
Week 5 January 29-February 2:
Metropolis Algoritm and Markov Chains,

Importance Sampling, Fokker-Planck
and Langevin equations

Morten Hjorth-Jensen Email morten.hjorth-jensen@fys.uio.no1,2

1Department of Physics and Center fo Computing in Science Education, University of Oslo, Oslo, Norway
2Department of Physics and Astronomy and Facility for Rare Isotope Beams, Michigan State University, East Lansing, Michigan, USA

February 2

Overview of week 5, January 29-February 2
Topics.

• Markov Chain Monte Carlo and repetition from last week

• Metropolis-Hastings sampling and Importance Sampling

Teaching Material, videos and written material.

• Overview video on Metropolis algoritm

• Video of lecture

• Whiteboard notes

Importance Sampling: Overview of what needs to be coded
For a diffusion process characterized by a time-dependent probability density

P (x, t) in one dimension the Fokker-Planck equation reads (for one particle
/walker)

∂P

∂t
= D

∂

∂x

(
∂

∂x
− F

)
P (x, t),

where F is a drift term and D is the diffusion coefficient.

© 1999-2024, Morten Hjorth-Jensen Email morten.hjorth-jensen@fys.uio.no. Released under
CC Attribution-NonCommercial 4.0 license

https://www.youtube.com/watch?v=h1NOS_wxgGg&ab_channel=JeffPicton
https://youtu.be/lxIT8AlQlJU
https://github.com/CompPhysics/ComputationalPhysics2/blob/gh-pages/doc/HandWrittenNotes/2024/NotesFebruary2.pdf


Importance sampling
The new positions in coordinate space are given as the solutions of the Langevin

equation using Euler’s method, namely, we go from the Langevin equation
∂x(t)

∂t
= DF (x(t)) + η,

with η a random variable, yielding a new position

y = x + DF (x)∆t + ξ
√

∆t,

where ξ is gaussian random variable and ∆t is a chosen time step. The quantity
D is, in atomic units, equal to 1/2 and comes from the factor 1/2 in the kinetic
energy operator. Note that ∆t is to be viewed as a parameter. Values of
∆t ∈ [0.001, 0.01] yield in general rather stable values of the ground state energy.

Importance sampling
The process of isotropic diffusion characterized by a time-dependent probability

density P (x, t) obeys (as an approximation) the so-called Fokker-Planck equation

∂P

∂t
=
∑

i

D
∂

∂xi

(
∂

∂xi
− Fi

)
P (x, t),

where Fi is the ith component of the drift term (drift velocity) caused by an
external potential, and D is the diffusion coefficient. The convergence to a
stationary probability density can be obtained by setting the left hand side to
zero. The resulting equation will be satisfied if and only if all the terms of the
sum are equal zero,

∂2P

∂xi2 = P
∂

∂xi
Fi + Fi

∂

∂xi
P.

Importance sampling
The drift vector should be of the form F = g(x) ∂P

∂x . Then,

∂2P

∂xi2 = P
∂g

∂P

(
∂P

∂xi

)2
+ Pg

∂2P

∂x2
i

+ g

(
∂P

∂xi

)2
.

The condition of stationary density means that the left hand side equals zero.
In other words, the terms containing first and second derivatives have to cancel
each other. It is possible only if g = 1

P , which yields

F = 2 1
ΨT

∇ΨT ,

which is known as the so-called quantum force. This term is responsible for
pushing the walker towards regions of configuration space where the trial wave
function is large, increasing the efficiency of the simulation in contrast to the
Metropolis algorithm where the walker has the same probability of moving in
every direction.
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Importance sampling
The Fokker-Planck equation yields a (the solution to the equation) transition

probability given by the Green’s function

G(y, x, ∆t) = 1
(4πD∆t)3N/2 exp

(
−(y − x − D∆tF (x))2/4D∆t

)
which in turn means that our brute force Metropolis algorithm

A(y, x) = min(1, q(y, x))),

with q(y, x) = |ΨT (y)|2/|ΨT (x)|2 is now replaced by the Metropolis-Hastings
algorithm as well as Hasting’s article,

q(y, x) = G(x, y, ∆t)|ΨT (y)|2

G(y, x, ∆t)|ΨT (x)|2

Code example for the interacting case with importance
sampling
Note: this is best seen using the Jupyter-notebook.

