
Week 4 January 22-26, Building a
Variational Monte Carlo program

Morten Hjorth-Jensen Email morten.hjorth-jensen@fys.uio.no1,2

1Department of Physics and Center fo Computing in Science Education, University of Oslo, Oslo, Norway
2Department of Physics and Astronomy and Facility for Rare Ion Beams, Michigan State University, East Lansing, Michigan, USA

January 26

Overview of week 4, January 22-26
Topics.

• Repetition from last week and links to code templates in python and C++

• Essential ingredients: Variational Monte Carlo methods, Metropolis Algo-
rithm, statistics and Markov Chain theory

• How to structure the VMC code

Teaching Material, videos and written material.

• These notes

• Video of lecture

• Handwritten note

Code templates for first project
1. The C++ template

2. The python template, using JAX

© 1999-2024, Morten Hjorth-Jensen Email morten.hjorth-jensen@fys.uio.no. Released under
CC Attribution-NonCommercial 4.0 license

https://youtu.be/c4iOt3mQbbE
https://github.com/CompPhysics/ComputationalPhysics2/blob/gh-pages/doc/HandWrittenNotes/2024/NotesJanuary26.pdf
https://github.com/mortele/variational-monte-carlo-fys4411
https://github.com/Daniel-Haas-B/FYS4411-Template

Basic Quantum Monte Carlo, repetition from last week
We start with the variational principle. Given a hamiltonian H and a trial wave
function ΨT (R;α), the variational principle states that the expectation value of
E [H], defined through

E [H] =
∫

⌈R⊖∗
T (R;α)H(R)⊖T (R;α)∫

⌈R⊖∗
T (R;α)⊖T (R;α)

,

is an upper bound to the ground state energy E0 of the hamiltonian H, that is

E0 ≤ E [H].

Multi-dimensional integrals
In general, the integrals involved in the calculation of various expectation values
are multi-dimensional ones. Traditional integration methods such as Gauss-
Legendre quadrature will not be adequate for say the computation of the energy
of a many-body system.

Here we have defined the vector R = [r1, r2, . . . , rn] as an array that contains
the positions of all particles n while the vector α = [α1, α2, . . . , αm] contains
the variational parameters of the model, m in total.

Trail functions
The trial wave function can be expanded in the eigenstates Ψi(R) of the hamil-
tonian since they form a complete set, viz.,

ΨT (R;α) =
∑

i

aiΨi(R),

and assuming that the set of eigenfunctions are normalized, one obtains∑
nm a∗

man

∫
dRΨ∗

m(R)H(R)Ψn(R)∑
nm a∗

man

∫
dRΨ∗

m(R)Ψn(R)
=
∑

n a
2
nEn∑

n a
2
n

≥ E0,

where we used that H(R)Ψn(R) = EnΨn(R).

Variational principle
The variational principle yields the lowest energy of states with a given symmetry.

In most cases, a wave function has only small values in large parts of con-
figuration space, and a straightforward procedure which uses homogenously
distributed random points in configuration space will most likely lead to poor
results. This may suggest that some kind of importance sampling combined
with e.g., the Metropolis algorithm may be a more efficient way of obtaining the
ground state energy. The hope is then that those regions of configurations space
where the wave function assumes appreciable values are sampled more efficiently.

2

Tedious parts of VMC calculations
The tedious part in a VMC calculation is the search for the variational minimum.
A good knowledge of the system is required in order to carry out reasonable VMC
calculations. This is not always the case, and often VMC calculations serve rather
as the starting point for so-called diffusion Monte Carlo calculations (DMC).
Diffusion Monte Carlo is a way of solving exactly the many-body Schroedinger
equation by means of a stochastic procedure. A good guess on the binding
energy and its wave function is however necessary. A carefully performed VMC
calculation can aid in this context.

Bird’s eye view on Variational MC
The basic procedure of a Variational Monte Carlo calculations consists thus of

1. Construct first a trial wave function ψT (R;α), for a many-body system
consisting of n particles located at positions R = (R1, . . . ,Rn). The trial
wave function depends on α variational parameters α = (α1, . . . , αM).

2. Then we evaluate the expectation value of the hamiltonian H

E[α] =
∫
dRΨ∗

T (R,α)H(R)ΨT (R,α)∫
dRΨ∗

T (R,α)ΨT (R,α)
.

1. Thereafter we vary α according to some minimization algorithm and return
eventually to the first step if we are not satisfied with the results.

Here we have used the notation E to label the expectation value of the energy.

Linking with standard statistical expressions for expectation
values
In order to bring in the Monte Carlo machinery, we define first a likelihood
distribution, or probability density distribution (PDF). Using our ansatz for the
trial wave function ψT (R;α) we define a PDF

P (R) = |ψT (R;α)|2∫
|ψT (R;α)|2 dR

.

This is our model for probability distribution function. The approximation to
the expectation value of the Hamiltonian is now

E[α] =
∫
dRΨ∗

T (R;α)H(R)ΨT (R;α)∫
dRΨ∗

T (R;α)ΨT (R;α)
.

