
February 12-16: Optimization and
gradient methods

Morten Hjorth-Jensen Email morten.hjorth-jensen@fys.uio.no1,2

1Department of Physics and Center fo Computing in Science Education, University of Oslo, Oslo, Norway
2Department of Physics and Astronomy and Facility for Rare Isotope Beams, Michigan State University, East Lansing, Michigan, USA

February 12-16

Plans for the week of February 12-16

• Review from last week with an emphasis on computational aspects in
calculating gradients and kinetic energies for various wave functions

• Reminder on Fokker-Planck equation and Langevin equations

• Start optimization: Expressions for derivatives as functions of the varia-
tional parameters

• Newton’s method, gradient descent, Steepest descent and Conjugate Gra-
dient Descent

• Video of Lecture

• Handwritten notes

Teaching Material, videos and written material.

• These lecture notes

• Video on the Conjugate Gradient methods

• Recommended background literature, Convex Optimization by Boyd and
Vandenberghe. Their lecture slides are very useful (warning, these are
some 300 pages).

© 1999-2024, Morten Hjorth-Jensen Email morten.hjorth-jensen@fys.uio.no. Released under
CC Attribution-NonCommercial 4.0 license

https://youtu.be/joauB2h5Vmo
https://github.com/CompPhysics/ComputationalPhysics2/blob/gh-pages/doc/HandWrittenNotes/2024/NotesFebruary16.pdf
https://www.youtube.com/watch?v=eAYohMUpPMA&ab_channel=TomCarlone
https://web.stanford.edu/~boyd/cvxbook/
https://web.stanford.edu/~boyd/cvxbook/bv_cvxslides.pdf

Top-down start
• We will start with a top-down view, with a simple harmonic oscillator

problem in one dimension as case.

• Thereafter we continue with implementing the simplest possible steep-
est descent approach to our two-electron problem with an electrostatic
(Coulomb) interaction. Our code includes also importance sampling. The
simple Python code here illustrates the basic elements which need to be
included in our own code.

• Then we move on to the mathematical description of various gradient
methods.

Motivation
Our aim with this part of the project is to be able to

• find an optimal value for the variational parameters using only some few
Monte Carlo cycles

• use these optimal values for the variational parameters to perform a large-
scale Monte Carlo calculation

To achieve this will look at methods like the simplest possible gradient descent,
Steepest descent, the conjugate gradient method and stochastic gradient descent.
These methods allow us to find the minima of a multivariable function like our
energy (function of several variational parameters). Alternatively, you can always
use Newton’s method. In particular, since we will normally have one variational
parameter, Newton’s method can be easily used in finding the minimum of the
local energy.

Simple example and demonstration
Let us illustrate what is needed in our calculations using a simple example,
the harmonic oscillator in one dimension. For the harmonic oscillator in one-
dimension we have a trial wave function and probability

ψT (x;α) = exp −(1
2α

2x2),

which results in a local energy

1
2

(
α2 + x2(1 − α4)

)
.

We can compare our numerically calculated energies with the exact energy as
function of α

E[α] = 1
4

(
α2 + 1

α2

)
.

2

Simple example and demonstration
The derivative of the energy with respect to α gives

d⟨EL[α]⟩
dα

= 1
2α− 1

2α3

and a second derivative which is always positive (meaning that we find a mini-
mum)

d2⟨EL[α]⟩
dα2 = 1

2 + 3
2α4

The condition
d⟨EL[α]⟩

dα
= 0,

gives the optimal α = 1, as expected.

*
Exercise 1: Find the local energy for the harmonic oscillator

paragraph>aragraph!paragraph>-0.5em

a) Derive the local energy for the harmonic oscillator in one dimension and
find its expectation value.

paragraph>aragraph!paragraph>-0.5em

b) Show also that the optimal value of optimal α = 1
paragraph>aragraph!paragraph>-0.5em

c) Repeat the above steps in two dimensions for N bosons or electrons. What
is the optimal value of α?

Variance in the simple model
We can also minimize the variance. In our simple model the variance is

σ2[α] = 1
4

(
1 + (1 − α4)2 3

4α4

)
− E

2
.

which yields a second derivative which is always positive.

Computing the derivatives
In general we end up computing the expectation value of the energy in terms

of some parameters α0, α1, . . . , αn and we search for a minimum in this multi-
variable parameter space. This leads to an energy minimization problem where
we need the derivative of the energy as a function of the variational parameters.

In the above example this was easy and we were able to find the expression
for the derivative by simple derivations. However, in our actual calculations the
energy is represented by a multi-dimensional integral with several variational

3

parameters. How can we can then obtain the derivatives of the energy with
respect to the variational parameters without having to resort to expensive
numerical derivations?

Expressions for finding the derivatives of the local energy
To find the derivatives of the local energy expectation value as function of

the variational parameters, we can use the chain rule and the hermiticity of the
Hamiltonian.

