
Week 10, March 4-8: Resampling
Techniques, Bootstrap and Blocking

Morten Hjorth-Jensen Email morten.hjorth-jensen@fys.uio.no1,2

1Department of Physics and Center fo Computing in Science Education, University of Oslo, Oslo, Norway
2Department of Physics and Astronomy and Facility for Rare Ion Beams, Michigan State University, East Lansing, Michigan, USA

March 8

Overview of week 10, March 4-8
Topics.

1. Reminder on optimization methods and top-down approach to what we
need to add

2. Resampling Techniques and statistics: Bootstrap and Blocking

3. Discussion of codes

4. Video of lecture

5. Handwritten notes

Teaching Material, videos and written material.

• Overview video on the Bootstrap method

• Marius Johnson’s Master thesis on the Blocking Method

Top-down approach, what we need to code
Final code for the two-electron case. The code here uses the BFGS
algorithm but performs now a production run and writes to file all average values
of the energy.

© 1999-2024, Morten Hjorth-Jensen Email morten.hjorth-jensen@fys.uio.no. Released under
CC Attribution-NonCommercial 4.0 license

https://youtu.be/M0Wt016qUYw
https://github.com/CompPhysics/ComputationalPhysics2/blob/gh-pages/doc/HandWrittenNotes/2024/NotesMarch8.pdf
https://www.youtube.com/watch?v=O_Fj4q8lgmc&ab_channel=MarinStatsLectures-RProgramming%26Statistics
https://www.duo.uio.no/bitstream/handle/10852/68360/PhysRevE.98.043304.pdf?sequence=2&isAllowed=y

2-electron VMC code for 2dim quantum dot with importance sampling
Using gaussian rng for new positions and Metropolis- Hastings
Added energy minimization
from math import exp, sqrt
from random import random, seed, normalvariate
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from matplotlib import cm
from matplotlib.ticker import LinearLocator, FormatStrFormatter
from scipy.optimize import minimize
import sys
import os

Where to save data files
PROJECT_ROOT_DIR = "Results"
DATA_ID = "Results/EnergyMin"

if not os.path.exists(PROJECT_ROOT_DIR):
os.mkdir(PROJECT_ROOT_DIR)

if not os.path.exists(DATA_ID):
os.makedirs(DATA_ID)

def data_path(dat_id):
return os.path.join(DATA_ID, dat_id)

outfile = open(data_path("Energies.dat"),'w')

Trial wave function for the 2-electron quantum dot in two dims
def WaveFunction(r,alpha,beta):

r1 = r[0,0]**2 + r[0,1]**2
r2 = r[1,0]**2 + r[1,1]**2
r12 = sqrt((r[0,0]-r[1,0])**2 + (r[0,1]-r[1,1])**2)
deno = r12/(1+beta*r12)
return exp(-0.5*alpha*(r1+r2)+deno)

Local energy for the 2-electron quantum dot in two dims, using analytical local energy
def LocalEnergy(r,alpha,beta):

r1 = (r[0,0]**2 + r[0,1]**2)
r2 = (r[1,0]**2 + r[1,1]**2)
r12 = sqrt((r[0,0]-r[1,0])**2 + (r[0,1]-r[1,1])**2)
deno = 1.0/(1+beta*r12)
deno2 = deno*deno
return 0.5*(1-alpha*alpha)*(r1 + r2) +2.0*alpha + 1.0/r12+deno2*(alpha*r12-deno2+2*beta*deno-1.0/r12)

Derivate of wave function ansatz as function of variational parameters
def DerivativeWFansatz(r,alpha,beta):

WfDer = np.zeros((2), np.double)
r1 = (r[0,0]**2 + r[0,1]**2)
r2 = (r[1,0]**2 + r[1,1]**2)
r12 = sqrt((r[0,0]-r[1,0])**2 + (r[0,1]-r[1,1])**2)
deno = 1.0/(1+beta*r12)
deno2 = deno*deno
WfDer[0] = -0.5*(r1+r2)
WfDer[1] = -r12*r12*deno2
return WfDer

2

Setting up the quantum force for the two-electron quantum dot, recall that it is a vector
def QuantumForce(r,alpha,beta):

qforce = np.zeros((NumberParticles,Dimension), np.double)
r12 = sqrt((r[0,0]-r[1,0])**2 + (r[0,1]-r[1,1])**2)
deno = 1.0/(1+beta*r12)
qforce[0,:] = -2*r[0,:]*alpha*(r[0,:]-r[1,:])*deno*deno/r12
qforce[1,:] = -2*r[1,:]*alpha*(r[1,:]-r[0,:])*deno*deno/r12
return qforce

Computing the derivative of the energy and the energy
def EnergyDerivative(x0):

Parameters in the Fokker-Planck simulation of the quantum force
D = 0.5
TimeStep = 0.05
positions
PositionOld = np.zeros((NumberParticles,Dimension), np.double)
PositionNew = np.zeros((NumberParticles,Dimension), np.double)
Quantum force
QuantumForceOld = np.zeros((NumberParticles,Dimension), np.double)
QuantumForceNew = np.zeros((NumberParticles,Dimension), np.double)

energy = 0.0
DeltaE = 0.0
alpha = x0[0]
beta = x0[1]
EnergyDer = 0.0
DeltaPsi = 0.0
DerivativePsiE = 0.0
#Initial position
for i in range(NumberParticles):

for j in range(Dimension):
PositionOld[i,j] = normalvariate(0.0,1.0)*sqrt(TimeStep)

wfold = WaveFunction(PositionOld,alpha,beta)
QuantumForceOld = QuantumForce(PositionOld,alpha, beta)

#Loop over MC MCcycles
for MCcycle in range(NumberMCcycles):

#Trial position moving one particle at the time
for i in range(NumberParticles):

for j in range(Dimension):
PositionNew[i,j] = PositionOld[i,j]+normalvariate(0.0,1.0)*sqrt(TimeStep)+\

QuantumForceOld[i,j]*TimeStep*D
wfnew = WaveFunction(PositionNew,alpha,beta)
QuantumForceNew = QuantumForce(PositionNew,alpha, beta)
GreensFunction = 0.0
for j in range(Dimension):