3

The local energy
We define a new quantity

EL(R;α) = 1
ψT (R;α)HψT (R;α),

called the local energy, which, together with our trial PDF yields a new expression
(and which look simlar to the the expressions for moments in statistics)

E[α] =
∫
P (R)EL(R;α)dR ≈ 1

N

N∑
i=1

EL(Ri;α)

with N being the number of Monte Carlo samples. The expression on the right
hand side follows from Bernoulli’s law of large numbers, which states that the
sample mean, in the limit N → ∞ approaches the true mean

The Monte Carlo algorithm
The Algorithm for performing a variational Monte Carlo calculations runs as
this

• Initialisation: Fix the number of Monte Carlo steps. Choose an initial R
and variational parameters α and calculate |ψα

T (R)|2.

• Initialise the energy and the variance and start the Monte Carlo calculation.

– Calculate a trial position Rp = R + r ∗ step where r is a random
variable r ∈ [0, 1].

– Metropolis algorithm to accept or reject this move w = P (Rp)/P (R).
– If the step is accepted, then we set R = Rp.
– Update averages

• Finish and compute final averages.

Observe that the jumping in space is governed by the variable step. This is often
referred to as the brute-force sampling and is normally replaced by what is
called importance sampling, discussed in more detail next week..

Example from last week, the harmonic oscillator in one
dimension (best seen with jupyter-notebook)
We present here a well-known example, the harmonic oscillator in one dimension
for one particle. This will also serve the aim of introducing our next model,
namely that of interacting electrons in a harmonic oscillator trap.

4

Here as well, we do have analytical solutions and the energy of the ground
state, with ℏ = 1, is 1/2ω, with ω being the oscillator frequency. We use the
following trial wave function

ψT (x;α) = exp −(1
2α

2x2),

which results in a local energy

1
2
(
α2 + x2(1 − α4)

)
.

We can compare our numerically calculated energies with the exact energy as
function of α

E[α] = 1
4

(
α2 + 1

α2

)
.

Similarly, with the above ansatz, we can also compute the exact variance which
reads

σ2[α] = 1
4

(
1 + (1 − α4)2 3

4α4

)
− E.

Our code for computing the energy of the ground state of the harmonic oscillator
follows here. We start by defining directories where we store various outputs.

Common imports
import os

Where to save the figures and data files
PROJECT_ROOT_DIR = "Results"
FIGURE_ID = "Results/FigureFiles"
DATA_ID = "Results/VMCHarmonic"

if not os.path.exists(PROJECT_ROOT_DIR):
os.mkdir(PROJECT_ROOT_DIR)

if not os.path.exists(FIGURE_ID):
os.makedirs(FIGURE_ID)

if not os.path.exists(DATA_ID):
os.makedirs(DATA_ID)

def image_path(fig_id):
return os.path.join(FIGURE_ID, fig_id)

def data_path(dat_id):
return os.path.join(DATA_ID, dat_id)

def save_fig(fig_id):
plt.savefig(image_path(fig_id) + ".png", format='png')

outfile = open(data_path("VMCHarmonic.dat"),'w')

We proceed with the implementation of the Monte Carlo algorithm but list
first the ansatz for the wave function and the expression for the local energy

5

VMC for the one-dimensional harmonic oscillator
Brute force Metropolis, no importance sampling and no energy minimization
from math import exp, sqrt
from random import random, seed
import numpy as np
import matplotlib.pyplot as plt
from decimal import *
Trial wave function for the Harmonic oscillator in one dimension
def WaveFunction(r,alpha):

return exp(-0.5*alpha*alpha*r*r)

Local energy for the Harmonic oscillator in one dimension
def LocalEnergy(r,alpha):

return 0.5*r*r*(1-alpha**4) + 0.5*alpha*alpha

Note that in the Metropolis algorithm there is no need to compute the trial
wave function, mainly since we are just taking the ratio of two exponentials. It is
then from a computational point view, more convenient to compute the argument
from the ratio and then calculate the exponential. Here we have refrained from
this purely of pedagogical reasons.

The Monte Carlo sampling with the Metropolis algo
def MonteCarloSampling():

NumberMCcycles= 100000
StepSize = 1.0
positions
PositionOld = 0.0
PositionNew = 0.0

seed for rng generator
seed()
start variational parameter
alpha = 0.4
for ia in range(MaxVariations):

alpha += .05
AlphaValues[ia] = alpha
energy = energy2 = 0.0
#Initial position
PositionOld = StepSize * (random() - .5)
wfold = WaveFunction(PositionOld,alpha)
#Loop over MC MCcycles
for MCcycle in range(NumberMCcycles):

#Trial position
PositionNew = PositionOld + StepSize*(random() - .5)
wfnew = WaveFunction(PositionNew,alpha)
#Metropolis test to see whether we accept the move
if random() <= wfnew**2 / wfold**2:

PositionOld = PositionNew
wfold = wfnew

DeltaE = LocalEnergy(PositionOld,alpha)
energy += DeltaE
energy2 += DeltaE**2

#We calculate mean, variance and error
energy /= NumberMCcycles
energy2 /= NumberMCcycles
variance = energy2 - energy**2

6

error = sqrt(variance/NumberMCcycles)
Energies[ia] = energy
Variances[ia] = variance
outfile.write('%f %f %f %f \n' %(alpha,energy,variance,error))

return Energies, AlphaValues, Variances

Finally, the results are presented here with the exact energies and variances
as well.