Let us define
Ēα = d⟨EL[α]⟩

dα
.

as the derivative of the energy with respect to the variational parameter α (we
limit ourselves to one parameter only). In the above example this was easy and
we obtain a simple expression for the derivative. We define also the derivative of
the trial function (skipping the subindex T) as

ψ̄α = dψ[α]⟩
dα

.

Derivatives of the local energy
The elements of the gradient of the local energy are then (using the chain rule

and the hermiticity of the Hamiltonian)

Ēα = 2
(

⟨ ψ̄α

ψ[α]EL[α]⟩ − ⟨ ψ̄α

ψ[α] ⟩⟨EL[α]⟩
)
.

From a computational point of view it means that you need to compute the
expectation values of

⟨ ψ̄α

ψ[α]EL[α]⟩,

and
⟨ ψ̄α

ψ[α] ⟩⟨EL[α]⟩

*
Exercise 2: General expression for the derivative of the energy

paragraph>aragraph!paragraph>-0.5em

a) Show that

Ēα = 2
(

⟨ ψ̄α

ψ[α]EL[α]⟩ − ⟨ ψ̄α

ψ[α] ⟩⟨EL[α]⟩
)
.

paragraph>aragraph!paragraph>-0.5em

b) Find the corresponding expression for the variance.

4

Python program for 2-electrons in 2 dimensions
2-electron VMC code for 2dim quantum dot with importance sampling
Using gaussian rng for new positions and Metropolis- Hastings
Added energy minimization with gradient descent using fixed step size
To do: replace with optimization codes from scipy and/or use stochastic gradient descent
from math import exp, sqrt
from random import random, seed, normalvariate
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from matplotlib import cm
from matplotlib.ticker import LinearLocator, FormatStrFormatter
import sys

Trial wave function for the 2-electron quantum dot in two dims
def WaveFunction(r,alpha,beta):

r1 = r[0,0]**2 + r[0,1]**2
r2 = r[1,0]**2 + r[1,1]**2
r12 = sqrt((r[0,0]-r[1,0])**2 + (r[0,1]-r[1,1])**2)
deno = r12/(1+beta*r12)
return exp(-0.5*alpha*(r1+r2)+deno)

Local energy for the 2-electron quantum dot in two dims, using analytical local energy
def LocalEnergy(r,alpha,beta):

r1 = (r[0,0]**2 + r[0,1]**2)
r2 = (r[1,0]**2 + r[1,1]**2)
r12 = sqrt((r[0,0]-r[1,0])**2 + (r[0,1]-r[1,1])**2)
deno = 1.0/(1+beta*r12)
deno2 = deno*deno
return 0.5*(1-alpha*alpha)*(r1 + r2) +2.0*alpha + 1.0/r12+deno2*(alpha*r12-deno2+2*beta*deno-1.0/r12)

Derivate of wave function ansatz as function of variational parameters
def DerivativeWFansatz(r,alpha,beta):

WfDer = np.zeros((2), np.double)
r1 = (r[0,0]**2 + r[0,1]**2)
r2 = (r[1,0]**2 + r[1,1]**2)
r12 = sqrt((r[0,0]-r[1,0])**2 + (r[0,1]-r[1,1])**2)
deno = 1.0/(1+beta*r12)
deno2 = deno*deno
WfDer[0] = -0.5*(r1+r2)
WfDer[1] = -r12*r12*deno2
return WfDer

Setting up the quantum force for the two-electron quantum dot, recall that it is a vector
def QuantumForce(r,alpha,beta):

qforce = np.zeros((NumberParticles,Dimension), np.double)
r12 = sqrt((r[0,0]-r[1,0])**2 + (r[0,1]-r[1,1])**2)
deno = 1.0/(1+beta*r12)
qforce[0,:] = -2*r[0,:]*alpha*(r[0,:]-r[1,:])*deno*deno/r12
qforce[1,:] = -2*r[1,:]*alpha*(r[1,:]-r[0,:])*deno*deno/r12
return qforce

Computing the derivative of the energy and the energy
def EnergyMinimization(alpha, beta):

5

NumberMCcycles= 10000
Parameters in the Fokker-Planck simulation of the quantum force
D = 0.5
TimeStep = 0.05
positions
PositionOld = np.zeros((NumberParticles,Dimension), np.double)
PositionNew = np.zeros((NumberParticles,Dimension), np.double)
Quantum force
QuantumForceOld = np.zeros((NumberParticles,Dimension), np.double)
QuantumForceNew = np.zeros((NumberParticles,Dimension), np.double)

seed for rng generator
seed()
energy = 0.0
DeltaE = 0.0
EnergyDer = np.zeros((2), np.double)
DeltaPsi = np.zeros((2), np.double)
DerivativePsiE = np.zeros((2), np.double)
#Initial position
for i in range(NumberParticles):

for j in range(Dimension):
PositionOld[i,j] = normalvariate(0.0,1.0)*sqrt(TimeStep)

wfold = WaveFunction(PositionOld,alpha,beta)
QuantumForceOld = QuantumForce(PositionOld,alpha, beta)

