
Project 1, deadline February 5

Computational Physics PHY480/905

Department of Physics and Astronomy, Michigan State University

Spring semester 2018

Introduction
The aim of this project is to get familiar with various vector and matrix operations,
from dynamic memory allocation to the usage of programs in the library package
of the course. For Fortran users memory handling and most matrix and vector
operations are included in the ANSI standard of Fortran 90/95. Array handling
in Python is also rather trivial. For C++ user however, there are several possible
options. Two are listed here.

• For this exercise we recommend that you make your own functions for
dynamic memory allocation of a vector and a matrix. You don’t need to
write a class for this operations. Use then the library package lib.cpp with
its header file lib.hpp for obtaining LU-decomposed matrices, solve linear
equations etc.

• A very good and often recommended library for C++ handling of arrays
is the library Armadillo, to be found at arma.sourceforge.net. We
will discuss the usage of this library during the lab sessions and lectures.
Armadillo has also an interface to Lapack functions for solving systems of
linear equations.

Your program, whether it is written in C++, Python or Fortran2008, should
include dynamic memory handling of matrices and vectors.

The material needed for this project is covered by chapter 6 of the lecture
notes, in particular section 6.4 and subsequent sections.

Many important differential equations in Science can be written as linear
second-order differential equations

d2y

dx2 + k2(x)y = f(x),

where f is normally called the inhomogeneous term and k2 is a real function.

c© 1999-2018, Computational Physics PHY480/905. Released under CC
Attribution-NonCommercial 4.0 license

arma.sourceforge.net

A classical equation from electromagnetism is Poisson’s equation. The
electrostatic potential Φ is generated by a localized charge distribution ρ(r). In
three dimensions it reads

∇2Φ = −4πρ(r).
With a spherically symmetric Φ and ρ(r) the equations simplifies to a one-
dimensional equation in r, namely

1
r2

d

dr

(
r2 dΦ
dr

)
= −4πρ(r),

which can be rewritten via a substitution Φ(r) = φ(r)/r as

d2φ

dr2 = −4πrρ(r).

The inhomogeneous term f or source term is given by the charge distribution ρ
multiplied by r and the constant −4π.

We will rewrite this equation by letting φ → u and r → x. The general
one-dimensional Poisson equation reads then

−u′′(x) = f(x).

Project 1 a): In this project we will solve the one-dimensional Poisson equation
with Dirichlet boundary conditions by rewriting it as a set of linear equations.

To be more explicit we will solve the equation

−u′′(x) = f(x), x ∈ (0, 1), u(0) = u(1) = 0.
and we define the discretized approximation to u as vi with grid points xi = ih
in the interval from x0 = 0 to xn+1 = 1. The step length or spacing is defined
as h = 1/(n + 1). We have then the boundary conditions v0 = vn+1 = 0. We
approximate the second derivative of u with

−vi+1 + vi−1 − 2vi

h2 = fi for i = 1, . . . , n,

where fi = f(xi). Show that you can rewrite this equation as a linear set of
equations of the form

Av = b̃,
where A is an n× n tridiagonal matrix which we rewrite as

A =

2 −1 0 0
−1 2 −1 0
0 −1 2 −1 0 . . .

.
0 . . . −1 2 −1
0 . . . 0 −1 2

 ,

2

and b̃i = h2fi.
In our case we will assume that the source term is f(x) = 100e−10x, and keep

the same interval and boundary conditions. Then the above differential equation
has a closed-form solution given by u(x) = 1 − (1 − e−10)x − e−10x (convince
yourself that this is correct by inserting the solution in the Poisson equation).
We will compare our numerical solution with this result in the next exercise.

Project 1 b): Before we proceed with the solution of the differential equation,
you should now plan the organization of your data flow. Here you will find it
convenient to define vectors that will contain the matrix elements, the solution
to the problem and the function f(x) when discretized. You should also plan
on to read input data, whether you do this from the command line or from a
selected file. We recommend strongly that you use dynamical memory allocation.
An example of a C++ program which reads from the command line various
input parameters can be found here

Project 1 c): We can rewrite our matrix A in terms of one-dimensional vectors
a, b, c of length 1 : n. Our linear equation reads

A =

b1 c1 0
a1 b2 c2

a2 b3 c3
.

an−2 bn−1 cn−1
an−1 bn

v1
v2
. . .
. . .
. . .
vn

 =

b̃1
b̃2
. . .
. . .
. . .

b̃n

 .

Note well that we do not include the endpoints since the boundary conditions
are used resulting in a fixed value for vi. A tridiagonal matrix is a special
form of banded matrix where all the elements are zero except for those on and
immediately above and below the leading diagonal. Develop a general algorithm
first which does not assume that we have a matrix with the same elements along
the diagonal and the non-diagonal elements. The algorithm for solving this set
of equations is rather simple and requires two steps only, a decomposition and
forward substitution and finally a backward substitution.

Your first task is to set up the general algorithm (assuming different values
for the matrix elements) for solving this set of linear equations. Find also the
precise number of floating point operations needed to solve the above equations.