#Here starts the main program with variable declarations
MaxVariations = 20
Energies = np.zeros((MaxVariations))
ExactEnergies = np.zeros((MaxVariations))
ExactVariance = np.zeros((MaxVariations))
Variances = np.zeros((MaxVariations))
AlphaValues = np.zeros(MaxVariations)
(Energies, AlphaValues, Variances) = MonteCarloSampling()
outfile.close()
ExactEnergies = 0.25*(AlphaValues*AlphaValues+1.0/(AlphaValues*AlphaValues))
ExactVariance = 0.25*(1.0+((1.0-AlphaValues**4)**2)*3.0/(4*(AlphaValues**4)))-ExactEnergies*ExactEnergies

#simple subplot
plt.subplot(2, 1, 1)
plt.plot(AlphaValues, Energies, 'o-',AlphaValues, ExactEnergies,'r-')
plt.title('Energy and variance')
plt.ylabel('Dimensionless energy')
plt.subplot(2, 1, 2)
plt.plot(AlphaValues, Variances, '.-',AlphaValues, ExactVariance,'r-')
plt.xlabel(r'α', fontsize=15)
plt.ylabel('Variance')
save_fig("VMCHarmonic")
plt.show()
#nice printout with Pandas
import pandas as pd
from pandas import DataFrame
data ={'Alpha':AlphaValues, 'Energy':Energies,'Exact Energy':ExactEnergies,'Variance':Variances,'Exact Variance':ExactVariance,}
frame = pd.DataFrame(data)
print(frame)

For α = 1 we have the exact eigenpairs, as can be deduced from the table
here. With ω = 1, the exact energy is 1/2 a.u. with zero variance, as it should.
We see also that our computed variance follows rather well the exact variance.
Increasing the number of Monte Carlo cycles will improve our statistics (try to
increase the number of Monte Carlo cycles).

The fact that the variance is exactly equal to zero when α = 1 is that we
then have the exact wave function, and the action of the hamiltionan on the
wave function

Hψ = constant × ψ,

yields just a constant. The integral which defines various expectation values
involving moments of the hamiltonian becomes then

⟨Hn⟩ =
∫
dRΨ∗

T (R)Hn(R)ΨT (R)∫
dRΨ∗

T (R)ΨT (R)
= constant×

∫
dRΨ∗

T (R)ΨT (R)∫
dRΨ∗

T (R)ΨT (R)
= constant.

7

This gives an important information: the exact wave function leads to
zero variance! As we will see below, many practitioners perform a minimization
on both the energy and the variance.

Why Markov chains, Brownian motion and the Metropolis
algorithm

• We want to study a physical system which evolves towards equilibrium,
from given initial conditions.

• We start with a PDF w(x0, t0) and we want to understand how the system
evolves with time.

• We want to reach a situation where after a given number of time steps we
obtain a steady state. This means that the system reaches its most likely
state (equilibrium situation)

• Our PDF is normally a multidimensional object whose normalization
constant is impossible to find.

• Analytical calculations from w(x, t) are not possible.

• To sample directly from from w(x, t) is not possible/difficult.

• The transition probability W is also not known.

• How can we establish that we have reached a steady state? Sounds
impossible!

Use Markov chain Monte Carlo

Brownian motion and Markov processes
A Markov process is a random walk with a selected probability for making a
move. The new move is independent of the previous history of the system.

The Markov process is used repeatedly in Monte Carlo simulations in order
to generate new random states.

The reason for choosing a Markov process is that when it is run for a long
enough time starting with a random state, we will eventually reach the most
likely state of the system.

In thermodynamics, this means that after a certain number of Markov
processes we reach an equilibrium distribution.

This mimicks the way a real system reaches its most likely state at a given
temperature of the surroundings.

8

Brownian motion and Markov processes, Ergodicity and
Detailed balance
To reach this distribution, the Markov process needs to obey two important
conditions, that of ergodicity and detailed balance. These conditions impose
then constraints on our algorithms for accepting or rejecting new random states.

The Metropolis algorithm discussed here abides to both these constraints.
The Metropolis algorithm is widely used in Monte Carlo simulations and the

understanding of it rests within the interpretation of random walks and Markov
processes.

For a proof the ergodic theorem see https://www.pnas.org/doi/10.1073/
pnas.17.2.656.