#Loop over MC MCcycles
for MCcycle in range(NumberMCcycles):

#Trial position moving one particle at the time
for i in range(NumberParticles):

for j in range(Dimension):
PositionNew[i,j] = PositionOld[i,j]+normalvariate(0.0,1.0)*sqrt(TimeStep)+\

QuantumForceOld[i,j]*TimeStep*D
wfnew = WaveFunction(PositionNew,alpha,beta)
QuantumForceNew = QuantumForce(PositionNew,alpha, beta)
GreensFunction = 0.0
for j in range(Dimension):

GreensFunction += 0.5*(QuantumForceOld[i,j]+QuantumForceNew[i,j])*\
(D*TimeStep*0.5*(QuantumForceOld[i,j]-QuantumForceNew[i,j])-\
PositionNew[i,j]+PositionOld[i,j])

GreensFunction = exp(GreensFunction)
ProbabilityRatio = GreensFunction*wfnew**2/wfold**2
#Metropolis-Hastings test to see whether we accept the move
if random() <= ProbabilityRatio:

for j in range(Dimension):
PositionOld[i,j] = PositionNew[i,j]
QuantumForceOld[i,j] = QuantumForceNew[i,j]

wfold = wfnew
DeltaE = LocalEnergy(PositionOld,alpha,beta)
DerPsi = DerivativeWFansatz(PositionOld,alpha,beta)
DeltaPsi += DerPsi
energy += DeltaE
DerivativePsiE += DerPsi*DeltaE

We calculate mean values
energy /= NumberMCcycles
DerivativePsiE /= NumberMCcycles
DeltaPsi /= NumberMCcycles
EnergyDer = 2*(DerivativePsiE-DeltaPsi*energy)
return energy, EnergyDer

6

#Here starts the main program with variable declarations
NumberParticles = 2
Dimension = 2
guess for variational parameters
alpha = 0.9
beta = 0.2
Set up iteration using gradient descent method
Energy = 0
EDerivative = np.zeros((2), np.double)
eta = 0.01
Niterations = 50
#
for iter in range(Niterations):

Energy, EDerivative = EnergyMinimization(alpha,beta)
alphagradient = EDerivative[0]
betagradient = EDerivative[1]
alpha -= eta*alphagradient
beta -= eta*betagradient

print(alpha, beta)
print(Energy, EDerivative[0], EDerivative[1])

Using Broyden’s algorithm in scipy
The following function uses the above described BFGS algorithm. Here we have
defined a function which calculates the energy and a function which computes
the first derivative.

2-electron VMC code for 2dim quantum dot with importance sampling
Using gaussian rng for new positions and Metropolis- Hastings
Added energy minimization using the BFGS algorithm, see p. 136 of https://www.springer.com/it/book/9780387303031
from math import exp, sqrt
from random import random, seed, normalvariate
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from matplotlib import cm
from matplotlib.ticker import LinearLocator, FormatStrFormatter
from scipy.optimize import minimize
import sys

Trial wave function for the 2-electron quantum dot in two dims
def WaveFunction(r,alpha,beta):

r1 = r[0,0]**2 + r[0,1]**2
r2 = r[1,0]**2 + r[1,1]**2
r12 = sqrt((r[0,0]-r[1,0])**2 + (r[0,1]-r[1,1])**2)
deno = r12/(1+beta*r12)
return exp(-0.5*alpha*(r1+r2)+deno)

Local energy for the 2-electron quantum dot in two dims, using analytical local energy
def LocalEnergy(r,alpha,beta):

7

r1 = (r[0,0]**2 + r[0,1]**2)
r2 = (r[1,0]**2 + r[1,1]**2)
r12 = sqrt((r[0,0]-r[1,0])**2 + (r[0,1]-r[1,1])**2)
deno = 1.0/(1+beta*r12)
deno2 = deno*deno
return 0.5*(1-alpha*alpha)*(r1 + r2) +2.0*alpha + 1.0/r12+deno2*(alpha*r12-deno2+2*beta*deno-1.0/r12)

Derivate of wave function ansatz as function of variational parameters
def DerivativeWFansatz(r,alpha,beta):

WfDer = np.zeros((2), np.double)
r1 = (r[0,0]**2 + r[0,1]**2)
r2 = (r[1,0]**2 + r[1,1]**2)
r12 = sqrt((r[0,0]-r[1,0])**2 + (r[0,1]-r[1,1])**2)
deno = 1.0/(1+beta*r12)
deno2 = deno*deno
WfDer[0] = -0.5*(r1+r2)
WfDer[1] = -r12*r12*deno2
return WfDer