GreensFunction += 0.5*(QuantumForceOld[i,j]+QuantumForceNew[i,j])*\
(D*TimeStep*0.5*(QuantumForceOld[i,j]-QuantumForceNew[i,j])-\
PositionNew[i,j]+PositionOld[i,j])

GreensFunction = exp(GreensFunction)
ProbabilityRatio = GreensFunction*wfnew**2/wfold**2
#Metropolis-Hastings test to see whether we accept the move
if random() <= ProbabilityRatio:

for j in range(Dimension):
PositionOld[i,j] = PositionNew[i,j]
QuantumForceOld[i,j] = QuantumForceNew[i,j]

3

wfold = wfnew
DeltaE = LocalEnergy(PositionOld,alpha,beta)
DerPsi = DerivativeWFansatz(PositionOld,alpha,beta)
DeltaPsi += DerPsi
energy += DeltaE
DerivativePsiE += DerPsi*DeltaE

We calculate mean values
energy /= NumberMCcycles
DerivativePsiE /= NumberMCcycles
DeltaPsi /= NumberMCcycles
EnergyDer = 2*(DerivativePsiE-DeltaPsi*energy)
return EnergyDer

Computing the expectation value of the local energy
def Energy(x0):

Parameters in the Fokker-Planck simulation of the quantum force
D = 0.5
TimeStep = 0.05
positions
PositionOld = np.zeros((NumberParticles,Dimension), np.double)
PositionNew = np.zeros((NumberParticles,Dimension), np.double)
Quantum force
QuantumForceOld = np.zeros((NumberParticles,Dimension), np.double)
QuantumForceNew = np.zeros((NumberParticles,Dimension), np.double)

energy = 0.0
DeltaE = 0.0
alpha = x0[0]
beta = x0[1]
#Initial position
for i in range(NumberParticles):

for j in range(Dimension):
PositionOld[i,j] = normalvariate(0.0,1.0)*sqrt(TimeStep)

wfold = WaveFunction(PositionOld,alpha,beta)
QuantumForceOld = QuantumForce(PositionOld,alpha, beta)

#Loop over MC MCcycles
for MCcycle in range(NumberMCcycles):

#Trial position moving one particle at the time
for i in range(NumberParticles):

for j in range(Dimension):
PositionNew[i,j] = PositionOld[i,j]+normalvariate(0.0,1.0)*sqrt(TimeStep)+\

QuantumForceOld[i,j]*TimeStep*D
wfnew = WaveFunction(PositionNew,alpha,beta)
QuantumForceNew = QuantumForce(PositionNew,alpha, beta)
GreensFunction = 0.0
for j in range(Dimension):

GreensFunction += 0.5*(QuantumForceOld[i,j]+QuantumForceNew[i,j])*\
(D*TimeStep*0.5*(QuantumForceOld[i,j]-QuantumForceNew[i,j])-\
PositionNew[i,j]+PositionOld[i,j])

GreensFunction = exp(GreensFunction)
ProbabilityRatio = GreensFunction*wfnew**2/wfold**2
#Metropolis-Hastings test to see whether we accept the move
if random() <= ProbabilityRatio:

for j in range(Dimension):
PositionOld[i,j] = PositionNew[i,j]
QuantumForceOld[i,j] = QuantumForceNew[i,j]

wfold = wfnew

4

DeltaE = LocalEnergy(PositionOld,alpha,beta)
energy += DeltaE
if Printout:

outfile.write('%f\n' %(energy/(MCcycle+1.0)))
We calculate mean values
energy /= NumberMCcycles
return energy

#Here starts the main program with variable declarations
NumberParticles = 2
Dimension = 2
seed for rng generator
seed()
Monte Carlo cycles for parameter optimization
Printout = False
NumberMCcycles= 10000
guess for variational parameters
x0 = np.array([0.9,0.2])
Using Broydens method to find optimal parameters
res = minimize(Energy, x0, method='BFGS', jac=EnergyDerivative, options={'gtol': 1e-4,'disp': True})
x0 = res.x
Compute the energy again with the optimal parameters and increased number of Monte Cycles
NumberMCcycles= 2**19
Printout = True
FinalEnergy = Energy(x0)
EResult = np.array([FinalEnergy,FinalEnergy])
outfile.close()
#nice printout with Pandas
import pandas as pd
from pandas import DataFrame
data ={'Optimal Parameters':x0, 'Final Energy':EResult}
frame = pd.DataFrame(data)
print(frame)

Note that the minimize function returns the final values for the variable
α = x0[0] and β = x0[1] in the array x.

When we have found the minimum, we use these optimal parameters to
perform a production run of energies. The output is in turn written to file and is
used, together with resampling methods like the blocking method, to obtain
the best possible estimate for the standard deviation. The optimal minimum is,
even with our guess, rather close to the exact value of 3.0 a.u.

Our next step is to use the output values of the energy and perform a blocking
analysis of the results in order to get a best possible estimate of the standard
deviation.

Resampling analysis
The next step is then to use the above data sets and perform a resampling
analysis, either using say the Bootstrap method or the Blocking method.

