
Project 2, deadline March 5

Computational Physics PHY480/905

Department of Physics and Astronomy, Michigan State University

Spring semester 2018

Eigenvalue problems, from the equations of a buckling beam
to Schroedinger’s equation for two electrons in a three-
dimensional harmonic oscillator well
Introduction. The aim of this project is to develop your own code for solving
eigenvalue problems. The matrix to diagonalize is the same as the one we
encountered in project one, a so-called tridiagonal Toeplitz matrix. This matrix
has analytical eigenpairs (eigenvalues and eigenvectors) and gives us an excellent
testing ground for our algorithms. In this project we will develop an eigenvalue
solver based on Jacobi’s method. The project will also introduce you to units
tests and we will compare our results against other eigenvalue solvers (from
LAPACK and/or numpy).

This project aims also at introducing to you the concept of scaling of equations.
This means often either making various variables dimensionless or introducing
units which are more convenient.

We will start with the two-point boundary value problem of a buckling
beam or a spring fastened at both ends. This is one of the problems which
has analytical solutions. Thereafter, by simply adding a new variable along the
diagonal elements, we can study quantum mechanical problems. In particular,
we will study the harmonic oscillator problem in three dimensions, with one or
two electrons. For the latter case we can study the role of the repulsive Coulomb
interaction and extract interesting physics results. For selected frequencies, even
this interacting two-electron problem exhibits analytical solutions, see M. Taut,
Phys. Rev. A 48, 3561 (1993).

Electrons confined in small areas in semiconductors, so-called quantum
dots, form a hot research area in modern solid-state physics, with applications
spanning from such diverse fields as quantum nano-medicine to the contruction
of quantum gates. The article on quantum computing with quantum dots by
Loss and DiVincenzo is an excellent read.

c© 1999-2018, Computational Physics PHY480/905. Released under CC
Attribution-NonCommercial 4.0 license

http://www.springer.com/us/book/9783319327259
http://prola.aps.org/abstract/PRA/v48/i5/p3561_1
http://prola.aps.org/abstract/PRA/v48/i5/p3561_1
http://journals.aps.org/pra/abstract/10.1103/PhysRevA.57.120

The buckling beam problem. We start with the following differential equa-
tion, namely

γ
d2u(x)
dx2 = −Fu(x),

where u(x) is the vertical displacement of the beam in the y direction. The
beam has length L, x ∈ [0, L] and F is a force applied at (L, 0) in the direction
towards the origin. The parameter γ is a constant defined by properties like the
rigidity of the beam. We apply again so-called Dirichlet boundary conditions
and set u(0) = u(L) = 0.

In this specific case all parameters γ, F and L are known. We define then a
dimensional variable

ρ = x

L
,

meaning that we have ρ ∈ [0, 1]. By reordering the equation as

d2u(ρ)
dρ2 = −FL

2

R
u(ρ) = −λu(ρ),

with λ = FL2/R we have an equation that when discretized, becomes an
eigenvalue problem. We use the same expression for the second derivative of a
function u as we did in project 1, namely

u′′ = u(ρ+ h)− 2u(ρ) + u(ρ− h)
h2 +O(h2), (1)

where h is our step. Next we define minimum and maximum values for the
variable ρ, ρmin = 0 and ρmax = 1, respectively. With a given number of mesh
points, N , we define the step length h as, with ρmin = ρ0 and ρmax = ρN ,

h = ρN − ρ0

N
.

The value of ρ at a point i is then

ρi = ρ0 + ih i = 1, 2, . . . , N.

We can rewrite the differential equation for a value ρi as

−u(ρi + h)− 2u(ρi) + u(ρi − h)
h2 = λu(ρi),

or in a more compact way as

−ui+1 − 2ui + ui−1

h2 = λui.

Following our approach from project 1, we can rewrite this equation in a more a
general form, but now as an eigenvalue problem, that is

d a 0 0 . . . 0 0
a d a 0 . . . 0 0
0 a d a 0 . . . 0
. .
0 a d a
0 a d




u1
u2
u3
. . .
uN−2
uN−1

 = λ


u1
u2
u3
. . .
uN−2
uN−1

 . (2)

2

As in project 1, we have not included the endpoints u0 and uN . We have defined
d = 2/h2 and the non-diagonal ones as a = −1/h2. This eigenvalue problem has
analytical eigenpairs, with eigenvalues given as

λj = d+ 2a cos (jπ

N + 1) j = 1, 2, . . . N − 1.