Setting up the quantum force for the two-electron quantum dot, recall that it is a vector
def QuantumForce(r,alpha,beta):

qforce = np.zeros((NumberParticles,Dimension), np.double)
r12 = sqrt((r[0,0]-r[1,0])**2 + (r[0,1]-r[1,1])**2)
deno = 1.0/(1+beta*r12)
qforce[0,:] = -2*r[0,:]*alpha*(r[0,:]-r[1,:])*deno*deno/r12
qforce[1,:] = -2*r[1,:]*alpha*(r[1,:]-r[0,:])*deno*deno/r12
return qforce

Computing the derivative of the energy and the energy
def EnergyDerivative(x0):

Parameters in the Fokker-Planck simulation of the quantum force
D = 0.5
TimeStep = 0.05
NumberMCcycles= 10000
positions
PositionOld = np.zeros((NumberParticles,Dimension), np.double)
PositionNew = np.zeros((NumberParticles,Dimension), np.double)
Quantum force
QuantumForceOld = np.zeros((NumberParticles,Dimension), np.double)
QuantumForceNew = np.zeros((NumberParticles,Dimension), np.double)

energy = 0.0
DeltaE = 0.0
alpha = x0[0]
beta = x0[1]
EnergyDer = 0.0
DeltaPsi = 0.0
DerivativePsiE = 0.0
#Initial position
for i in range(NumberParticles):

for j in range(Dimension):
PositionOld[i,j] = normalvariate(0.0,1.0)*sqrt(TimeStep)

wfold = WaveFunction(PositionOld,alpha,beta)
QuantumForceOld = QuantumForce(PositionOld,alpha, beta)

#Loop over MC MCcycles

8

for MCcycle in range(NumberMCcycles):
#Trial position moving one particle at the time
for i in range(NumberParticles):

for j in range(Dimension):
PositionNew[i,j] = PositionOld[i,j]+normalvariate(0.0,1.0)*sqrt(TimeStep)+\

QuantumForceOld[i,j]*TimeStep*D
wfnew = WaveFunction(PositionNew,alpha,beta)
QuantumForceNew = QuantumForce(PositionNew,alpha, beta)
GreensFunction = 0.0
for j in range(Dimension):

GreensFunction += 0.5*(QuantumForceOld[i,j]+QuantumForceNew[i,j])*\
(D*TimeStep*0.5*(QuantumForceOld[i,j]-QuantumForceNew[i,j])-\
PositionNew[i,j]+PositionOld[i,j])

GreensFunction = exp(GreensFunction)
ProbabilityRatio = GreensFunction*wfnew**2/wfold**2
#Metropolis-Hastings test to see whether we accept the move
if random() <= ProbabilityRatio:

for j in range(Dimension):
PositionOld[i,j] = PositionNew[i,j]
QuantumForceOld[i,j] = QuantumForceNew[i,j]

wfold = wfnew
DeltaE = LocalEnergy(PositionOld,alpha,beta)
DerPsi = DerivativeWFansatz(PositionOld,alpha,beta)
DeltaPsi += DerPsi
energy += DeltaE
DerivativePsiE += DerPsi*DeltaE

We calculate mean values
energy /= NumberMCcycles
DerivativePsiE /= NumberMCcycles
DeltaPsi /= NumberMCcycles
EnergyDer = 2*(DerivativePsiE-DeltaPsi*energy)
return EnergyDer

Computing the expectation value of the local energy
def Energy(x0):

Parameters in the Fokker-Planck simulation of the quantum force
D = 0.5
TimeStep = 0.05
positions
PositionOld = np.zeros((NumberParticles,Dimension), np.double)
PositionNew = np.zeros((NumberParticles,Dimension), np.double)
Quantum force
QuantumForceOld = np.zeros((NumberParticles,Dimension), np.double)
QuantumForceNew = np.zeros((NumberParticles,Dimension), np.double)

energy = 0.0
DeltaE = 0.0
alpha = x0[0]
beta = x0[1]
NumberMCcycles= 10000
#Initial position
for i in range(NumberParticles):

for j in range(Dimension):
PositionOld[i,j] = normalvariate(0.0,1.0)*sqrt(TimeStep)

wfold = WaveFunction(PositionOld,alpha,beta)
QuantumForceOld = QuantumForce(PositionOld,alpha, beta)

#Loop over MC MCcycles

9

for MCcycle in range(NumberMCcycles):
#Trial position moving one particle at the time
for i in range(NumberParticles):

for j in range(Dimension):
PositionNew[i,j] = PositionOld[i,j]+normalvariate(0.0,1.0)*sqrt(TimeStep)+\