Common imports
import os

Where to save the figures and data files
DATA_ID = "Results/EnergyMin"

5

def data_path(dat_id):
return os.path.join(DATA_ID, dat_id)

infile = open(data_path("Energies.dat"),'r')

from numpy import std, mean, concatenate, arange, loadtxt, zeros, ceil
from numpy.random import randint
from time import time

def tsboot(data,statistic,R,l):
t = zeros(R); n = len(data); k = int(ceil(float(n)/l));
inds = arange(n); t0 = time()

time series bootstrap
for i in range(R):

construct bootstrap sample from
k chunks of data. The chunksize is l
_data = concatenate([data[j:j+l] for j in randint(0,n-l,k)])[0:n];
t[i] = statistic(_data)

analysis
print ("Runtime: %g sec" % (time()-t0)); print ("Bootstrap Statistics :")
print ("%8g %14g %15g" % (statistic(data), \

mean(t) - statistic(data), \
std(t)))

return t
Read in data
X = loadtxt(infile)
statistic to be estimated. Takes two args.
arg1: the data
def stat(data):

return mean(data)
t = tsboot(X, stat, 2**12, 2**10)

The blocking code, based on the article of Marius Jonsson is given here
Common imports
import os

Where to save the figures and data files
DATA_ID = "Results/EnergyMin"

def data_path(dat_id):
return os.path.join(DATA_ID, dat_id)

infile = open(data_path("Energies.dat"),'r')

from numpy import log2, zeros, mean, var, sum, loadtxt, arange, array, cumsum, dot, transpose, diagonal, sqrt
from numpy.linalg import inv

def block(x):
preliminaries
n = len(x)
d = int(log2(n))
s, gamma = zeros(d), zeros(d)
mu = mean(x)

6

https://journals.aps.org/pre/abstract/10.1103/PhysRevE.98.043304

estimate the auto-covariance and variances
for each blocking transformation
for i in arange(0,d):

n = len(x)
estimate autocovariance of x
gamma[i] = (n)**(-1)*sum((x[0:(n-1)]-mu)*(x[1:n]-mu))
estimate variance of x
s[i] = var(x)
perform blocking transformation
x = 0.5*(x[0::2] + x[1::2])

generate the test observator M_k from the theorem
M = (cumsum(((gamma/s)**2*2**arange(1,d+1)[::-1])[::-1]))[::-1]

we need a list of magic numbers
q =array([6.634897,9.210340, 11.344867, 13.276704, 15.086272, 16.811894, 18.475307, 20.090235, 21.665994, 23.209251, 24.724970, 26.216967, 27.688250, 29.141238, 30.577914, 31.999927, 33.408664, 34.805306, 36.190869, 37.566235, 38.932173, 40.289360, 41.638398, 42.979820, 44.314105, 45.641683, 46.962942, 48.278236, 49.587884, 50.892181])

use magic to determine when we should have stopped blocking
for k in arange(0,d):

if(M[k] < q[k]):
break

if (k >= d-1):
print("Warning: Use more data")

return mu, s[k]/2**(d-k)

x = loadtxt(infile)
(mean, var) = block(x)
std = sqrt(var)
import pandas as pd
from pandas import DataFrame
data ={'Mean':[mean], 'STDev':[std]}
frame = pd.DataFrame(data,index=['Values'])
print(frame)

Why aren’t the final averages from the MC sampling the same as those from
the Blocking and Bootstrap analysis?

Let us now go through some of the basic theory behind the Bootstrap and the
Blocking methods. This means that we need to deal with so-called resampling
methods.

Resampling methods
Resampling methods are an indispensable tool in modern statistics. They

involve repeatedly drawing samples from a training set and refitting a model
of interest on each sample in order to obtain additional information about
the fitted model. For example, in order to estimate the variability of a linear
regression fit, we can repeatedly draw different samples from the training data,
fit a linear regression to each new sample, and then examine the extent to which
the resulting fits differ. Such an approach may allow us to obtain information
that would not be available from fitting the model only once using the original
training sample.

7

Resampling approaches can be computationally expensive
Resampling approaches can be computationally expensive, because they involve

fitting the same statistical method multiple times using different subsets of
the training data. However, due to recent advances in computing power, the
computational requirements of resampling methods generally are not prohibitive.
In this chapter, we discuss two of the most commonly used resampling methods,
cross-validation and the bootstrap. Both methods are important tools in the
practical application of many statistical learning procedures. For example, cross-
validation can be used to estimate the test error associated with a given statistical
learning method in order to evaluate its performance, or to select the appropriate
level of flexibility. The process of evaluating a model’s performance is known as
model assessment, whereas the process of selecting the proper level of flexibility
for a model is known as model selection. The bootstrap is widely used.

Why resampling methods ?
Statistical analysis.

1. Our simulations can be treated as computer experiments. This is particu-
larly the case for Monte Carlo methods

2. The results can be analysed with the same statistical tools as we would
use analysing experimental data.

3. As in all experiments, we are looking for expectation values and an estimate
of how accurate they are, i.e., possible sources for errors.

Statistical analysis

1. As in other experiments, many numerical experiments have two classes of
errors:

(a) Statistical errors
(b) Systematical errors

Statistical errors can be estimated using standard tools from statistics.
Systematical errors are method specific and must be treated differently from

case to case.

Statistics
The probability distribution function (PDF) is a function p(x) on the domain

which, in the discrete case, gives us the probability or relative frequency with
which these values of X occur:

p(x) = prob(X = x)

8

In the continuous case, the PDF does not directly depict the actual probability.
Instead we define the probability for the stochastic variable to assume any value
on an infinitesimal interval around x to be p(x)dx. The continuous function p(x)
then gives us the density of the probability rather than the probability itself. The
probability for a stochastic variable to assume any value on a non-infinitesimal
interval [a, b] is then just the integral:

prob(a ≤ X ≤ b) =
∫ b

a

p(x)dx

Qualitatively speaking, a stochastic variable represents the values of numbers
chosen as if by chance from some specified PDF so that the selection of a large
set of these numbers reproduces this PDF.

Statistics, moments
A particularly useful class of special expectation values are the moments. The

n-th moment of the PDF p is defined as follows:

⟨xn⟩ ≡
∫

xnp(x) dx

The zero-th moment ⟨1⟩ is just the normalization condition of p. The first
moment, ⟨x⟩, is called the mean of p and often denoted by the letter µ:

⟨x⟩ = µ ≡
∫

xp(x) dx

Statistics, central moments
A special version of the moments is the set of central moments, the n-th central

moment defined as:

⟨(x − ⟨x⟩)n⟩ ≡
∫

(x − ⟨x⟩)np(x) dx

The zero-th and first central moments are both trivial, equal 1 and 0, respectively.
But the second central moment, known as the variance of p, is of particular
interest. For the stochastic variable X, the variance is denoted as σ2

X or var(X):

σ2
X = var(X) = ⟨(x − ⟨x⟩)2⟩ =

∫
(x − ⟨x⟩)2p(x) dx (1)

=
∫ (

x2 − 2x⟨x⟩2 + ⟨x⟩2) p(x) dx (2)

= ⟨x2⟩ − 2⟨x⟩⟨x⟩ + ⟨x⟩2 (3)
= ⟨x2⟩ − ⟨x⟩2 (4)

The square root of the variance, σ =
√

⟨(x − ⟨x⟩)2⟩ is called the standard
deviation of p. It is clearly just the RMS (root-mean-square) value of the
deviation of the PDF from its mean value, interpreted qualitatively as the spread
of p around its mean.