We are now ready to implement importance sampling. This is done here for
the two-electron case with the Coulomb interaction, as in the previous example.
We have two variational parameters α and β. After the set up of files

# Common imports
import os

# Where to save the figures and data files
PROJECT_ROOT_DIR = "Results"
FIGURE_ID = "Results/FigureFiles"
DATA_ID = "Results/VMCQdotImportance"

if not os.path.exists(PROJECT_ROOT_DIR):
os.mkdir(PROJECT_ROOT_DIR)

if not os.path.exists(FIGURE_ID):
os.makedirs(FIGURE_ID)

if not os.path.exists(DATA_ID):
os.makedirs(DATA_ID)

def image_path(fig_id):
return os.path.join(FIGURE_ID, fig_id)

def data_path(dat_id):
return os.path.join(DATA_ID, dat_id)

def save_fig(fig_id):
plt.savefig(image_path(fig_id) + ".png", format='png')

outfile = open(data_path("VMCQdotImportance.dat"),'w')
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we move on to the set up of the trial wave function, the analytical expression
for the local energy and the analytical expression for the quantum force.

# 2-electron VMC code for 2dim quantum dot with importance sampling
# Using gaussian rng for new positions and Metropolis- Hastings
# No energy minimization
from math import exp, sqrt
from random import random, seed, normalvariate
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from matplotlib import cm
from matplotlib.ticker import LinearLocator, FormatStrFormatter
import sys

# Trial wave function for the 2-electron quantum dot in two dims
def WaveFunction(r,alpha,beta):

r1 = r[0,0]**2 + r[0,1]**2
r2 = r[1,0]**2 + r[1,1]**2
r12 = sqrt((r[0,0]-r[1,0])**2 + (r[0,1]-r[1,1])**2)
deno = r12/(1+beta*r12)
return exp(-0.5*alpha*(r1+r2)+deno)

# Local energy for the 2-electron quantum dot in two dims, using analytical local energy
def LocalEnergy(r,alpha,beta):

r1 = (r[0,0]**2 + r[0,1]**2)
r2 = (r[1,0]**2 + r[1,1]**2)
r12 = sqrt((r[0,0]-r[1,0])**2 + (r[0,1]-r[1,1])**2)
deno = 1.0/(1+beta*r12)
deno2 = deno*deno
return 0.5*(1-alpha*alpha)*(r1 + r2) +2.0*alpha + 1.0/r12+deno2*(alpha*r12-deno2+2*beta*deno-1.0/r12)

# Setting up the quantum force for the two-electron quantum dot, recall that it is a vector
def QuantumForce(r,alpha,beta):

qforce = np.zeros((NumberParticles,Dimension), np.double)
r12 = sqrt((r[0,0]-r[1,0])**2 + (r[0,1]-r[1,1])**2)
deno = 1.0/(1+beta*r12)
qforce[0,:] = -2*r[0,:]*alpha*(r[0,:]-r[1,:])*deno*deno/r12
qforce[1,:] = -2*r[1,:]*alpha*(r[1,:]-r[0,:])*deno*deno/r12
return qforce

The Monte Carlo sampling includes now the Metropolis-Hastings algorithm,
with the additional complication of having to evaluate the quantum force and
the Green’s function which is the solution of the Fokker-Planck equation.