QuantumForceOld[i,j]*TimeStep*D
wfnew = WaveFunction(PositionNew,alpha,beta)
QuantumForceNew = QuantumForce(PositionNew,alpha, beta)
GreensFunction = 0.0
for j in range(Dimension):

GreensFunction += 0.5*(QuantumForceOld[i,j]+QuantumForceNew[i,j])*\
(D*TimeStep*0.5*(QuantumForceOld[i,j]-QuantumForceNew[i,j])-\
PositionNew[i,j]+PositionOld[i,j])

GreensFunction = exp(GreensFunction)
ProbabilityRatio = GreensFunction*wfnew**2/wfold**2
#Metropolis-Hastings test to see whether we accept the move
if random() <= ProbabilityRatio:

for j in range(Dimension):
PositionOld[i,j] = PositionNew[i,j]
QuantumForceOld[i,j] = QuantumForceNew[i,j]

wfold = wfnew
DeltaE = LocalEnergy(PositionOld,alpha,beta)
energy += DeltaE

We calculate mean values
energy /= NumberMCcycles
return energy

#Here starts the main program with variable declarations
NumberParticles = 2
Dimension = 2
seed for rng generator
seed()
guess for variational parameters
x0 = np.array([0.9,0.2])
Using Broydens method
res = minimize(Energy, x0, method='BFGS', jac=EnergyDerivative, options={'gtol': 1e-4,'disp': True})
print(res.x)

Note that the minimize function returns the finale values for the variable
α = x0[0] and β = x0[1] in the array x.

Brief reminder on Newton-Raphson’s method
Let us quickly remind ourselves how we derive the above method.

Perhaps the most celebrated of all one-dimensional root-finding routines
is Newton’s method, also called the Newton-Raphson method. This method
requires the evaluation of both the function f and its derivative f ′ at arbitrary
points. If you can only calculate the derivative numerically and/or your function
is not of the smooth type, we normally discourage the use of this method.

10

The equations
The Newton-Raphson formula consists geometrically of extending the tangent
line at a current point until it crosses zero, then setting the next guess to the
abscissa of that zero-crossing. The mathematics behind this method is rather
simple. Employing a Taylor expansion for x sufficiently close to the solution s,
we have

f(s) = 0 = f(x) + (s− x)f ′(x) + (s− x)2

2 f ′′(x) +

For small enough values of the function and for well-behaved functions, the
terms beyond linear are unimportant, hence we obtain

f(x) + (s− x)f ′(x) ≈ 0,

yielding
s ≈ x− f(x)

f ′(x) .

Having in mind an iterative procedure, it is natural to start iterating with

xn+1 = xn − f(xn)
f ′(xn) .

Simple geometric interpretation
The above is Newton-Raphson’s method. It has a simple geometric interpretation,
namely xn+1 is the point where the tangent from (xn, f(xn)) crosses the x-axis.
Close to the solution, Newton-Raphson converges fast to the desired result.
However, if we are far from a root, where the higher-order terms in the series
are important, the Newton-Raphson formula can give grossly inaccurate results.
For instance, the initial guess for the root might be so far from the true root as
to let the search interval include a local maximum or minimum of the function.
If an iteration places a trial guess near such a local extremum, so that the first
derivative nearly vanishes, then Newton-Raphson may fail totally

Extending to more than one variable
Newton’s method can be generalized to systems of several non-linear equations
and variables. Consider the case with two equations

f1(x1, x2) = 0
f2(x1, x2) = 0,

which we Taylor expand to obtain

0 = f1(x1 + h1, x2 + h2) = f1(x1, x2) + h1∂f1/∂x1 + h2∂f1/∂x2 + . . .
0 = f2(x1 + h1, x2 + h2) = f2(x1, x2) + h1∂f2/∂x1 + h2∂f2/∂x2 + . . .

.

11

Defining the Jacobian matrix Ĵ we have

Ĵ =
(
∂f1/∂x1 ∂f1/∂x2
∂f2/∂x1 ∂f2/∂x2

)
,

we can rephrase Newton’s method as(
xn+1

1
xn+1

2

)
=

(
xn

1
xn

2

)
+

(
hn

1
hn

2

)
,

where we have defined(
hn

1
hn

2

)
= −Ĵ−1

(
f1(xn

1 , x
n
2)

f2(xn
1 , x

n
2)

)
.

We need thus to compute the inverse of the Jacobian matrix and it is to
understand that difficulties may arise in case Ĵ is nearly singular.

It is rather straightforward to extend the above scheme to systems of more
than two non-linear equations. In our case, the Jacobian matrix is given by the
Hessian that represents the second derivative of cost function.

Steepest descent
The basic idea of gradient descent is that a function F (x), x ≡ (x1, · · · , xn),
decreases fastest if one goes from x in the direction of the negative gradient
−∇F (x).