Brownian motion and Markov processes, jargon
In a random walk one defines a mathematical entity called a walker, whose
attributes completely define the state of the system in question.

The state of the system can refer to any physical quantities, from the
vibrational state of a molecule specified by a set of quantum numbers, to
the brands of coffee in your favourite supermarket.

The walker moves in an appropriate state space by a combination of deter-
ministic and random displacements from its previous position.

This sequence of steps forms a chain.

Brownian motion and Markov processes, sequence of ingre-
dients

• We want to study a physical system which evolves towards equilibrium,
from given initial conditions.

• Markov chains are intimately linked with the physical process of diffusion.

• From a Markov chain we can then derive the conditions for detailed balance
and ergodicity. These are the conditions needed for obtaining a steady
state.

• The widely used algorithm for doing this is the so-called Metropolis algo-
rithm, in its refined form the Metropolis-Hastings algorithm.

Applications: almost every field in science
• Financial engineering, see for example Patriarca et al, Physica 340, page

334 (2004).

• Neuroscience, see for example Lipinski, Physics Medical Biology 35, page
441 (1990) or Farnell and Gibson, Journal of Computational Physics 208,
page 253 (2005)

9

https://www.pnas.org/doi/10.1073/pnas.17.2.656
https://www.pnas.org/doi/10.1073/pnas.17.2.656
http://www.sciencedirect.com/science/article/pii/S0378437104004327
http://www.sciencedirect.com/science/article/pii/S0378437104004327
http://iopscience.iop.org/article/10.1088/0031-9155/35/3/012/meta;jsessionid=FA91B191036E1F10948F7C42B6A6D295.c1
http://iopscience.iop.org/article/10.1088/0031-9155/35/3/012/meta;jsessionid=FA91B191036E1F10948F7C42B6A6D295.c1
http://www.sciencedirect.com/science/article/pii/S0021999105001087

• Tons of applications in physics

• and chemistry

• and biology, medicine

• Nobel prize in economy to Black and Scholes

∂V

∂t
+ 1

2σ
2S2 ∂

2V

∂S2 + rS
∂V

∂S
− rV = 0.

The Black and Scholes equation is a partial differential equation, which describes
the price of the option over time. It is a diffusion equation with a random term.

The list of applications is endless

Markov processes
A Markov process allows in principle for a microscopic description of Brownian

motion. As with the random walk studied in the previous section, we consider a
particle which moves along the x-axis in the form of a series of jumps with step
length ∆x = l. Time and space are discretized and the subsequent moves are
statistically independent, i.e., the new move depends only on the previous step
and not on the results from earlier trials. We start at a position x = jl = j∆x
and move to a new position x = i∆x during a step ∆t = ϵ, where i ≥ 0 and
j ≥ 0 are integers. The original probability distribution function (PDF) of the
particles is given by wi(t = 0) where i refers to a specific position on the grid in

The function wi(t = 0) is now the discretized version of w(x, t). We can
regard the discretized PDF as a vector.

Markov processes
For the Markov process we have a transition probability from a position x = jl

to a position x = il given by

Wij(ϵ) = W (il − jl, ϵ) =
{ 1

2 |i− j| = 1
0 else ,

where Wij is normally called the transition probability and we can represent
it, see below, as a matrix. Here we have specialized to a case where the
transition probability is known.

Our new PDF wi(t = ϵ) is now related to the PDF at t = 0 through the
relation

wi(t = ϵ) =
∑

j

W (j → i)wj(t = 0).

This equation represents the discretized time-development of an original PDF
with equal probability of jumping left or right.

10

Markov processes, the probabilities
Since both W and w represent probabilities, they have to be normalized, i.e.,

we require that at each time step we have∑
i

wi(t) = 1,

and ∑
j

W (j → i) = 1,

which applies for all j-values. The further constraints are 0 ≤ Wij ≤ 1 and
0 ≤ wj ≤ 1. Note that the probability for remaining at the same place is in
general not necessarily equal zero.

Markov processes
The time development of our initial PDF can now be represented through the

action of the transition probability matrix applied n times. At a time tn = nϵ
our initial distribution has developed into

wi(tn) =
∑

j

Wij(tn)wj(0),

and defining

W (il − jl, nϵ) = (Wn(ϵ))ij

we obtain

wi(nϵ) =
∑

j

(Wn(ϵ))ijwj(0),

or in matrix form
w(nϵ) = W n(ϵ)w(0). (1)

An Illustrative Example
The following simple example may help in understanding the meaning of the

transition matrix Ŵ and the vector ŵ. Consider the 4 × 4 matrix Ŵ

W =

1/4 1/9 3/8 1/3
2/4 2/9 0 1/3
0 1/9 3/8 0

1/4 5/9 2/8 1/3

 ,

and we choose our initial state as

11

w(t = 0) =

1
0
0
0

 .