# The Monte Carlo sampling with the Metropolis algo
def MonteCarloSampling():

NumberMCcycles= 100000
# Parameters in the Fokker-Planck simulation of the quantum force
D = 0.5
TimeStep = 0.05
# positions
PositionOld = np.zeros((NumberParticles,Dimension), np.double)
PositionNew = np.zeros((NumberParticles,Dimension), np.double)
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# Quantum force
QuantumForceOld = np.zeros((NumberParticles,Dimension), np.double)
QuantumForceNew = np.zeros((NumberParticles,Dimension), np.double)

# seed for rng generator
seed()
# start variational parameter loops, two parameters here
alpha = 0.9
for ia in range(MaxVariations):

alpha += .025
AlphaValues[ia] = alpha
beta = 0.2
for jb in range(MaxVariations):

beta += .01
BetaValues[jb] = beta
energy = energy2 = 0.0
DeltaE = 0.0
#Initial position
for i in range(NumberParticles):

for j in range(Dimension):
PositionOld[i,j] = normalvariate(0.0,1.0)*sqrt(TimeStep)

wfold = WaveFunction(PositionOld,alpha,beta)
QuantumForceOld = QuantumForce(PositionOld,alpha, beta)

#Loop over MC MCcycles
for MCcycle in range(NumberMCcycles):

#Trial position moving one particle at the time
for i in range(NumberParticles):

for j in range(Dimension):
PositionNew[i,j] = PositionOld[i,j]+normalvariate(0.0,1.0)*sqrt(TimeStep)+\

QuantumForceOld[i,j]*TimeStep*D
wfnew = WaveFunction(PositionNew,alpha,beta)
QuantumForceNew = QuantumForce(PositionNew,alpha, beta)
GreensFunction = 0.0
for j in range(Dimension):

GreensFunction += 0.5*(QuantumForceOld[i,j]+QuantumForceNew[i,j])*\
(D*TimeStep*0.5*(QuantumForceOld[i,j]-QuantumForceNew[i,j])-\
PositionNew[i,j]+PositionOld[i,j])

GreensFunction = exp(GreensFunction)
ProbabilityRatio = GreensFunction*wfnew**2/wfold**2
#Metropolis-Hastings test to see whether we accept the move
if random() <= ProbabilityRatio:

for j in range(Dimension):
PositionOld[i,j] = PositionNew[i,j]
QuantumForceOld[i,j] = QuantumForceNew[i,j]

wfold = wfnew
DeltaE = LocalEnergy(PositionOld,alpha,beta)
energy += DeltaE
energy2 += DeltaE**2

# We calculate mean, variance and error (no blocking applied)
energy /= NumberMCcycles
energy2 /= NumberMCcycles
variance = energy2 - energy**2
error = sqrt(variance/NumberMCcycles)
Energies[ia,jb] = energy
outfile.write('%f %f %f %f %f\n' %(alpha,beta,energy,variance,error))

return Energies, AlphaValues, BetaValues
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The main part here contains the setup of the variational parameters, the
energies and the variance.

#Here starts the main program with variable declarations
NumberParticles = 2
Dimension = 2
MaxVariations = 10
Energies = np.zeros((MaxVariations,MaxVariations))
AlphaValues = np.zeros(MaxVariations)
BetaValues = np.zeros(MaxVariations)
(Energies, AlphaValues, BetaValues) = MonteCarloSampling()
outfile.close()
# Prepare for plots
fig = plt.figure()
ax = fig.gca(projection='3d')
# Plot the surface.
X, Y = np.meshgrid(AlphaValues, BetaValues)
surf = ax.plot_surface(X, Y, Energies,cmap=cm.coolwarm,linewidth=0, antialiased=False)
# Customize the z axis.
zmin = np.matrix(Energies).min()
zmax = np.matrix(Energies).max()
ax.set_zlim(zmin, zmax)
ax.set_xlabel(r'$\alpha$')
ax.set_ylabel(r'$\beta$')
ax.set_zlabel(r'$\langle E \rangle$')
ax.zaxis.set_major_locator(LinearLocator(10))
ax.zaxis.set_major_formatter(FormatStrFormatter('%.02f'))
# Add a color bar which maps values to colors.
fig.colorbar(surf, shrink=0.5, aspect=5)
save_fig("QdotImportance")
plt.show()

Importance sampling, programming elements
The general derivative formula of the Jastrow factor (or the ansatz for the
correlated part of the wave function) is (the subscript C stands for Correlation)

1
ΨC

∂ΨC

∂xk
=

k−1∑
i=1

∂gik

∂xk
+

N∑
i=k+1

∂gki

∂xk

However, with our written in way which can be reused later as

ΨC =
∏
i<j

g(rij) = exp

∑
i<j

f(rij)

,

the gradient needed for the quantum force and local energy is easy to compute.
The function f(rij) will depends on the system under study. In the equations
below we will keep this general form.