It can be shown that if

xk+1 = xk − γk∇F (xk),

with γk > 0.
For γk small enough, then F (xk+1) ≤ F (xk). This means that for a suffi-

ciently small γk we are always moving towards smaller function values, i.e a
minimum.

More on Steepest descent
The previous observation is the basis of the method of steepest descent, which is
also referred to as just gradient descent (GD). One starts with an initial guess
x0 for a minimum of F and computes new approximations according to

xk+1 = xk − γk∇F (xk), k ≥ 0.

The parameter γk is often referred to as the step length or the learning rate
within the context of Machine Learning.

12

The ideal
Ideally the sequence {xk}k=0 converges to a global minimum of the function F .
In general we do not know if we are in a global or local minimum. In the special
case when F is a convex function, all local minima are also global minima, so in
this case gradient descent can converge to the global solution. The advantage of
this scheme is that it is conceptually simple and straightforward to implement.
However the method in this form has some severe limitations:

In machine learing we are often faced with non-convex high dimensional
cost functions with many local minima. Since GD is deterministic we will get
stuck in a local minimum, if the method converges, unless we have a very good
intial guess. This also implies that the scheme is sensitive to the chosen initial
condition.

Note that the gradient is a function of x = (x1, · · · , xn) which makes it
expensive to compute numerically.

The sensitiveness of the gradient descent
The gradient descent method is sensitive to the choice of learning rate γk. This is
due to the fact that we are only guaranteed that F (xk+1) ≤ F (xk) for sufficiently
small γk. The problem is to determine an optimal learning rate. If the learning
rate is chosen too small the method will take a long time to converge and if it is
too large we can experience erratic behavior.

Many of these shortcomings can be alleviated by introducing randomness.
One such method is that of Stochastic Gradient Descent (SGD), see below.

Convex functions
Ideally we want our cost/loss function to be convex(concave).

First we give the definition of a convex set: A set C in Rn is said to be convex
if, for all x and y in C and all t ∈ (0, 1) , the point (1 − t)x+ ty also belongs to
C. Geometrically this means that every point on the line segment connecting x
and y is in C as discussed below.

The convex subsets of R are the intervals of R. Examples of convex sets of
R2 are the regular polygons (triangles, rectangles, pentagons, etc...).

Convex function
Convex function: Let X ⊂ Rn be a convex set. Assume that the function
f : X → R is continuous, then f is said to be convex if

f(tx1 + (1 − t)x2) ≤ tf(x1) + (1 − t)f(x2)

for all x1, x2 ∈ X and for all t ∈ [0, 1]. If ≤ is replaced with a strict inequaltiy
in the definition, we demand x1 ̸= x2 and t ∈ (0, 1) then f is said to be strictly
convex. For a single variable function, convexity means that if you draw a
straight line connecting f(x1) and f(x2), the value of the function on the interval
[x1, x2] is always below the line as illustrated below.

13

Conditions on convex functions
In the following we state first and second-order conditions which ensures convexity
of a function f . We write Df to denote the domain of f , i.e the subset of Rn

where f is defined. For more details and proofs we refer to: S. Boyd and L.
Vandenberghe. Convex Optimization. Cambridge University Press.

First order condition. Suppose f is differentiable (i.e ∇f(x) is well defined
for all x in the domain of f). Then f is convex if and only if Df is a convex set
and

f(y) ≥ f(x) + ∇f(x)T (y − x)

holds for all x, y ∈ Df . This condition means that for a convex function the
first order Taylor expansion (right hand side above) at any point a global under
estimator of the function. To convince yourself you can make a drawing of
f(x) = x2 + 1 and draw the tangent line to f(x) and note that it is always below
the graph.

Second order condition. Assume that f is twice differentiable, i.e the Hessian
matrix exists at each point in Df . Then f is convex if and only if Df is a convex
set and its Hessian is positive semi-definite for all x ∈ Df . For a single-variable
function this reduces to f ′′(x) ≥ 0. Geometrically this means that f has
nonnegative curvature everywhere.

This condition is particularly useful since it gives us an procedure for de-
termining if the function under consideration is convex, apart from using the
definition.

More on convex functions
The next result is of great importance to us and the reason why we are going
on about convex functions. In machine learning we frequently have to minimize
a loss/cost function in order to find the best parameters for the model we are
considering.

Ideally we want the global minimum (for high-dimensional models it is hard
to know if we have local or global minimum). However, if the cost/loss function
is convex the following result provides invaluable information:

Any minimum is global for convex functions. Consider the problem of
finding x ∈ Rn such that f(x) is minimal, where f is convex and differentiable.
Then, any point x∗ that satisfies ∇f(x∗) = 0 is a global minimum.

This result means that if we know that the cost/loss function is convex and
we are able to find a minimum, we are guaranteed that it is a global minimum.