Then you should code the above algorithm and solve the problem for matrices
of the size 10 × 10, 100 × 100 and 1000 × 1000. That means that you select
n = 10, n = 100 and n = 1000 grid points.

Compare your results (make plots) with the closed-form solution for the
different number of grid points in the interval x ∈ (0, 1). The different number
of grid points corresponds to different step lengths h.

Project 1 d): Use thereafter the fact that the matrix has identical matrix
elements along the diagonal and identical (but different) values for the non-

3

https://github.com/CompPhysics/ComputationalPhysicsMSU/blob/master/doc/Projects/2018/Project1/CodeExamples/TridiagonalSimple.cpp

diagonal elements. Specialize your algorithm to the special case and find the
number of floating point operations for this specific tri-diagonal matrix. Compare
the CPU time with the general algorithm from the previous point for matrices
up to n = 106 grid points.

Project 1 e): Compute the relative error in the data set i = 1, . . . , n,by setting
up

εi = log10

(∣∣∣∣vi − ui

ui

∣∣∣∣) ,
as function of log10(h) for the function values ui and vi. For each step length
extract the max value of the relative error. Try to increase n to n = 107 or
higher. Make a table of the results and comment your results.

Project 1 f): Compare your results with those from the LU decomposition
codes for the matrix of sizes 10×10, 100×100 and 1000×1000. Here you should
use the library functions provided at the webpage of the course. Alternatively,
if you use armadillo as a library, you can use the similar function for LU
decomposition. The armadillo function for the LU decomposition is called LU
while the function for solving linear sets of equations is called solve. Use for
example the unix function time when you run your codes and compare the time
usage between LU decomposition and your tridiagonal solver. Alternatively, you
can use the functions in C++, Fortran or Python that measure the time used.

Make a table of the results and comment the differences in execution time
How many floating point operations does the LU decomposition use to solve
the set of linear equations? Can you run the standard LU decomposition for a
matrix of the size 105 × 105? Comment your results.

To compute the elapsed time in c++ you can use the following statements ...
include "time.h" // you have to include the time.h header int main() // decla-
rations of variables ... clocktstart, finish; //declarestartandfinaltimestart =
clock(); //yourcodeishere, dosomethingandthengetfinaltimefinish = clock(); ((finish−
start)/CLOCKSPERSEC); ... Similarly, in Fortran, this simple example shows
how to compute the elapsed time. PROGRAM time REAL :: etime ! Declare
the type of etime() REAL :: elapsed(2) ! For receiving user and system time
REAL :: total ! For receiving total time INTEGER :: i, j

WRITE(*,*) ’Start’
DO i = 1, 5000000 j = j + 1 ENDDO
total = ETIME(elapsed) WRITE(*,*) ’End: total=’, total, ’ user=’, elapsed(1),

’ system=’, elapsed(2)
END PROGRAM time

Introduction to numerical projects
Here follows a brief recipe and recommendation on how to write a report for
each project.

4

https://github.com/CompPhysics/ComputationalPhysicsMSU/tree/master/doc/Programs/LecturePrograms/programs/cppLibrary

• Give a short description of the nature of the problem and the eventual
numerical methods you have used.

• Describe the algorithm you have used and/or developed. Here you may
find it convenient to use pseudocoding. In many cases you can describe
the algorithm in the program itself.

• Include the source code of your program. Comment your program properly.

• If possible, try to find analytic solutions, or known limits in order to test
your program when developing the code.

• Include your results either in figure form or in a table. Remember to label
your results. All tables and figures should have relevant captions and labels
on the axes.

• Try to evaluate the reliabilty and numerical stability/precision of your
results. If possible, include a qualitative and/or quantitative discussion of
the numerical stability, eventual loss of precision etc.

• Try to give an interpretation of you results in your answers to the problems.

• Critique: if possible include your comments and reflections about the
exercise, whether you felt you learnt something, ideas for improvements
and other thoughts you’ve made when solving the exercise. We wish to
keep this course at the interactive level and your comments can help us
improve it.

• Try to establish a practice where you log your work at the computerlab.
You may find such a logbook very handy at later stages in your work,
especially when you don’t properly remember what a previous test version
of your program did. Here you could also record the time spent on solving
the exercise, various algorithms you may have tested or other topics which
you feel worthy of mentioning.

Format for electronic delivery of report and programs
The preferred format for the report is a PDF file. You can also use DOC or
postscript formats or as an ipython notebook file. As programming language we
prefer that you choose between C/C++, Fortran2008 or Python. The following
prescription should be followed when preparing the report:

• Use your github repository to upload your report. Indicate where the
report is by creating for example a Report folder. Please send us as soon
as possible your github username.

• Place your programs in a folder called for example Programs or src, in
order to indicate where your programs are. You can use a README file
to tell us how your github folders are organized.

5

• In your git repository, please include a folder which contains selected results.
These can be in the form of output from your code for a selected set of
runs and input parameters.

• In this and all later projects, you should include tests (for example unit
tests) of your code(s).

• Comments from us on your projects, with score and detailed feedback will
be emailed to you.

Finally, we encourage you to work two and two together. Optimal working
groups consist of 2-3 students. You can then hand in a common report.

6