9

Statistics, covariance
Another important quantity is the so called covariance, a variant of the

above defined variance. Consider again the set {Xi} of n stochastic variables
(not necessarily uncorrelated) with the multivariate PDF P (x1, . . . , xn). The
covariance of two of the stochastic variables, Xi and Xj , is defined as follows:

cov(Xi, Xj) ≡ ⟨(xi − ⟨xi⟩)(xj − ⟨xj⟩)⟩

=
∫

· · ·
∫

(xi − ⟨xi⟩)(xj − ⟨xj⟩) P (x1, . . . , xn) dx1 . . . dxn (5)

with
⟨xi⟩ =

∫
· · ·
∫

xi P (x1, . . . , xn) dx1 . . . dxn

Statistics, more covariance
If we consider the above covariance as a matrix Cij = cov(Xi, Xj), then the

diagonal elements are just the familiar variances, Cii = cov(Xi, Xi) = var(Xi).
It turns out that all the off-diagonal elements are zero if the stochastic variables
are uncorrelated. This is easy to show, keeping in mind the linearity of the
expectation value. Consider the stochastic variables Xi and Xj , (i ̸= j):

cov(Xi, Xj) = ⟨(xi − ⟨xi⟩)(xj − ⟨xj⟩)⟩ (6)
= ⟨xixj − xi⟨xj⟩ − ⟨xi⟩xj + ⟨xi⟩⟨xj⟩⟩ (7)
= ⟨xixj⟩ − ⟨xi⟨xj⟩⟩ − ⟨⟨xi⟩xj⟩ + ⟨⟨xi⟩⟨xj⟩⟩ (8)
= ⟨xixj⟩ − ⟨xi⟩⟨xj⟩ − ⟨xi⟩⟨xj⟩ + ⟨xi⟩⟨xj⟩ (9)
= ⟨xixj⟩ − ⟨xi⟩⟨xj⟩ (10)

Statistics, independent variables
If Xi and Xj are independent, we get ⟨xixj⟩ = ⟨xi⟩⟨xj⟩, resulting in cov(Xi, Xj) =

0 (i ̸= j).
Also useful for us is the covariance of linear combinations of stochastic

variables. Let {Xi} and {Yi} be two sets of stochastic variables. Let also {ai}
and {bi} be two sets of scalars. Consider the linear combination:

U =
∑

i

aiXi V =
∑

j

bjYj

By the linearity of the expectation value

cov(U, V) =
∑
i,j

aibjcov(Xi, Yj)

10

Statistics, more variance
Now, since the variance is just var(Xi) = cov(Xi, Xi), we get the variance of

the linear combination U =
∑

i aiXi:

var(U) =
∑
i,j

aiajcov(Xi, Xj) (11)

And in the special case when the stochastic variables are uncorrelated, the
off-diagonal elements of the covariance are as we know zero, resulting in:

var(U) =
∑

i

a2
i cov(Xi, Xi) =

∑
i

a2
i var(Xi)

var(
∑

i

aiXi) =
∑

i

a2
i var(Xi)

which will become very useful in our study of the error in the mean value of a
set of measurements.

Statistics and stochastic processes
A stochastic process is a process that produces sequentially a chain of values:

{x1, x2, . . . xk, . . . }.

We will call these values our measurements and the entire set as our measured
sample. The action of measuring all the elements of a sample we will call a
stochastic experiment since, operationally, they are often associated with results
of empirical observation of some physical or mathematical phenomena; precisely
an experiment. We assume that these values are distributed according to some
PDF pX(x), where X is just the formal symbol for the stochastic variable whose
PDF is pX(x). Instead of trying to determine the full distribution p we are often
only interested in finding the few lowest moments, like the mean µX and the
variance σX .

Statistics and sample variables
In practical situations a sample is always of finite size. Let that size be n.

The expectation value of a sample, the sample mean, is then defined as follows:

x̄n ≡ 1
n

n∑
k=1

xk

The sample variance is:

var(x) ≡ 1
n

n∑
k=1

(xk − x̄n)2

11

its square root being the standard deviation of the sample. The sample covariance
is:

cov(x) ≡ 1
n

∑
kl

(xk − x̄n)(xl − x̄n)

Statistics, sample variance and covariance
Note that the sample variance is the sample covariance without the cross

terms. In a similar manner as the covariance in Eq. (5) is a measure of the
correlation between two stochastic variables, the above defined sample covariance
is a measure of the sequential correlation between succeeding measurements of a
sample.

These quantities, being known experimental values, differ significantly from
and must not be confused with the similarly named quantities for stochastic
variables, mean µX , variance var(X) and covariance cov(X, Y).

Statistics, law of large numbers
The law of large numbers states that as the size of our sample grows to infinity,

the sample mean approaches the true mean µX of the chosen PDF:

lim
n→∞

x̄n = µX

The sample mean x̄n works therefore as an estimate of the true mean µX .
What we need to find out is how good an approximation x̄n is to µX . In

any stochastic measurement, an estimated mean is of no use to us without a
measure of its error. A quantity that tells us how well we can reproduce it in
another experiment. We are therefore interested in the PDF of the sample mean
itself. Its standard deviation will be a measure of the spread of sample means,
and we will simply call it the error of the sample mean, or just sample error,
and denote it by errX . In practice, we will only be able to produce an estimate
of the sample error since the exact value would require the knowledge of the
true PDFs behind, which we usually do not have.