14

http://stanford.edu/boyd/cvxbook/, 2004
http://stanford.edu/boyd/cvxbook/, 2004

Some simple problems
1. Show that f(x) = x2 is convex for x ∈ R using the definition of convexity.

Hint: If you re-write the definition, f is convex if the following holds for all
x, y ∈ Df and any λ ∈ [0, 1] λf(x) + (1 − λ)f(y) − f(λx+ (1 − λ)y) ≥ 0.

2. Using the second order condition show that the following functions are
convex on the specified domain.

• f(x) = ex is convex for x ∈ R.
• g(x) = − ln(x) is convex for x ∈ (0,∞).

3. Let f(x) = x2 and g(x) = ex. Show that f(g(x)) and g(f(x)) is convex for
x ∈ R. Also show that if f(x) is any convex function than h(x) = ef(x) is
convex.

4. A norm is any function that satisfy the following properties

• f(αx) = |α|f(x) for all α ∈ R.
• f(x+ y) ≤ f(x) + f(y)
• f(x) ≤ 0 for all x ∈ Rn with equality if and only if x = 0

Using the definition of convexity, try to show that a function satisfying the
properties above is convex (the third condition is not needed to show this).

Standard steepest descent
Before we proceed, we would like to discuss the approach called the standard
Steepest descent, which again leads to us having to be able to compute a
matrix. It belongs to the class of Conjugate Gradient methods (CG).

The success of the CG method for finding solutions of non-linear problems is
based on the theory of conjugate gradients for linear systems of equations. It
belongs to the class of iterative methods for solving problems from linear algebra
of the type

Âx̂ = b̂.

In the iterative process we end up with a problem like

r̂ = b̂− Âx̂,

where r̂ is the so-called residual or error in the iterative process.
When we have found the exact solution, r̂ = 0.

15

https://www.cs.cmu.edu/~quake-papers/painless-conjugate-gradient.pdf

Gradient method
The residual is zero when we reach the minimum of the quadratic equation

P (x̂) = 1
2 x̂

T Âx̂− x̂T b̂,

with the constraint that the matrix Â is positive definite and symmetric.
This defines also the Hessian and we want it to be positive definite.

Steepest descent method
We denote the initial guess for x̂ as x̂0. We can assume without loss of generality
that

x̂0 = 0,
or consider the system

Âẑ = b̂− Âx̂0,

instead.

Steepest descent method
One can show that the solution x̂ is also the unique minimizer of the quadratic

form
f(x̂) = 1

2 x̂
T Âx̂− x̂T x̂, x̂ ∈ Rn.

This suggests taking the first basis vector r̂1 (see below for definition) to be the
gradient of f at x̂ = x̂0, which equals

Âx̂0 − b̂,

and x̂0 = 0 it is equal −b̂.

Final expressions
We can compute the residual iteratively as

r̂k+1 = b̂− Âx̂k+1,

which equals
b̂− Â(x̂k + αkr̂k),

or
(b̂− Âx̂k) − αkÂr̂k,

which gives

αk = r̂T
k r̂k

r̂T
k Âr̂k

leading to the iterative scheme

x̂k+1 = x̂k − αkr̂k,

16

Conjugate gradient method
In the CG method we define so-called conjugate directions and two vectors ŝ

and t̂ are said to be conjugate if

ŝT Ât̂ = 0.

The philosophy of the CG method is to perform searches in various conjugate
directions of our vectors x̂i obeying the above criterion, namely

x̂T
i Âx̂j = 0.

Two vectors are conjugate if they are orthogonal with respect to this inner
product. Being conjugate is a symmetric relation: if ŝ is conjugate to t̂, then t̂
is conjugate to ŝ.

Conjugate gradient method
An example is given by the eigenvectors of the matrix

v̂T
i Âv̂j = λv̂T

i v̂j ,

which is zero unless i = j.

Conjugate gradient method
Assume now that we have a symmetric positive-definite matrix Â of size n×n.

At each iteration i+ 1 we obtain the conjugate direction of a vector

x̂i+1 = x̂i + αip̂i.

We assume that p̂i is a sequence of n mutually conjugate directions. Then the p̂i

form a basis of Rn and we can expand the solution Âx̂ = b̂ in this basis, namely

x̂ =
n∑

i=1
αip̂i.

Conjugate gradient method
The coefficients are given by

Ax =
n∑

i=1
αiApi = b.

Multiplying with p̂T
k from the left gives

p̂T
k Âx̂ =

n∑
i=1

αip̂
T
k Âp̂i = p̂T

k b̂,

17

and we can define the coefficients αk as

αk = p̂T
k b̂

p̂T
k Âp̂k

Conjugate gradient method and iterations
If we choose the conjugate vectors p̂k carefully, then we may not need all of

them to obtain a good approximation to the solution x̂. We want to regard the
conjugate gradient method as an iterative method. This will us to solve systems
where n is so large that the direct method would take too much time.