Importance sampling, program elements
In the Metropolis/Hasting algorithm, the acceptance ratio determines the proba-
bility for a particle to be accepted at a new position. The ratio of the trial wave
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functions evaluated at the new and current positions is given by (OB for the
onebody part)

R ≡ Ψnew
T

Ψold
T

= Ψnew
OB

Ψold
OB

Ψnew
C

Ψold
C

Here ΨOB is our onebody part (Slater determinant or product of boson single-
particle states) while ΨC is our correlation function, or Jastrow factor. We need
to optimize the ∇ΨT /ΨT ratio and the second derivative as well, that is the
∇2ΨT /ΨT ratio. The first is needed when we compute the so-called quantum
force in importance sampling. The second is needed when we compute the kinetic
energy term of the local energy.

∇Ψ
Ψ = ∇(ΨOB ΨC)

ΨOB ΨC
= ΨC∇ΨOB + ΨOB∇ΨC

ΨOBΨC
= ∇ΨOB

ΨOB
+ ∇ΨC

ΨC

Importance sampling
The expectation value of the kinetic energy expressed in scaled units for particle
i is

⟨K̂i⟩ = −1
2

⟨Ψ|∇2
i |Ψ⟩

⟨Ψ|Ψ⟩
,

K̂i = −1
2

∇2
i Ψ
Ψ .

Importance sampling
The second derivative which enters the definition of the local energy is

∇2Ψ
Ψ = ∇2ΨOB

ΨOB
+ ∇2ΨC

ΨC
+ 2∇ΨOB

ΨOB
· ∇ΨC

ΨC

We discuss here how to calculate these quantities in an optimal way.

Importance sampling
We have defined the correlated function as

ΨC =
∏
i<j

g(rij) =
N∏

i<j

g(rij) =
N∏

i=1

N∏
j=i+1

g(rij),

with rij = |ri − rj | =
√

(xi − xj)2 + (yi − yj)2 + (zi − zj)2 in three dimensions
or rij = |ri − rj | =

√
(xi − xj)2 + (yi − yj)2 if we work with two-dimensional

systems.
In our particular case we have

ΨC =
∏
i<j

g(rij) = exp

∑
i<j

f(rij)

.
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Importance sampling
The total number of different relative distances rij is N(N − 1)/2. In a matrix
storage format, the relative distances form a strictly upper triangular matrix

r ≡



0 r1,2 r1,3 · · · r1,N

... 0 r2,3 · · · r2,N

...
... 0

. . .
...

...
...

...
. . . rN−1,N

0 0 0 · · · 0


.

This applies to g = g(rij) as well.
In our algorithm we will move one particle at the time, say the kth-particle.

This sampling will be seen to be particularly efficient when we are going to
compute a Slater determinant.

Importance sampling
We have that the ratio between Jastrow factors RC is given by

RC = Ψnew
C

Ψcur
C

=
k−1∏
i=1

gnew
ik

gcur
ik

N∏
i=k+1

gnew
ki

gcur
ki

.

For the Pade-Jastrow form

RC = Ψnew
C

Ψcur
C

= exp Unew

exp Ucur
= exp ∆U,

where

∆U =
k−1∑
i=1

(
fnew

ik − f cur
ik

)
+

N∑
i=k+1

(
fnew

ki − f cur
ki

)
Importance sampling
One needs to develop a special algorithm that runs only through the elements of
the upper triangular matrix g and have k as an index.

The expression to be derived in the following is of interest when computing
the quantum force and the kinetic energy. It has the form

∇iΨC

ΨC
= 1

ΨC

∂ΨC

∂xi
,

for all dimensions and with i running over all particles.
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Importance sampling
For the first derivative only N −1 terms survive the ratio because the g-terms that
are not differentiated cancel with their corresponding ones in the denominator.
Then,

1
ΨC

∂ΨC

∂xk
=

k−1∑
i=1

1
gik

∂gik

∂xk
+

N∑
i=k+1

1
gki

∂gki

∂xk
.