Statistics, more on sample error
Let us first take a look at what happens to the sample error as the size of the

sample grows. In a sample, each of the measurements xi can be associated with
its own stochastic variable Xi. The stochastic variable Xn for the sample mean
x̄n is then just a linear combination, already familiar to us:

Xn = 1
n

n∑
i=1

Xi

All the coefficients are just equal 1/n. The PDF of Xn, denoted by pXn
(x) is

the desired PDF of the sample means.

12

Statistics
The probability density of obtaining a sample mean x̄n is the product of

probabilities of obtaining arbitrary values x1, x2, . . . , xn with the constraint that
the mean of the set {xi} is x̄n:

pXn
(x) =

∫
pX(x1) · · ·

∫
pX(xn) δ

(
x − x1 + x2 + · · · + xn

n

)
dxn · · · dx1

And in particular we are interested in its variance var(Xn).

Statistics, central limit theorem
It is generally not possible to express pXn

(x) in a closed form given an
arbitrary PDF pX and a number n. But for the limit n → ∞ it is possible to
make an approximation. The very important result is called the central limit
theorem. It tells us that as n goes to infinity, pXn

(x) approaches a Gaussian
distribution whose mean and variance equal the true mean and variance, µX

and σ2
X , respectively:

lim
n→∞

pXn
(x) =

(
n

2πvar(X)

)1/2
e− n(x−x̄n)2

2var(X) (12)

Statistics, more technicalities
The desired variance var(Xn), i.e. the sample error squared err2

X , is given by:

err2
X = var(Xn) = 1

n2

∑
ij

cov(Xi, Xj) (13)

We see now that in order to calculate the exact error of the sample with the
above expression, we would need the true means µXi

of the stochastic variables
Xi. To calculate these requires that we know the true multivariate PDF of all
the Xi. But this PDF is unknown to us, we have only got the measurements of
one sample. The best we can do is to let the sample itself be an estimate of the
PDF of each of the Xi, estimating all properties of Xi through the measurements
of the sample.

Statistics
Our estimate of µXi

is then the sample mean x̄ itself, in accordance with the
the central limit theorem:

µXi
= ⟨xi⟩ ≈ 1

n

n∑
k=1

xk = x̄

Using x̄ in place of µXi
we can give an estimate of the covariance in Eq. (13)

cov(Xi, Xj) = ⟨(xi − ⟨xi⟩)(xj − ⟨xj⟩)⟩ ≈ ⟨(xi − x̄)(xj − x̄)⟩,

13

resulting in

1
n

n∑
l

(
1
n

n∑
k

(xk − x̄n)(xl − x̄n)
)

= 1
n

1
n

∑
kl

(xk − x̄n)(xl − x̄n) = 1
n

cov(x)

Statistics and sample variance
By the same procedure we can use the sample variance as an estimate of the

variance of any of the stochastic variables Xi

var(Xi) = ⟨xi − ⟨xi⟩⟩ ≈ ⟨xi − x̄n⟩,

which is approximated as

var(Xi) ≈ 1
n

n∑
k=1

(xk − x̄n) = var(x) (14)

Now we can calculate an estimate of the error errX of the sample mean x̄n:

err2
X = 1

n2

∑
ij

cov(Xi, Xj)

≈ 1
n2

∑
ij

1
n

cov(x) = 1
n2 n2 1

n
cov(x)

= 1
n

cov(x) (15)

which is nothing but the sample covariance divided by the number of measure-
ments in the sample.

Statistics, uncorrelated results
In the special case that the measurements of the sample are uncorrelated

(equivalently the stochastic variables Xi are uncorrelated) we have that the off-
diagonal elements of the covariance are zero. This gives the following estimate
of the sample error:

err2
X = 1

n2

∑
ij

cov(Xi, Xj) = 1
n2

∑
i

var(Xi),

resulting in
err2

X ≈ 1
n2

∑
i

var(x) = 1
n

var(x) (16)

where in the second step we have used Eq. (14). The error of the sample is
then just its standard deviation divided by the square root of the number of
measurements the sample contains. This is a very useful formula which is easy
to compute. It acts as a first approximation to the error, but in numerical
experiments, we cannot overlook the always present correlations.

14

Statistics, computations
For computational purposes one usually splits up the estimate of err2

X , given
by Eq. (15), into two parts

err2
X = 1

n
var(x) + 1

n
(cov(x) − var(x)),

which equals

1
n2

n∑
k=1

(xk − x̄n)2 + 2
n2

∑
k<l

(xk − x̄n)(xl − x̄n) (17)

The first term is the same as the error in the uncorrelated case, Eq. (16). This
means that the second term accounts for the error correction due to correlation
between the measurements. For uncorrelated measurements this second term is
zero.

Statistics, more on computations of errors
Computationally the uncorrelated first term is much easier to treat efficiently

than the second.

var(x) = 1
n

n∑
k=1

(xk − x̄n)2 =
(

1
n

n∑
k=1

x2
k

)
− x̄2

n

We just accumulate separately the values x2 and x for every measurement x
we receive. The correlation term, though, has to be calculated at the end of
the experiment since we need all the measurements to calculate the cross terms.
Therefore, all measurements have to be stored throughout the experiment.

Statistics, wrapping up 1
Let us analyze the problem by splitting up the correlation term into partial

sums of the form:

fd = 1
n − d

n−d∑
k=1

(xk − x̄n)(xk+d − x̄n)

The correlation term of the error can now be rewritten in terms of fd

2
n

∑
k<l

(xk − x̄n)(xl − x̄n) = 2
n−1∑
d=1

fd

The value of fd reflects the correlation between measurements separated by
the distance d in the sample samples. Notice that for d = 0, f is just the

15

sample variance, var(x). If we divide fd by var(x), we arrive at the so called
autocorrelation function

κd = fd

var(x)
which gives us a useful measure of pairwise correlations starting always at 1 for
d = 0.

