = d−1

kj (xold) −
∑

l

∑
m

d−1
km(xnew)∆T

mld
−1
lj (xold)

= d−1
kj (xold) −

∑
l

∑
m

d−1
km(xnew)∆lmd

−1
lj (xcur)

= d−1
kj (xold) −

∑
l

∑
m

d−1
km(xnew)δim(∆ϕ)ld

−1
lj (xold)

= d−1
kj (xold) − d−1

ki (xnew)
N∑

l=1
(∆ϕ)ld

−1
lj (xold)

= d−1
kj (xold) − d−1

ki (xnew)
N∑

l=1
[ϕl(rnew

i ) − ϕl(rold
i )]D−1

lj (xold).

Proof for updating algorithm for Slater determinant
Using

D−1(xold) = adjD
|D(xold)| and D−1(xnew) = adjD

|D(xnew)| ,

and dividing these two equations we get

D−1(xold)
D−1(xnew) = |D(xnew)|

|D(xold)| = R ⇒ d−1
ki (xnew) =

d−1
ki (xold)
R

.

Proof for updating algorithm for Slater determinant
We have

d−1
kj (xnew) = d−1

kj (xold) −
d−1

ki (xold)
R

N∑
l=1

[ϕl(rnew
i ) − ϕl(rold

i )]d−1
lj (xold),

or

d−1
kj (xnew) = d−1

kj (xold) −
d−1

ki (xold)
R

N∑
l=1

ϕl(rnew
i )d−1

lj (xold)

+
d−1

ki (xold)
R

N∑
l=1

ϕl(rold
i )d−1

lj (xold)

= d−1
kj (xold) −

d−1
ki (xold)
R

N∑
l=1

dil(xnew)d−1
lj (xold)

+
d−1

ki (xold)
R

N∑
l=1

dil(xold)d−1
lj (xold).
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Proof for updating algorithm for Slater determinant
In this equation, the first line becomes zero for j = i and the second for j ≠ i.

Therefore, the update of the inverse for the new Slater matrix is given by

d−1
kj (xnew) =


d−1

kj (xold) − d−1
ki

(xold)
R

∑N
l=1 dil(xnew)d−1

lj (xold) if j ̸= i

d−1
ki

(xold)
R

∑N
l=1 dil(xold)d−1

lj (xold) if j = i
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