Project 2 a): Mathematical intermezzo. A unitary transformation pre-
serves the orthogonality of the obtained eigenvectors. To see this consider first a
basis of vectors vi,

vi =


vi1
. . .
. . .
vin


We assume that the basis is orthogonal, that is

vT
j vi = δij .

Show that an orthogonal or unitary transformation

wi = Uvi,

preserves the dot product and orthogonality.

Project 2 b): Setting up a code for tridiagonal Toeplitz matrix. Your
task now is to write a function which implements Jacobi’s rotation algorithm
(see Lecture notes chapter 7) in order to solve Eq. (2). However, the first
simple check is to set up the matrix to diagonalize for a given N and use either
armadillo’s or numpy’s functions for diagonalizing a matrix. You can then check
that you obtain the analytical eigenvalues.

For Jacobi’s method, we define the quantities tan θ = t = s/c, with s = sin θ
and c = cos θ and

cot 2θ = τ = all − akk

2akl
.

We can then define the angle θ so that the non-diagonal matrix elements of the
transformed matrix akl become non-zero and we obtain the quadratic equation
(using cot 2θ = 1/2(cot θ − tan θ)

t2 + 2τt− 1 = 0,

resulting in

t = −τ ±
√

1 + τ2,

and c and s are easily obtained via

c = 1√
1 + t2

,

3

and s = tc.
How many similarity transformations are needed before you reach a result

where all non-diagonal matrix elements are essentially zero? Try to estimate the
number of transformations and extract a behavior as function of the dimension-
ality of the matrix. Compare your results with the analytical ones.

You can check your results against the Armadillo function for solving eigen-
value problems. The armadillo function eigsys can be used to find eigenvalues
and eigenvectors. A Python program which solves this part of the project is
available under the project writing slides.

Comment your results (here you could for example compute the time needed
for both algorithms for a given dimensionality of the matrix).

Project 2 c): Implementing tests in your code. In this project (and later
ones as well) we will implement so-called unit tests. Our unit tests are mainly
meant to test mathematical properties of our algorithm. During the development
phase of a program it is useful to devise tests that your program should pass.
One of these is to make sure that for a given simple test matrix (say a 5 × 5
matrix) our algorithm for searching for the largest non-diagonal element always
returns the correct answer. Furthermore, for a known simple matrix, irrespective
of changes made, we should always get the same and correct eigenvalues. Another
test is to make sure that the orthogonality shown in exercise (a) is preserved. Try
to figure out other tests your code should pass, based either on the mathematical
properties of the algorithms or more program specific tests. Implement at least
two unit tests in this project.

Extending our machinery to quantum mechanics. Here we will assume
that these electrons move in a three-dimensional harmonic oscillator potential
(they are confined by for example quadrupole fields) and repel each other via
the static Coulomb interaction. We assume spherical symmetry.

We are first interested in the solution of the radial part of Schroedinger’s
equation for one electron. This equation reads

− ~2

2m

(
1
r2

d

dr
r2 d

dr
− l(l + 1)

r2

)
R(r) + V (r)R(r) = ER(r).

In our case V (r) is the harmonic oscillator potential (1/2)kr2 with k = mω2 and
E is the energy of the harmonic oscillator in three dimensions. The oscillator
frequency is ω and the energies are

Enl = ~ω
(

2n+ l + 3
2

)
,

with n = 0, 1, 2, . . . and l = 0, 1, 2,
Since we have made a transformation to spherical coordinates it means that

r ∈ [0,∞). The quantum number l is the orbital momentum of the electron.
Then we substitute R(r) = (1/r)u(r) and obtain

4

http://compphysics.github.io/ComputationalPhysics/doc/pub/projectwriting/html/projectwriting.html

− ~2

2m
d2

dr2u(r) +
(
V (r) + l(l + 1)

r2
~2

2m

)
u(r) = Eu(r).

The boundary conditions are u(0) = 0 and u(∞) = 0.
We introduce a dimensionless variable ρ = (1/α)r where α is a constant with

dimension length and get

− ~2

2mα2
d2

dρ2u(ρ) +
(
V (ρ) + l(l + 1)

ρ2
~2

2mα2

)
u(ρ) = Eu(ρ).

We will set in this project l = 0. Inserting V (ρ) = (1/2)kα2ρ2 we end up with

− ~2

2mα2
d2

dρ2u(ρ) + k

2α
2ρ2u(ρ) = Eu(ρ).

We multiply thereafter with 2mα2/~2 on both sides and obtain

− d2

dρ2u(ρ) + mk

~2 α
4ρ2u(ρ) = 2mα2

~2 Eu(ρ).