Statistics, final expression
The sample error (see eq. (17)) can now be written in terms of the autocorre-

lation function:

err2
X = 1

n
var(x) + 2

n
· var(x)

n−1∑
d=1

fd

var(x)

=
(

1 + 2
n−1∑
d=1

κd

)
1
n

var(x)

= τ

n
· var(x) (18)

and we see that errX can be expressed in terms the uncorrelated sample vari-
ance times a correction factor τ which accounts for the correlation between
measurements. We call this correction factor the autocorrelation time:

τ = 1 + 2
n−1∑
d=1

κd (19)

Statistics, effective number of correlations
For a correlation free experiment, τ equals 1. From the point of view of eq. (18)

we can interpret a sequential correlation as an effective reduction of the number
of measurements by a factor τ . The effective number of measurements becomes:

neff = n

τ

To neglect the autocorrelation time τ will always cause our simple uncorrelated
estimate of err2

X ≈ var(x)/n to be less than the true sample error. The estimate
of the error will be too good. On the other hand, the calculation of the full
autocorrelation time poses an efficiency problem if the set of measurements is
very large.

Can we understand this? Time Auto-correlation Function
The so-called time-displacement autocorrelation ϕ(t) for a quantity M is given

by
ϕ(t) =

∫
dt′ [M(t′) − ⟨M⟩] [M(t′ + t) − ⟨M⟩] ,

16

which can be rewritten as

ϕ(t) =
∫

dt′ [M(t′)M(t′ + t) − ⟨M⟩2] ,

where ⟨M⟩ is the average value and M(t) its instantaneous value. We can
discretize this function as follows, where we used our set of computed values
M(t) for a set of discretized times (our Monte Carlo cycles corresponding to
moving all electrons?)

ϕ(t) = 1
tmax − t

tmax−t∑
t′=0

M(t′)M(t′+t)− 1
tmax − t

tmax−t∑
t′=0

M(t′)× 1
tmax − t

tmax−t∑
t′=0

M(t′+t).

Time Auto-correlation Function
One should be careful with times close to tmax, the upper limit of the sums

becomes small and we end up integrating over a rather small time interval.
This means that the statistical error in ϕ(t) due to the random nature of the
fluctuations in M(t) can become large.

One should therefore choose t ≪ tmax.
Note that the variable M can be any expectation values of interest.
The time-correlation function gives a measure of the correlation between the

various values of the variable at a time t′ and a time t′ + t. If we multiply the
values of M at these two different times, we will get a positive contribution if
they are fluctuating in the same direction, or a negative value if they fluctuate
in the opposite direction. If we then integrate over time, or use the discretized
version of, the time correlation function ϕ(t) should take a non-zero value if the
fluctuations are correlated, else it should gradually go to zero. For times a long
way apart the different values of M are most likely uncorrelated and ϕ(t) should
be zero.

Time Auto-correlation Function
We can derive the correlation time by observing that our Metropolis algorithm

is based on a random walk in the space of all possible spin configurations. Our
probability distribution function ŵ(t) after a given number of time steps t could
be written as

ŵ(t) = Ŵtŵ(0),
with ŵ(0) the distribution at t = 0 and Ŵ representing the transition probability
matrix. We can always expand ŵ(0) in terms of the right eigenvectors of v̂ of
Ŵ as

ŵ(0) =
∑

i

αiv̂i,

resulting in
ŵ(t) = Ŵtŵ(0) = Ŵt

∑
i

αiv̂i =
∑

i

λt
iαiv̂i,

with λi the ith eigenvalue corresponding to the eigenvector v̂i.

17

Time Auto-correlation Function
If we assume that λ0 is the largest eigenvector we see that in the limit t → ∞,

ŵ(t) becomes proportional to the corresponding eigenvector v̂0. This is our
steady state or final distribution.

We can relate this property to an observable like the mean energy. With the
probabilty ŵ(t) (which in our case is the squared trial wave function) we can
write the expectation values as

⟨M(t)⟩ =
∑

µ

ŵ(t)µMµ,

or as the scalar of a vector product

⟨M(t)⟩ = ŵ(t)m,

with m being the vector whose elements are the values of Mµ in its various
microstates µ.

Time Auto-correlation Function
We rewrite this relation as

⟨M(t)⟩ = ŵ(t)m =
∑

i

λt
iαiv̂imi.

If we define mi = v̂imi as the expectation value of M in the ith eigenstate we
can rewrite the last equation as

⟨M(t)⟩ =
∑

i

λt
iαimi.

Since we have that in the limit t → ∞ the mean value is dominated by the the
largest eigenvalue λ0, we can rewrite the last equation as

⟨M(t)⟩ = ⟨M(∞)⟩ +
∑
i̸=0

λt
iαimi.

We define the quantity
τi = − 1

logλi
,

and rewrite the last expectation value as

⟨M(t)⟩ = ⟨M(∞)⟩ +
∑
i̸=0

αimie
−t/τi .

18

Time Auto-correlation Function
The quantities τi are the correlation times for the system. They control also

the auto-correlation function discussed above. The longest correlation time is
obviously given by the second largest eigenvalue τ1, which normally defines the
correlation time discussed above. For large times, this is the only correlation time
that survives. If higher eigenvalues of the transition matrix are well separated
from λ1 and we simulate long enough, τ1 may well define the correlation time. In
other cases we may not be able to extract a reliable result for τ1. Coming back
to the time correlation function ϕ(t) we can present a more general definition
in terms of the mean magnetizations ⟨M(t)⟩. Recalling that the mean value is
equal to ⟨M(∞)⟩ we arrive at the expectation values

ϕ(t) = ⟨M(0) − M(∞)⟩⟨M(t) − M(∞)⟩,

resulting in
ϕ(t) =

∑
i,j ̸=0

miαimjαje−t/τi ,

which is appropriate for all times.

Correlation Time
If the correlation function decays exponentially

ϕ(t) ∼ exp (−t/τ)

then the exponential correlation time can be computed as the average

τexp = −⟨ t

log| ϕ(t)
ϕ(0) |

⟩.

If the decay is exponential, then∫ ∞

0
dtϕ(t) =

∫ ∞

0
dtϕ(0) exp (−t/τ) = τϕ(0),

which suggests another measure of correlation

τint =
∑

k

ϕ(k)
ϕ(0) ,

called the integrated correlation time.