An Illustrative Example
We note that both the vector and the matrix are properly normalized. Sum-

ming the vector elements gives one and summing over columns for the matrix
results also in one. Furthermore, the largest eigenvalue is one. We act then on
w with W . The first iteration is

w(t = ϵ) = Ww(t = 0),

resulting in

w(t = ϵ) =

1/4
1/2
0

1/4

 .

An Illustrative Example, next step
The next iteration results in

w(t = 2ϵ) = Ww(t = ϵ),

resulting in

w(t = 2ϵ) =

0.201389
0.319444
0.055556
0.423611

 .

Note that the vector w is always normalized to 1.

An Illustrative Example, the steady state
We find the steady state of the system by solving the set of equations

w(t = ∞) = Ww(t = ∞),

12

which is an eigenvalue problem with eigenvalue equal to one! This set of
equations reads

W11w1(t = ∞) +W12w2(t = ∞) +W13w3(t = ∞) +W14w4(t = ∞) =w1(t = ∞)
W21w1(t = ∞) +W22w2(t = ∞) +W23w3(t = ∞) +W24w4(t = ∞) =w2(t = ∞)
W31w1(t = ∞) +W32w2(t = ∞) +W33w3(t = ∞) +W34w4(t = ∞) =w3(t = ∞)
W41w1(t = ∞) +W42w2(t = ∞) +W43w3(t = ∞) +W44w4(t = ∞) =w4(t = ∞)

(2)

with the constraint that ∑
i

wi(t = ∞) = 1,

yielding as solution

w(t = ∞) =

0.244318
0.319602
0.056818
0.379261

 .

Code for the iterative process
from matplotlib import pyplot as plt
import numpy as np

Define dimension of matrix and vectors
Dim = 4
#Setting up a transition probability matrix
TransitionMatrix = np.matrix('0.25 0.1111 0.375 0.3333; 0.5 0.2222 0.0 0.3333; 0.0 0.1111 0.375 0.0; 0.25 0.5556 0.25 0.3334')
Making a copy of the transition matrix
W = TransitionMatrix
print(W)
our first state
wold = np.zeros(Dim)
wold[0] = 1.0
wnew = np.zeros(Dim)

diagonalize and obtain eigenvalues, not necessarily sorted
EigValues, EigVectors = np.linalg.eig(TransitionMatrix)
sort eigenvectors and eigenvalues
permute = EigValues.argsort()
EigValues = EigValues[permute]
EigVectors = EigVectors[:,permute]
for i in range(Dim):

print(EigValues[i])

count = 0
while count < 20:

for i in range(Dim):
wnew[i] = W[i,:] @ wold

count = count + 1
print(count, wnew)

13

wold = wnew

Small exercise
Write a small code which diagonalized the matrix W and find the eigenpairs anc
ompare the coefficients wi. Note: You may need to normalize the eigenvectors
from the diagonalization procedure. What is the largest eigenvalue?

What do the results mean?
We have after t-steps

w(t) = W tw(0),

with w(0) the distribution at t = 0 and W representing the transition probability
matrix.

Understanding the basics
We can always expand w(0) in terms of the right eigenvectors v of W as

w(0) =
∑

i

αivi,

resulting in

w(t) = W tw(0) = W t
∑

i

αivi =
∑

i

λt
iαivi,

with λi the ith eigenvalue corresponding to the eigenvector vi.
If we assume that λ0 is the largest eigenvector we see that in the limit t → ∞,

w(t) becomes proportional to the corresponding eigenvector v0. This is our
steady state or final distribution.

Basics of the Metropolis Algorithm
The Metropolis algorithm is a method to sample a normalized probability
distribution by a stochastic process. We define ⊒(n)

i to be the probability for
finding the system in the state i at step n.

In the simulations, our assumption is that we have a model for ⊒(n)
i , but we

do not know W . We will hence model W in terms of a likelihood for making
transition T and a likelihood for accepting a transition. That is

Wi→j = Ai→jTi→j

14

The basic of the Metropolis Algorithm
• Sample a possible new state j with some probability Ti→j .

• Accept the new state j with probability Ai→j and use it as the next sample.

• With probability 1 −Ai→j the move is rejected and the original state i is
used again as a sample.

We wish to derive the required properties of T and A such that ⊒(n→∞)
i → pi so

that starting from any distribution, the method converges to the correct distri-
bution. Note that the description here is for a discrete probability distribution.
Replacing probabilities pi with expressions like p(xi)dxi will take all of these
over to the corresponding continuum expressions.