An equivalent equation is obtained for the exponential form after replacing gij

by exp(fij), yielding:

1
ΨC

∂ΨC

∂xk
=

k−1∑
i=1

∂gik

∂xk
+

N∑
i=k+1

∂gki

∂xk
,

with both expressions scaling as O(N).

Importance sampling
Using the identity

∂

∂xi
gij = − ∂

∂xj
gij ,

we get expressions where all the derivatives acting on the particle are represented
by the second index of g:

1
ΨC

∂ΨC

∂xk
=

k−1∑
i=1

1
gik

∂gik

∂xk
−

N∑
i=k+1

1
gki

∂gki

∂xi
,

and for the exponential case:

1
ΨC

∂ΨC

∂xk
=

k−1∑
i=1

∂gik

∂xk
−

N∑
i=k+1

∂gki

∂xi
.

Importance sampling
For correlation forms depending only on the scalar distances rij we can use the
chain rule. Noting that

∂gij

∂xj
= ∂gij

∂rij

∂rij

∂xj
= xj − xi

rij

∂gij

∂rij
,

we arrive at

1
ΨC

∂ΨC

∂xk
=

k−1∑
i=1

1
gik

rik

rik

∂gik

∂rik
−

N∑
i=k+1

1
gki

rki

rki

∂gki

∂rki
.
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Importance sampling
Note that for the Pade-Jastrow form we can set gij ≡ g(rij) = ef(rij) = efij and

∂gij

∂rij
= gij

∂fij

∂rij
.

Therefore,
1

ΨC

∂ΨC

∂xk
=

k−1∑
i=1

rik

rik

∂fik

∂rik
−

N∑
i=k+1

rki

rki

∂fki

∂rki
,

where
rij = |rj − ri| = (xj − xi)e1 + (yj − yi)e2 + (zj − zi)e3

is the relative distance.

Importance sampling
The second derivative of the Jastrow factor divided by the Jastrow factor (the
way it enters the kinetic energy) is[

∇2ΨC

ΨC

]
x

= 2
N∑

k=1

k−1∑
i=1

∂2gik

∂x2
k

+
N∑

k=1

(
k−1∑
i=1

∂gik

∂xk
−

N∑
i=k+1

∂gki

∂xi

)2

Importance sampling
But we have a simple form for the function, namely

ΨC =
∏
i<j

exp f(rij),

and it is easy to see that for particle k we have

∇2
kΨC

ΨC
=
∑
ij ̸=k

(rk − ri)(rk − rj)
rkirkj

f ′(rki)f ′(rkj) +
∑
j ̸=k

(
f ′′(rkj) + 2

rkj
f ′(rkj)

)

Importance sampling, Fokker-Planck and Langevin equa-
tions
A stochastic process is simply a function of two variables, one is the time, the
other is a stochastic variable X, defined by specifying

1. the set {x} of possible values for X;

2. the probability distribution, wX(x), over this set, or briefly w(x)

The set of values {x} for X may be discrete, or continuous. If the set of
values is continuous, then wX(x) is a probability density so that wX(x)dx is the
probability that one finds the stochastic variable X to have values in the range
[x, x + dx] .
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Importance sampling, Fokker-Planck and Langevin equa-
tions
An arbitrary number of other stochastic variables may be derived from X. For
example, any Y given by a mapping of X, is also a stochastic variable. The
mapping may also be time-dependent, that is, the mapping depends on an
additional variable t

YX(t) = f(X, t).

The quantity YX(t) is called a random function, or, since t often is time, a
stochastic process. A stochastic process is a function of two variables, one is the
time, the other is a stochastic variable X. Let x be one of the possible values of
X then

y(t) = f(x, t),

is a function of t, called a sample function or realization of the process. In
physics one considers the stochastic process to be an ensemble of such sample
functions.