Resampling methods: Jackknife and Bootstrap
Two famous resampling methods are the independent bootstrap and the
jackknife.

19

The jackknife is a special case of the independent bootstrap. Still, the
jackknife was made popular prior to the independent bootstrap. And as the
popularity of the independent bootstrap soared, new variants, such as the
dependent bootstrap.

The Jackknife and independent bootstrap work for independent, identically
distributed random variables. If these conditions are not satisfied, the methods
will fail. Yet, it should be said that if the data are independent, identically
distributed, and we only want to estimate the variance of X (which often is the
case), then there is no need for bootstrapping.

Resampling methods: Jackknife
The Jackknife works by making many replicas of the estimator θ̂. The jackknife
is a resampling method, we explained that this happens by scrambling the data
in some way. When using the jackknife, this is done by systematically leaving
out one observation from the vector of observed values x̂ = (x1, x2, · · · , Xn). Let
x̂i denote the vector

x̂i = (x1, x2, · · · , xi−1, xi+1, · · · , xn),

which equals the vector x̂ with the exception that observation number i is
left out. Using this notation, define θ̂i to be the estimator θ̂ computed using X⃗i.

Resampling methods: Jackknife estimator
To get an estimate for the bias and standard error of θ̂, use the following
estimators for each component of θ̂

B̂ias(θ̂, θ) = (n−1)
(

−θ̂ + 1
n

n∑
i=1

θ̂i

)
and σ̂2

θ̂
= n − 1

n

n∑
i=1

(θ̂i−
1
n

n∑
j=1

θ̂j)2.

Jackknife code example
from numpy import *
from numpy.random import randint, randn
from time import time

def jackknife(data, stat):
n = len(data);t = zeros(n); inds = arange(n); t0 = time()
'jackknifing' by leaving out an observation for each i
for i in range(n):

t[i] = stat(delete(data,i))

analysis
print("Runtime: %g sec" % (time()-t0)); print("Jackknife Statistics :")
print("original bias std. error")
print("%8g %14g %15g" % (stat(data),(n-1)*mean(t)/n, (n*var(t))**.5))

return t

20

Returns mean of data samples
def stat(data):

return mean(data)

mu, sigma = 100, 15
datapoints = 10000
x = mu + sigma*random.randn(datapoints)
jackknife returns the data sample
t = jackknife(x, stat)

Resampling methods: Bootstrap
Bootstrapping is a nonparametric approach to statistical inference that substi-

tutes computation for more traditional distributional assumptions and asymptotic
results. Bootstrapping offers a number of advantages:

1. The bootstrap is quite general, although there are some cases in which it
fails.

2. Because it does not require distributional assumptions (such as normally
distributed errors), the bootstrap can provide more accurate inferences
when the data are not well behaved or when the sample size is small.

3. It is possible to apply the bootstrap to statistics with sampling distributions
that are difficult to derive, even asymptotically.

4. It is relatively simple to apply the bootstrap to complex data-collection
plans (such as stratified and clustered samples).

Resampling methods: Bootstrap background
Since θ̂ = θ̂(X̂) is a function of random variables, θ̂ itself must be a random
variable. Thus it has a pdf, call this function p(t̂). The aim of the bootstrap is
to estimate p(t̂) by the relative frequency of θ̂. You can think of this as using
a histogram in the place of p(t̂). If the relative frequency closely resembles
p(⃗t), then using numerics, it is straight forward to estimate all the interesting
parameters of p(t̂) using point estimators.

Resampling methods: More Bootstrap background
In the case that θ̂ has more than one component, and the components are
independent, we use the same estimator on each component separately. If the
probability density function of Xi, p(x), had been known, then it would have
been straight forward to do this by:

21

1. Drawing lots of numbers from p(x), suppose we call one such set of numbers
(X∗

1 , X∗
2 , · · · , X∗

n).

2. Then using these numbers, we could compute a replica of θ̂ called θ̂∗.

By repeated use of (1) and (2), many estimates of θ̂ could have been obtained.
The idea is to use the relative frequency of θ̂∗ (think of a histogram) as an
estimate of p(t̂).

Resampling methods: Bootstrap approach
But unless there is enough information available about the process that generated
X1, X2, · · · , Xn, p(x) is in general unknown. Therefore, Efron in 1979 asked the
question: What if we replace p(x) by the relative frequency of the observation
Xi; if we draw observations in accordance with the relative frequency of the
observations, will we obtain the same result in some asymptotic sense? The
answer is yes.

Instead of generating the histogram for the relative frequency of the obser-
vation Xi, just draw the values (X∗

1 , X∗
2 , · · · , X∗

n) with replacement from the
vector X̂.

Resampling methods: Bootstrap steps
The independent bootstrap works like this:

1. Draw with replacement n numbers for the observed variables x̂ = (x1, x2, · · · , xn).

2. Define a vector x̂∗ containing the values which were drawn from x̂.

3. Using the vector x̂∗ compute θ̂∗ by evaluating θ̂ under the observations x̂∗.

4. Repeat this process k times.

When you are done, you can draw a histogram of the relative frequency of θ̂∗.
This is your estimate of the probability distribution p(t). Using this probability
distribution you can estimate any statistics thereof. In principle you never draw
the histogram of the relative frequency of θ̂∗. Instead you use the estimators
corresponding to the statistic of interest. For example, if you are interested in
estimating the variance of θ̂, apply the etsimator σ̂2 to the values θ̂∗.

Code example for the Bootstrap method
The following code starts with a Gaussian distribution with mean value µ = 100
and variance σ = 15. We use this to generate the data used in the bootstrap
analysis. The bootstrap analysis returns a data set after a given number of
bootstrap operations (as many as we have data points). This data set consists of
estimated mean values for each bootstrap operation. The histogram generated
by the bootstrap method shows that the distribution for these mean values is

22

https://projecteuclid.org/euclid.aos/1176344552

also a Gaussian, centered around the mean value µ = 100 but with standard
deviation σ/

√
n, where n is the number of bootstrap samples (in this case the

same as the number of original data points). The value of the standard deviation
is what we expect from the central limit theorem.