More on the Metropolis
The dynamical equation for ⊒(n)

i can be written directly from the description
above. The probability of being in the state i at step n is given by the probability
of being in any state j at the previous step, and making an accepted transition
to i added to the probability of being in the state i, making a transition to any
state j and rejecting the move:

⊒(n)
i =

∑
j

[
⊒(n−1)

j Tj→iAj→i + ⊒(n−1)
i Ti→j (1 −Ai→j)

]
. (3)

Metropolis algorithm, setting it up
Since the probability of making some transition must be 1,

∑
j Ti→j = 1, and

Eq. (3) becomes

⊒(n)
i = ⊒(n−1)

i +
∑

j

[
⊒(n−1)

j Tj→iAj→i − ⊒(n−1)
i Ti→jAi→j

]
. (4)

Metropolis continues
For large n we require that ⊒(n→∞)

i = pi, the desired probability distribution.
Taking this limit, gives the balance requirement∑

j

[pjTj→iAj→i − piTi→jAi→j] = 0, (5)

Detailed Balance
The balance requirement is very weak. Typically the much stronger detailed
balance requirement is enforced, that is rather than the sum being set to zero,
we set each term separately to zero and use this to determine the acceptance
probabilities. Rearranging, the result is

15

Aj→i

Ai→j
= piTi→j

pjTj→i
. (6)

This is the detailed balance requirement

More on Detailed Balance
The Metropolis choice is to maximize the A values, that is

Aj→i = min
(

1, piTi→j

pjTj→i

)
. (7)

Other choices are possible, but they all correspond to multilplying Ai→j and
Aj→i by the same constant smaller than unity. The penalty function method
uses just such a factor to compensate for pi that are evaluated stochastically
and are therefore noisy.

Having chosen the acceptance probabilities, we have guaranteed that if the
⊒(n)

i has equilibrated, that is if it is equal to pi, it will remain equilibrated. Next
we need to find the circumstances for convergence to equilibrium.

Dynamical Equation
The dynamical equation can be written as

⊒(n)
i =

∑
j

Mij⊒(n−1)
j (8)

with the matrix M given by

Mij = δij

[
1 −

∑
k

Ti→kAi→k

]
+ Tj→iAj→i . (9)

Summing over i shows that
∑

i Mij = 1, and since
∑

k Ti→k = 1, and
Ai→k ≤ 1, the elements of the matrix satisfy Mij ≥ 0. The matrix M is
therefore a stochastic matrix.

Interpreting the Metropolis Algorithm
The Metropolis method is simply the power method for computing the right
eigenvector of M with the largest magnitude eigenvalue. By construction, the
correct probability distribution is a right eigenvector with eigenvalue 1. Therefore,
for the Metropolis method to converge to this result, we must show that M has
only one eigenvalue with this magnitude, and all other eigenvalues are smaller.

Even a defective matrix has at least one left and right eigenvector for each
eigenvalue. An example of a defective matrix is[

0 1
0 0

]
,

16

https://cims.nyu.edu/~holmes/teaching/asa19/handout_Lecture3_2019.pdf

with two zero eigenvalues, only one right eigenvector[
1
0

]
and only one left eigenvector (0 1).

Gershgorin bounds and Metropolis
The Gershgorin bounds for the eigenvalues can be derived by multiplying on the
left with the eigenvector with the maximum and minimum eigenvalues,

∑
i

ψmax
i Mij =λmaxψ

max
j∑

i

ψmin
i Mij =λminψ

min
j (10)

Normalizing the Eigenvectors
Next we choose the normalization of these eigenvectors so that the largest element
(or one of the equally largest elements) has value 1. Let’s call this element k,
and we can therefore bound the magnitude of the other elements to be less than
or equal to 1. This leads to the inequalities, using the property that Mij ≥ 0,

∑
i

Mik ≤ λmax

Mkk −
∑
i̸=k

Mik ≥ λmin (11)

where the equality from the maximum will occur only if the eigenvector takes
the value 1 for all values of i where Mik ̸= 0, and the equality for the minimum
will occur only if the eigenvector takes the value -1 for all values of i ̸= k where
Mik ̸= 0.

More Metropolis analysis
That the maximum eigenvalue is 1 follows immediately from the property that∑

i Mik = 1. Similarly the minimum eigenvalue can be -1, but only if Mkk = 0
and the magnitude of all the other elements ψmin

i of the eigenvector that multiply
nonzero elements Mik are -1.

Let’s first see what the properties of M must be to eliminate any -1 eigenvalues.
To have a -1 eigenvalue, the left eigenvector must contain only ±1 and 0 values.
Taking in turn each ±1 value as the maximum, so that it corresponds to the index
k, the nonzero Mik values must correspond to i index values of the eigenvector
which have opposite sign elements. That is, the M matrix must break up into

17

sets of states that always make transitions from set A to set B ... back to set A.
In particular, there can be no rejections of these moves in the cycle since the
-1 eigenvalue requires Mkk = 0. To guarantee no eigenvalues with eigenvalue
-1, we simply have to make sure that there are no cycles among states. Notice
that this is generally trivial since such cycles cannot have any rejections at any
stage. An example of such a cycle is sampling a noninteracting Ising spin. If
the transition is taken to flip the spin, and the energy difference is zero, the
Boltzmann factor will not change and the move will always be accepted. The
system will simply flip from up to down to up to down ad infinitum. Including
a rejection probability or using a heat bath algorithm immediately fixes the
problem.