The constant α can now be fixed so that

mk

~2 α
4 = 1,

or

α =
(

~2

mk

)1/4

.

Defining

λ = 2mα2

~2 E,

we can rewrite Schroedinger’s equation as

− d2

dρ2u(ρ) + ρ2u(ρ) = λu(ρ).

This is the first equation to solve numerically. In three dimensions the eigenvalues
for l = 0 are λ0 = 3, λ1 = 7, λ2 = 11,

We define minimum and maximum values for the variable ρ, ρmin = 0 and
ρmax, respectively. You need to check your results for the energies against
different values ρmax, since we cannot set ρmax =∞.

With a given number of mesh points, N , we define the step length h as, with
ρmin = ρ0 and ρmax = ρN ,

h = ρN − ρ0

N
.

5

The value of ρ at a point i is then

ρi = ρ0 + ih i = 1, 2, . . . , N.

We can rewrite the Schroedinger equation for a value ρi as

−u(ρi + h)− 2u(ρi) + u(ρi − h)
h2 + ρ2

iu(ρi) = λu(ρi),

or in a more compact way

−ui+1 − 2ui + ui−1

h2 + ρ2
iui = −ui+1 − 2ui + ui−1

h2 + Viui = λui,

where Vi = ρ2
i is the harmonic oscillator potential.

We define first the diagonal matrix element

di = 2
h2 + Vi,

and the non-diagonal matrix element

ei = − 1
h2 .

In this case the non-diagonal matrix elements are given by a mere constant. All
non-diagonal matrix elements are equal. With these definitions the Schroedinger
equation takes the following form

diui + ei−1ui−1 + ei+1ui+1 = λui,

where ui is unknown. We can write the latter equation as a matrix eigenvalue
problem

d0 e0 0 0 . . . 0 0
e1 d1 e1 0 . . . 0 0
0 e2 d2 e2 0 . . . 0
. .
0 eN−1 dN−1 eN−1
0 eN dN




u0
u1
. . .
. . .
. . .
uN

 = λ


u0
u1
. . .
. . .
. . .
uN

 . (3)

Project 2 d): Quantum dots in three dimensions, one electron. Add
the harmonic oscillator potential to your tridiagonal Toeplitz matrix from 2a-2c
and diagonalize the matrix. Study the results as functions of the number of
integration points N and your approximation to ρmax. The analytical results
with our scaling for the one-electron energies are λ = 3, 7, 11, 15, How many
integration points do you need in order to reproduce the analytical results with
say four leading digits after the decimal point?

You can reuse the code you wrote for part (b), but you need to add the
potential ρ2 to the diagonal elements.

6

Project 2 e): Quantum dots in three dimensions, two electrons. We
will now study two electrons in a harmonic oscillator well which also interact via
a repulsive Coulomb interaction. Let us start with the single-electron equation
written as

− ~2

2m
d2

dr2u(r) + 1
2kr

2u(r) = E(1)u(r),

where E(1) stands for the energy with one electron only. For two electrons with
no repulsive Coulomb interaction, we have the following Schroedinger equation

(
− ~2

2m
d2

dr2
1
− ~2

2m
d2

dr2
2

+ 1
2kr

2
1 + 1

2kr
2
2

)
u(r1, r2) = E(2)u(r1, r2).

Note that we deal with a two-electron wave function u(r1, r2) and two-electron
energy E(2).

With no interaction this can be written out as the product of two single-
electron wave functions, that is we have a solution on closed form.

We introduce the relative coordinate r = r1 − r2 and the center-of-mass
coordinate R = 1/2(r1+r2). With these new coordinates, the radial Schroedinger
equation reads(

−~2

m

d2

dr2 −
~2

4m
d2

dR2 + 1
4kr

2 + kR2
)
u(r,R) = E(2)u(r,R).

The equations for r and R can be separated via the ansatz for the wave
function u(r,R) = ψ(r)φ(R) and the energy is given by the sum of the relative
energy Er and the center-of-mass energy ER, that is

E(2) = Er + ER.

We add then the repulsive Coulomb interaction between two electrons, namely
a term

V (r1, r2) = βe2

|r1 − r2|
= βe2

r
,

with βe2 = 1.44 eVnm.
Adding this term, the r-dependent Schroedinger equation becomes(

−~2

m

d2

dr2 + 1
4kr

2 + βe2

r

)
ψ(r) = Erψ(r).

This equation is similar to the one we had previously in (b) and we introduce
again a dimensionless variable ρ = r/α. Repeating the same steps as above, we
arrive at

− d2

dρ2ψ(ρ) + 1
4
mk

~2 α
4ρ2ψ(ρ) + mαβe2

ρ~2 ψ(ρ) = mα2

~2 Erψ(ρ).