%matplotlib inline

from numpy import *
from numpy.random import randint, randn
from time import time
from scipy.stats import norm
import matplotlib.pyplot as plt

Returns mean of bootstrap samples
def stat(data):

return mean(data)

Bootstrap algorithm
def bootstrap(data, statistic, R):

t = zeros(R); n = len(data); inds = arange(n); t0 = time()

non-parametric bootstrap
for i in range(R):

t[i] = statistic(data[randint(0,n,n)])

analysis
print("Runtime: %g sec" % (time()-t0)); print("Bootstrap Statistics :")
print("original bias std. error")
print("%8g %8g %14g %15g" % (statistic(data), std(data),\

mean(t), \
std(t)))

return t

mu, sigma = 100, 15
datapoints = 10000
x = mu + sigma*random.randn(datapoints)
bootstrap returns the data sample t = bootstrap(x, stat, datapoints)
the histogram of the bootstrapped data
t = bootstrap(x, stat, datapoints)
the histogram of the bootstrapped data
n, binsboot, patches = plt.hist(t, bins=50, density='true',histtype='bar', color='red', alpha=0.75)

add a 'best fit' line
y = norm.pdf(binsboot, mean(t), std(t))
lt = plt.plot(binsboot, y, 'r--', linewidth=1)
plt.xlabel('Smarts')
plt.ylabel('Probability')
plt.axis([99.5, 100.6, 0, 3.0])
plt.grid(True)

plt.show()

23

Resampling methods: Blocking
The blocking method was made popular by Flyvbjerg and Pedersen (1989) and
has become one of the standard ways to estimate V (θ̂) for exactly one θ̂, namely
θ̂ = X.

Assume n = 2d for some integer d > 1 and X1, X2, · · · , Xn is a stationary
time series to begin with. Moreover, assume that the time series is asymptotically
uncorrelated. We switch to vector notation by arranging X1, X2, · · · , Xn in an
n-tuple. Define:

X̂ = (X1, X2, · · · , Xn).

The strength of the blocking method is when the number of observations, n is
large. For large n, the complexity of dependent bootstrapping scales poorly, but
the blocking method does not, moreover, it becomes more accurate the larger n
is.

Blocking Transformations
We now define blocking transformations. The idea is to take the mean of
subsequent pair of elements from X⃗ and form a new vector X⃗1. Continuing
in the same way by taking the mean of subsequent pairs of elements of X⃗1 we
obtain X⃗2, and so on. Define X⃗i recursively by:

(X⃗0)k ≡ (X⃗)k

(X⃗i+1)k ≡ 1
2

(
(X⃗i)2k−1 + (X⃗i)2k

)
for all 1 ≤ i ≤ d − 1 (20)

The quantity X⃗k is subject to k blocking transformations. We now have
d vectors X⃗0, X⃗1, · · · , X⃗d−1 containing the subsequent averages of observations.
It turns out that if the components of X⃗ is a stationary time series, then the
components of X⃗i is a stationary time series for all 0 ≤ i ≤ d − 1

We can then compute the autocovariance, the variance, sample mean, and
number of observations for each i. Let γi, σ2

i , Xi denote the autocovariance,
variance and average of the elements of X⃗i and let ni be the number of elements
of X⃗i. It follows by induction that ni = n/2i.

24

https://aip.scitation.org/doi/10.1063/1.457480

Blocking Transformations
Using the definition of the blocking transformation and the distributive property
of the covariance, it is clear that since h = |i − j| we can define

γk+1(h) = cov ((Xk+1)i, (Xk+1)j)

= 1
4cov ((Xk)2i−1 + (Xk)2i, (Xk)2j−1 + (Xk)2j)

= 1
2γk(2h) + 1

2γk(2h + 1) h = 0 (21)

= 1
4γk(2h − 1) + 1

2γk(2h) + 1
4γk(2h + 1) else (22)

The quantity X̂ is asymptotic uncorrelated by assumption, X̂k is also asymp-
totic uncorrelated. Let’s turn our attention to the variance of the sample mean
V (X).

Blocking Transformations, getting there
We have

V (Xk) = σ2
k

nk
+ 2

nk

nk−1∑
h=1

(
1 − h

nk

)
γk(h)︸ ︷︷ ︸

≡ek

= σ2
k

nk
+ ek if γk(0) = σ2

k. (23)

The term ek is called the truncation error:

ek = 2
nk

nk−1∑
h=1

(
1 − h

nk

)
γk(h). (24)

We can show that V (Xi) = V (Xj) for all 0 ≤ i ≤ d − 1 and 0 ≤ j ≤ d − 1.

Blocking Transformations, final expressions
We can then wrap up

nj+1Xj+1 =
nj+1∑
i=1

(X̂j+1)i = 1
2

nj/2∑
i=1

(X̂j)2i−1 + (X̂j)2i

= 1
2

[
(X̂j)1 + (X̂j)2 + · · · + (X̂j)nj

]
= nj

2︸︷︷︸
=nj+1

Xj = nj+1Xj . (25)

By repeated use of this equation we get V (Xi) = V (X0) = V (X) for all
0 ≤ i ≤ d − 1. This has the consequence that

V (X) = σ2
k

nk
+ ek for all 0 ≤ k ≤ d − 1. (26)

25

Flyvbjerg and Petersen demonstrated that the sequence {ek}d−1
k=0 is decreasing,

and conjecture that the term ek can be made as small as we would like by
making k (and hence d) sufficiently large. The sequence is decreasing (Master of
Science thesis by Marius Jonsson, UiO 2018). It means we can apply blocking
transformations until ek is sufficiently small, and then estimate V (X) by σ̂2

k/nk.
For an elegant solution and proof of the blocking method, see the recent

article of Marius Jonsson (former MSc student of the Computational Physics
group).

26

https://journals.aps.org/pre/abstract/10.1103/PhysRevE.98.043304
https://journals.aps.org/pre/abstract/10.1103/PhysRevE.98.043304