Final Considerations I
Next we need to make sure that there is only one left eigenvector with eigenvalue
1. To get an eigenvalue 1, the left eigenvector must be constructed from only
ones and zeroes. It is straightforward to see that a vector made up of ones
and zeroes can only be an eigenvector with eigenvalue 1 if the matrix element
Mij = 0 for all cases where ψi ̸= ψj . That is we can choose an index i and
take ψi = 1. We require all elements ψj where Mij ̸= 0 to also have the value
1. Continuing we then require all elements ψℓ Mjℓ to have value 1. Only if
the matrix M can be put into block diagonal form can there be more than one
choice for the left eigenvector with eigenvalue 1. We therefore require that the
transition matrix not be in block diagonal form. This simply means that we
must choose the transition probability so that we can get from any allowed state
to any other in a series of transitions.

Final Considerations II
Finally, we note that for a defective matrix, with more eigenvalues than indepen-
dent eigenvectors for eigenvalue 1, the left and right eigenvectors of eigenvalue 1
would be orthogonal. Here the left eigenvector is all 1 except for states that can
never be reached, and the right eigenvector is pi > 0 except for states that give
zero probability. We already require that we can reach all states that contribute
to pi. Therefore the left and right eigenvectors with eigenvalue 1 do not corre-
spond to a defective sector of the matrix and they are unique. The Metropolis
algorithm therefore converges exponentially to the desired distribution.

Final Considerations III
The requirements for the transition Ti→j are

• A series of transitions must let us to get from any allowed state to any
other by a finite series of transitions.

• The transitions cannot be grouped into sets of states, A, B, C ,... such
that transitions from A go to B, B to C etc and finally back to A. With

18

condition (a) satisfied, this condition will always be satisfied if either
Ti→i ̸= 0 or there are some rejected moves.

The system: two particles (fermions normally) in a harmonic
oscillator trap in two dimensions
The Hamiltonian of the quantum dot is given by

Ĥ = Ĥ0 + V̂ ,

where Ĥ0 is the many-body HO Hamiltonian, and V̂ is the inter-electron Coulomb
interactions. In dimensionless units,

V̂ =
N∑

i<j

1
rij
,

with rij =
√

r2
i − r2

j .

Separating the degrees of freedom
This leads to the separable Hamiltonian, with the relative motion part given by
(rij = r)

Ĥr = −∇2
r + 1

4ω
2r2 + 1

r
,

plus a standard Harmonic Oscillator problem for the center-of-mass motion.
This system has analytical solutions in two and three dimensions (M. Taut 1993
and 1994).

Variational Monte Carlo code (best seen with jupyter-
notebook)
We want to perform a Variational Monte Carlo calculation of the ground state of
two electrons in a quantum dot well with different oscillator energies, assuming
total spin S = 0. Our trial wave function has the following form

ψT (r1, r2) = C exp
(
−α1ω(r2

1 + r2
2)/2

)
exp

(
r12

(1 + α2r12)

)
, (12)

where the αs represent our variational parameters, two in this case.
Why does the trial function look like this? How did we get there? This will

be one of our main motivations for switching to Machine Learning later.
To find an ansatz for the correlated part of the wave function, it is useful to

rewrite the two-particle local energy in terms of the relative and center-of-mass
motion. Let us denote the relative distance between the two electrons as r12.
We omit the center-of-mass motion since we are only interested in the case when

19

https://journals.aps.org/pra/abstract/10.1103/PhysRevA.48.3561
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.48.3561

r12 → 0. The contribution from the center-of-mass (CoM) variable RCoM gives
only a finite contribution. We focus only on the terms that are relevant for r12
and for three dimensions.

The relevant local energy becomes then

lim
r12→0

EL(R) = 1
RT (r12)

(
2 d2

dr2
ij

+ 4
rij

d

drij
+ 2
rij

− l(l + 1)
r2

ij

+ 2E
)

RT (r12) = 0.

Set l = 0 and we have the so-called cusp condition

dRT (r12)
dr12

= − 1
2(l + 1)RT (r12) r12 → 0

The above results in
RT ∝ exp (rij/2),

for anti-parallel spins and
RT ∝ exp (rij/4),

for anti-parallel spins. This is the so-called cusp condition for the relative
motion, resulting in a minimal requirement for the correlation part of the wave
fuction. For general systems containing more than say two electrons, we have
this condition for each electron pair ij.

First code attempt for the two-electron case
First, as with the hydrogen case, we declare where to store files.