Importance sampling, Fokker-Planck and Langevin equa-
tions
For many physical systems initial distributions of a stochastic variable y tend to
equilibrium distributions: w(y, t) → w0(y) as t → ∞. In equilibrium detailed
balance constrains the transition rates

W (y → y′)w(y) = W (y′ → y)w0(y),

where W (y′ → y) is the probability, per unit time, that the system changes from
a state |y⟩ , characterized by the value y for the stochastic variable Y , to a state
|y′⟩.

Note that for a system in equilibrium the transition rate W (y′ → y) and the
reverse W (y → y′) may be very different.

Importance sampling, Fokker-Planck and Langevin equa-
tions
Consider, for instance, a simple system that has only two energy levels ϵ0 = 0
and ϵ1 = ∆E.

For a system governed by the Boltzmann distribution we find (the partition
function has been taken out)

W (0 → 1) exp −(ϵ0/kT ) = W (1 → 0) exp −(ϵ1/kT ).

We get then
W (1 → 0)
W (0 → 1) = exp −(∆E/kT ),

which goes to zero when T tends to zero.
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Importance sampling, Fokker-Planck and Langevin equa-
tions
If we assume a discrete set of events, our initial probability distribution function
can be given by

wi(0) = δi,0,

and its time-development after a given time step ∆t = ϵ is

wi(t) =
∑

j

W (j → i)wj(t = 0).

The continuous analog to wi(0) is

w(x) → δ(x),

where we now have generalized the one-dimensional position x to a generic-
dimensional vector x. The Kroenecker δ function is replaced by the δ distribution
function δ(x) at t = 0.

Importance sampling, Fokker-Planck and Langevin equa-
tions
The transition from a state j to a state i is now replaced by a transition to
a state with position y from a state with position x. The discrete sum of
transition probabilities can then be replaced by an integral and we obtain the
new distribution at a time t + ∆t as

w(y, t + ∆t) =
∫

W (y, t + ∆t|x, t)w(x, t)dx,

and after m time steps we have

w(y, t + m∆t) =
∫

W (y, t + m∆t|x, t)w(x, t)dx.

When equilibrium is reached we have

w(y) =
∫

W (y|x, t)w(x)dx,

that is no time-dependence. Note our change of notation for W

Importance sampling, Fokker-Planck and Langevin equa-
tions
We can solve the equation for w(y, t) by making a Fourier transform to momentum
space. The PDF w(x, t) is related to its Fourier transform w̃(k, t) through

w(x, t) =
∫ ∞

−∞
dk exp (ikx)w̃(k, t),
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and using the definition of the δ-function

δ(x) = 1
2π

∫ ∞

−∞
dk exp (ikx),

we see that
w̃(k, 0) = 1/2π.

Importance sampling, Fokker-Planck and Langevin equa-
tions
We can then use the Fourier-transformed diffusion equation

∂w̃(k, t)
∂t

= −Dk2w̃(k, t),

with the obvious solution

w̃(k, t) = w̃(k, 0) exp
[
−(Dk2t)

)
= 1

2π
exp

[
−(Dk2t)

]
.

Importance sampling, Fokker-Planck and Langevin equa-
tions
With the Fourier transform we obtain

w(x, t) =
∫ ∞

−∞
dk exp [ikx] 1

2π
exp

[
−(Dk2t)

]
= 1√

4πDt
exp

[
−(x2/4Dt)

]
,

with the normalization condition∫ ∞

−∞
w(x, t)dx = 1.

Importance sampling, Fokker-Planck and Langevin equa-
tions
The solution represents the probability of finding our random walker at position
x at time t if the initial distribution was placed at x = 0 at t = 0.

There is another interesting feature worth observing. The discrete transition
probability W itself is given by a binomial distribution. The results from the
central limit theorem state that transition probability in the limit n → ∞
converges to the normal distribution. It is then possible to show that

W (il − jl, nϵ) → W (y, t + ∆t|x, t) = 1√
4πD∆t

exp
[
−((y − x)2/4D∆t)

]
,

and that it satisfies the normalization condition and is itself a solution to the
diffusion equation.