We denote the initial guess for x̂ as x̂0. We can assume without loss of
generality that

x̂0 = 0,

or consider the system
Âẑ = b̂− Âx̂0,

instead.

Conjugate gradient method
One can show that the solution x̂ is also the unique minimizer of the quadratic

form
f(x̂) = 1

2 x̂
T Âx̂− x̂T x̂, x̂ ∈ Rn.

This suggests taking the first basis vector p̂1 to be the gradient of f at x̂ = x̂0,
which equals

Âx̂0 − b̂,

and x̂0 = 0 it is equal −b̂. The other vectors in the basis will be conjugate to
the gradient, hence the name conjugate gradient method.

Conjugate gradient method
Let r̂k be the residual at the k-th step:

r̂k = b̂− Âx̂k.

Note that r̂k is the negative gradient of f at x̂ = x̂k, so the gradient descent
method would be to move in the direction r̂k. Here, we insist that the directions
p̂k are conjugate to each other, so we take the direction closest to the gradient
r̂k under the conjugacy constraint. This gives the following expression

p̂k+1 = r̂k − p̂T
k Âr̂k

p̂T
k Âp̂k

p̂k.

18

Conjugate gradient method
We can also compute the residual iteratively as

r̂k+1 = b̂− Âx̂k+1,

which equals
b̂− Â(x̂k + αkp̂k),

or
(b̂− Âx̂k) − αkÂp̂k,

which gives

r̂k+1 = r̂k − Âp̂k,

Broyden–Fletcher–Goldfarb–Shanno algorithm
The optimization problem is to minimize f(x) where x is a vector in Rn, and

f is a differentiable scalar function. There are no constraints on the values that
x can take.

The algorithm begins at an initial estimate for the optimal value x0 and
proceeds iteratively to get a better estimate at each stage.

The search direction pk at stage k is given by the solution of the analogue of
the Newton equation

Bkpk = −∇f(xk),

where Bk is an approximation to the Hessian matrix, which is updated
iteratively at each stage, and ∇f(xk) is the gradient of the function evaluated
at xk. A line search in the direction pk is then used to find the next point xk+1
by minimising

f(xk + αpk),

over the scalar α > 0.

Codes from numerical recipes
You can use codes we have adapted from the text Numerical Recipes in C++,

see chapter 10.7. Here we present a program, which you also can find at the
webpage of the course we use the functions dfpmin and lnsrch. This is a variant
of the Broyden et al algorithm discussed in the previous slide.

• The program uses the harmonic oscillator in one dimensions as example.

• The program does not use armadillo to handle vectors and matrices, but
employs rather my own vector-matrix class. These auxiliary functions, and
the main program model.cpp can all be found under the program link here.

Below we show only excerpts from the main program. For the full program, see
the above link.

19

http://www.nr.com/
https://github.com/CompPhysics/ComputationalPhysics2/tree/gh-pages/doc/pub/cg/programs/c%2B%2B

Finding the minimum of the harmonic oscillator model in
one dimension

// Main function begins here
int main()
{

int n, iter;
double gtol, fret;
double alpha;
n = 1;

// reserve space in memory for vectors containing the variational
// parameters

Vector g(n), p(n);
cout << "Read in guess for alpha" << endl;
cin >> alpha;
gtol = 1.0e-5;

// now call dfmin and compute the minimum
p(0) = alpha;
dfpmin(p, n, gtol, &iter, &fret, Efunction, dEfunction);
cout << "Value of energy minimum = " << fret << endl;
cout << "Number of iterations = " << iter << endl;
cout << "Value of alpha at minimum = " << p(0) << endl;
return 0;

} // end of main program

Functions to observe
The functions Efunction and dEfunction compute the expectation value

of the energy and its derivative. They use the the quasi-Newton method of
Broyden, Fletcher, Goldfarb, and Shanno (BFGS) It uses the first derivatives
only. The BFGS algorithm has proven good performance even for non-smooth
optimizations. These functions need to be changed when you want to your own
derivatives.

// this function defines the expectation value of the local energy
double Efunction(Vector &x)
{

double value = x(0)*x(0)*0.5+1.0/(8*x(0)*x(0));
return value;

} // end of function to evaluate

// this function defines the derivative of the energy
void dEfunction(Vector &x, Vector &g)
{

g(0) = x(0)-1.0/(4*x(0)*x(0)*x(0));
} // end of function to evaluate

You need to change these functions in order to compute the local energy for
your system. I used 1000 cycles per call to get a new value of ⟨EL[α]⟩. When
I compute the local energy I also compute its derivative. After roughly 10-20
iterations I got a converged result in terms of α.

20

https://www.springer.com/it/book/9780387303031

	paragraph>
	paragraph>
	paragraph>
	paragraph>
	paragraph>