Common imports
import os

Where to save the figures and data files
PROJECT_ROOT_DIR = "Results"
FIGURE_ID = "Results/FigureFiles"
DATA_ID = "Results/VMCQdotMetropolis"

if not os.path.exists(PROJECT_ROOT_DIR):
os.mkdir(PROJECT_ROOT_DIR)

if not os.path.exists(FIGURE_ID):
os.makedirs(FIGURE_ID)

if not os.path.exists(DATA_ID):
os.makedirs(DATA_ID)

def image_path(fig_id):
return os.path.join(FIGURE_ID, fig_id)

def data_path(dat_id):
return os.path.join(DATA_ID, dat_id)

def save_fig(fig_id):
plt.savefig(image_path(fig_id) + ".png", format='png')

outfile = open(data_path("VMCQdotMetropolis.dat"),'w')

20

Thereafter we set up the analytical expressions for the wave functions and
the local energy

2-electron VMC for quantum dot system in two dimensions
Brute force Metropolis, no importance sampling and no energy minimization
from math import exp, sqrt
from random import random, seed
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from matplotlib import cm
from matplotlib.ticker import LinearLocator, FormatStrFormatter
import sys

Trial wave function for the 2-electron quantum dot in two dims
def WaveFunction(r,alpha,beta):

r1 = r[0,0]**2 + r[0,1]**2
r2 = r[1,0]**2 + r[1,1]**2
r12 = sqrt((r[0,0]-r[1,0])**2 + (r[0,1]-r[1,1])**2)
deno = r12/(1+beta*r12)
return exp(-0.5*alpha*(r1+r2)+deno)

Local energy for the 2-electron quantum dot in two dims, using analytical local energy
def LocalEnergy(r,alpha,beta):

r1 = (r[0,0]**2 + r[0,1]**2)
r2 = (r[1,0]**2 + r[1,1]**2)
r12 = sqrt((r[0,0]-r[1,0])**2 + (r[0,1]-r[1,1])**2)
deno = 1.0/(1+beta*r12)
deno2 = deno*deno
return 0.5*(1-alpha*alpha)*(r1 + r2) +2.0*alpha + 1.0/r12+deno2*(alpha*r12-deno2+2*beta*deno-1.0/r12)

The Monte Carlo sampling without importance sampling is set up here.

The Monte Carlo sampling with the Metropolis algo
def MonteCarloSampling():

NumberMCcycles= 10000
StepSize = 1.0
positions
PositionOld = np.zeros((NumberParticles,Dimension), np.double)
PositionNew = np.zeros((NumberParticles,Dimension), np.double)

seed for rng generator
seed()
start variational parameter
alpha = 0.9
for ia in range(MaxVariations):

alpha += .025
AlphaValues[ia] = alpha
beta = 0.2
for jb in range(MaxVariations):

beta += .01
BetaValues[jb] = beta
energy = energy2 = 0.0
DeltaE = 0.0
#Initial position
for i in range(NumberParticles):

21

for j in range(Dimension):
PositionOld[i,j] = StepSize * (random() - .5)

wfold = WaveFunction(PositionOld,alpha,beta)

#Loop over MC MCcycles
for MCcycle in range(NumberMCcycles):

#Trial position moving one particle at the time
for i in range(NumberParticles):

for j in range(Dimension):
PositionNew[i,j] = PositionOld[i,j] + StepSize * (random() - .5)

wfnew = WaveFunction(PositionNew,alpha,beta)

#Metropolis test to see whether we accept the move
if random() < wfnew**2 / wfold**2:

for j in range(Dimension):
PositionOld[i,j] = PositionNew[i,j]

wfold = wfnew
DeltaE = LocalEnergy(PositionOld,alpha,beta)
energy += DeltaE
energy2 += DeltaE**2

#We calculate mean, variance and error ...
energy /= NumberMCcycles
energy2 /= NumberMCcycles
variance = energy2 - energy**2
error = sqrt(variance/NumberMCcycles)
Energies[ia,jb] = energy
Variances[ia,jb] = variance
outfile.write('%f %f %f %f %f\n' %(alpha,beta,energy,variance,error))

return Energies, Variances, AlphaValues, BetaValues

And finally comes the main part with the plots as well.
#Here starts the main program with variable declarations
NumberParticles = 2
Dimension = 2
MaxVariations = 10
Energies = np.zeros((MaxVariations,MaxVariations))
Variances = np.zeros((MaxVariations,MaxVariations))
AlphaValues = np.zeros(MaxVariations)
BetaValues = np.zeros(MaxVariations)
(Energies, Variances, AlphaValues, BetaValues) = MonteCarloSampling()
outfile.close()

Prepare for plots
fig = plt.figure()
ax = fig.gca(projection='3d')
Plot the surface.
X, Y = np.meshgrid(AlphaValues, BetaValues)
surf = ax.plot_surface(X, Y, Energies,cmap=cm.coolwarm,linewidth=0, antialiased=False)
Customize the z axis.
zmin = np.matrix(Energies).min()
zmax = np.matrix(Energies).max()
ax.set_zlim(zmin, zmax)
ax.set_xlabel(r'α')
ax.set_ylabel(r'β')
ax.set_zlabel(r'$\langle E \rangle$')
ax.zaxis.set_major_locator(LinearLocator(10))
ax.zaxis.set_major_formatter(FormatStrFormatter('%.02f'))
Add a color bar which maps values to colors.
fig.colorbar(surf, shrink=0.5, aspect=5)

22

save_fig("QdotMetropolis")
plt.show()

23