7

We want to manipulate this equation further to make it as similar to that in (a)
as possible. We define a new ’frequency’

ω2
r = 1

4
mk

~2 α
4,

and fix the constant α by requiring

mαβe2

~2 = 1

or

α = ~2

mβe2 .

Defining

λ = mα2

~2 E,

we can rewrite Schroedinger’s equation as

− d2

dρ2ψ(ρ) + ω2
rρ

2ψ(ρ) + 1
ρ

= λψ(ρ).

We treat ωr as a parameter which reflects the strength of the oscillator potential.
Here we will study the cases ωr = 0.01, ωr = 0.5, ωr = 1, and ωr = 5 for the

ground state only, that is the lowest-lying state.
With no repulsive Coulomb interaction you should get a result which cor-

responds to the relative energy of a non-interacting system. Make sure your
results are stable as functions of ρmax and the number of steps.

We are only interested in the ground state with l = 0. We omit the center-of-
mass energy.

You can reuse the code you wrote for part (b), but you need to add the
potential ω2

rρ
2 + 1/ρ to the diagonal elements.

Comment the results for the lowest state (ground state) as function of varying
strengths of ωr.

For specific oscillator frequencies, the above equation has answers in an
analytical form, see the article by M. Taut, Phys. Rev. A 48, 3561 (1993).

If you have time (this last part is optional but gives you an added physical
insight about the problem), you could plot the wave function for two electrons
as functions of the relative coordinate r and different values of ωr. With no
Coulomb interaction you should have a result which corresponds to the non-
interacting case. Plot either the function itself or the probability distribution
(the function squared) with and without the repulsion between the two electrons.
Varying ωr, the shape of the wave function will change.

We are only interested in the wave function for the ground state with l = 0
and omit again the center-of-mass motion.

The eigenvectors are normalized. Plot then the normalized wave functions
for different values of ωr and comment the results.

8

http://prola.aps.org/abstract/PRA/v48/i5/p3561_1

Project 2 g): Optional challenge (additional score of 30 points). This
exercise is optional and is an algorithmic challenge. Your matrix is already
tridiagonal. Can you devise a more efficient way to find the eigenvalues and
eigenvectors instead of the brute force application of Jacobi’s method?

Introduction to numerical projects
Here follows a brief recipe and recommendation on how to write a report for
each project.

• Give a short description of the nature of the problem and the eventual
numerical methods you have used.

• Describe the algorithm you have used and/or developed. Here you may
find it convenient to use pseudocoding. In many cases you can describe
the algorithm in the program itself.

• Include the source code of your program. Comment your program properly.

• If possible, try to find analytic solutions, or known limits in order to test
your program when developing the code.

• Include your results either in figure form or in a table. Remember to label
your results. All tables and figures should have relevant captions and labels
on the axes.

• Try to evaluate the reliabilty and numerical stability/precision of your
results. If possible, include a qualitative and/or quantitative discussion of
the numerical stability, eventual loss of precision etc.

• Try to give an interpretation of you results in your answers to the problems.

• Critique: if possible include your comments and reflections about the
exercise, whether you felt you learnt something, ideas for improvements
and other thoughts you’ve made when solving the exercise. We wish to
keep this course at the interactive level and your comments can help us
improve it.

• Try to establish a practice where you log your work at the computerlab.
You may find such a logbook very handy at later stages in your work,
especially when you don’t properly remember what a previous test version
of your program did. Here you could also record the time spent on solving
the exercise, various algorithms you may have tested or other topics which
you feel worthy of mentioning.

9

Format for electronic delivery of report and programs
The preferred format for the report is a PDF file. You can also use DOC or
postscript formats or as an ipython notebook file. As programming language we
prefer that you choose between C/C++, Fortran2008 or Python. The following
prescription should be followed when preparing the report:

• Use your github repository to upload your report. Indicate where the
report is by creating for example a Report folder. Please send us as soon
as possible your github username.

• Place your programs in a folder called for example Programs or src, in
order to indicate where your programs are. You can use a README file
to tell us how your github folders are organized.

• In your git repository, please include a folder which contains selected results.
These can be in the form of output from your code for a selected set of
runs and input parameters.

• In this and all later projects, you should include tests (for example unit
tests) of your code(s).

• Comments from us on your projects, with score and detailed feedback will
be emailed to you.

Finally, we encourage you to work two and two together. Optimal working
groups consist of 2-3 students. You can then hand in a common report.

10