13



Importance sampling, Fokker-Planck and Langevin equa-
tions
Let us now assume that we have three PDFs for times t0 < t′ < t, that is
w(x0, t0), w(x′, t′) and w(x, t). We have then

w(x, t) =
∫ ∞

−∞
W (x.t|x′.t′)w(x′, t′)dx′,

and
w(x, t) =

∫ ∞

−∞
W (x.t|x0.t0)w(x0, t0)dx0,

and
w(x′, t′) =

∫ ∞

−∞
W (x′.t′|x0, t0)w(x0, t0)dx0.

Importance sampling, Fokker-Planck and Langevin equa-
tions
We can combine these equations and arrive at the famous Einstein-Smoluchenski-
Kolmogorov-Chapman (ESKC) relation

W (xt|x0t0) =
∫ ∞

−∞
W (x, t|x′, t′)W (x′, t′|x0, t0)dx′.

We can replace the spatial dependence with a dependence upon say the velocity
(or momentum), that is we have

W (v, t|v0, t0) =
∫ ∞

−∞
W (v, t|v′, t′)W (v′, t′|v0, t0)dx′.

Importance sampling, Fokker-Planck and Langevin equa-
tions
We will now derive the Fokker-Planck equation. We start from the ESKC
equation

W (x, t|x0, t0) =
∫ ∞

−∞
W (x, t|x′, t′)W (x′, t′|x0, t0)dx′.

Define s = t′ − t0, τ = t − t′ and t − t0 = s + τ . We have then

W (x, s + τ |x0) =
∫ ∞

−∞
W (x, τ |x′)W (x′, s|x0)dx′.

14



Importance sampling, Fokker-Planck and Langevin equa-
tions
Assume now that τ is very small so that we can make an expansion in terms of
a small step xi, with x′ = x − ξ, that is

W (x, s|x0) + ∂W

∂s
τ + O(τ2) =

∫ ∞

−∞
W (x, τ |x − ξ)W (x − ξ, s|x0)dx′.

We assume that W (x, τ |x − ξ) takes non-negligible values only when ξ is small.
This is just another way of stating the Master equation!!

Importance sampling, Fokker-Planck and Langevin equa-
tions
We say thus that x changes only by a small amount in the time interval τ . This
means that we can make a Taylor expansion in terms of ξ, that is we expand

W (x, τ |x − ξ)W (x − ξ, s|x0) =
∞∑

n=0

(−ξ)n

n!
∂n

∂xn
[W (x + ξ, τ |x)W (x, s|x0)] .

Importance sampling, Fokker-Planck and Langevin equa-
tions
We can then rewrite the ESKC equation as

∂W

∂s
τ = −W (x, s|x0) +

∞∑
n=0

(−ξ)n

n!
∂n

∂xn

[
W (x, s|x0)

∫ ∞

−∞
ξnW (x + ξ, τ |x)dξ

]
.

We have neglected higher powers of τ and have used that for n = 0 we get simply
W (x, s|x0) due to normalization.

Importance sampling, Fokker-Planck and Langevin equa-
tions
We say thus that x changes only by a small amount in the time interval τ . This
means that we can make a Taylor expansion in terms of ξ, that is we expand

W (x, τ |x − ξ)W (x − ξ, s|x0) =
∞∑

n=0

(−ξ)n

n!
∂n

∂xn
[W (x + ξ, τ |x)W (x, s|x0)] .

Importance sampling, Fokker-Planck and Langevin equa-
tions

We can then rewrite the ESKC equation as

∂W (x, s|x0)
∂s

τ = −W (x, s|x0)+
∞∑

n=0

(−ξ)n

n!
∂n

∂xn

[
W (x, s|x0)

∫ ∞

−∞
ξnW (x + ξ, τ |x)dξ

]
.
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We have neglected higher powers of τ and have used that for n = 0 we get simply
W (x, s|x0) due to normalization.

Importance sampling, Fokker-Planck and Langevin equa-
tions

We simplify the above by introducing the moments

Mn = 1
τ

∫ ∞

−∞
ξnW (x + ξ, τ |x)dξ = ⟨[∆x(τ)]n⟩

τ
,

resulting in

∂W (x, s|x0)
∂s

=
∞∑

n=1

(−ξ)n

n!
∂n

∂xn
[W (x, s|x0)Mn] .

Importance sampling, Fokker-Planck and Langevin equa-
tions

When τ → 0 we assume that ⟨[∆x(τ)]n⟩ → 0 more rapidly than τ itself if
n > 2. When τ is much larger than the standard correlation time of system then
Mn for n > 2 can normally be neglected. This means that fluctuations become
negligible at large time scales.

If we neglect such terms we can rewrite the ESKC equation as

∂W (x, s|x0)
∂s

= −∂M1W (x, s|x0)
∂x

+ 1
2

∂2M2W (x, s|x0)
∂x2 .

Importance sampling, Fokker-Planck and Langevin equa-
tions

In a more compact form we have

∂W

∂s
= −∂M1W

∂x
+ 1

2
∂2M2W

∂x2 ,

which is the Fokker-Planck equation! It is trivial to replace position with velocity
(momentum).

Importance sampling, Fokker-Planck and Langevin equa-
tions
Langevin equation. Consider a particle suspended in a liquid. On its path
through the liquid it will continuously collide with the liquid molecules. Because
on average the particle will collide more often on the front side than on the back
side, it will experience a systematic force proportional with its velocity, and
directed opposite to its velocity. Besides this systematic force the particle will
experience a stochastic force F(t). The equations of motion are
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• dr
dt = v and

• dv
dt = −ξv + F.

Importance sampling, Fokker-Planck and Langevin equa-
tions
Langevin equation. From hydrodynamics we know that the friction constant
ξ is given by

ξ = 6πηa/m

where η is the viscosity of the solvent and a is the radius of the particle .
Solving the second equation in the previous slide we get

v(t) = v0e−ξt +
∫ t

0
dτe−ξ(t−τ)F(τ).

Importance sampling, Fokker-Planck and Langevin equa-
tions
Langevin equation. If we want to get some useful information out of this,
we have to average over all possible realizations of F(t), with the initial velocity
as a condition. A useful quantity for example is

⟨v(t) · v(t)⟩v0 = v−ξ2t
0 + 2

∫ t

0
dτe−ξ(2t−τ)v0 · ⟨F(τ)⟩v0

+
∫ t

0
dτ ′
∫ t

0
dτe−ξ(2t−τ−τ ′)⟨F(τ) · F(τ ′)⟩v0 .

Importance sampling, Fokker-Planck and Langevin equa-
tions
Langevin equation. In order to continue we have to make some assump-
tions about the conditional averages of the stochastic forces. In view of the
chaotic character of the stochastic forces the following assumptions seem to be
appropriate

⟨F(t)⟩ = 0,

and
⟨F(t) · F(t′)⟩v0 = Cv0δ(t − t′).

We omit the subscript v0, when the quantity of interest turns out to be
independent of v0. Using the last three equations we get

⟨v(t) · v(t)⟩v0 = v2
0e−2ξt + Cv0

2ξ
(1 − e−2ξt).
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For large t this should be equal to 3kT/m, from which it follows that

⟨F(t) · F(t′)⟩ = 6kT

m
ξδ(t − t′).

This result is called the fluctuation-dissipation theorem .

Importance sampling, Fokker-Planck and Langevin equa-
tions
Langevin equation. Integrating

v(t) = v0e−ξt +
∫ t

0
dτe−ξ(t−τ)F(τ),

we get

r(t) = r0 + v0
1
ξ

(1 − e−ξt) +
∫ t

0
dτ

∫ τ

0
τ ′e−ξ(τ−τ ′)F(τ ′),

from which we calculate the mean square displacement

⟨(r(t) − r0)2⟩v0 = v2
0
ξ

(1 − e−ξt)2 + 3kT

mξ2 (2ξt − 3 + 4e−ξt − e−2ξt).

Importance sampling, Fokker-Planck and Langevin equa-
tions
Langevin equation. For very large t this becomes

⟨(r(t) − r0)2⟩ = 6kT

mξ
t

from which we get the Einstein relation

D = kT

mξ

where we have used ⟨(r(t) − r0)2⟩ = 6Dt.
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