
Project 4, deadline May 2

Molecular Dynamics project

Spring semester 2018

Theoretical background and description of the physical sys-
tem
In this project we will implement a model called molecular dynamics (MD).
Molecular dynamics allows us to study the dynamics of atoms and explore the
phase space. For those of you who are taking Thermal and Statistical Physics
PHY410, this project could be an interesting choice, as well as the one on the
Ising model. The atoms interact through a force given by the negative gradient
of a potential energy function. With this force, we can integrate Newton’s laws.
While exploring the phase space, we will sample statistical properties of the
system like energy, temperature, pressure, diffusion constant and so on.

We will also learn how to do write object oriented code. You are given a code
skeleton that contains the basic structure of an MD code, but you will have to
implement many of the functions yourself. We think that learn by example is a
great way to learn how to proper object orient your code, but you can of course
start from scratch if you want. You can find the code here. You can clone or
fork this repository into your own. The class structure which you developed for
project 3 can also be used again here, as well as the Velocity Verlet algorithm of
project 3.

The program should create 100 argon atoms and place them uniformly inside
a cubic box with sides 10 Angstroms. Each atom is given a velocity according
to the Maxwell-Boltzmann distribution so that

P (vi)dvi =
(

m

2πkBT

)1/2
exp

(
− mv2

i

2kBT

)
dvi, (1)

where m is the mass of the atom, kB is Boltzmann’s constant and T is the
temperature. We recognize this as a normal distribution with zero mean and
standard deviation σ =

√
kBT/m. We recognize this also as the Boltzmann

distribution P (E) ∝ exp (−βE), with E = 0.5mv2. The program will evolve the
system in time with no forces so that all atoms move in a straight line. It will
create a file called movie.xyz containing all the timesteps ready to visualize with
for example Ovito. You can download Ovito from this site. You should start with

https://github.com/andeplane/molecular-dynamics-fys3150
http://www.ovito.org/index.php/download

the fun part - to look at the simulation in Ovito. We then strongly recommend
that, before you start, you look at the code structure and try to understand how
the different classes are connected to each other and how a typical timestep is
computed. You can skip understanding the contents of unitconverter.cpp and
vec3.cpp.

Before starting
Before you start, we would like that you pay attention to the following two steps:

1. First, spend some 30 minutes figuring out what molecular dynamics is and
which problems it can be applied to. What areas of physics can it be used
in? What about chemistry and biology? What you find here should be
part of the introductory section in your report.

2. Then run the program, visualize the output with for example Ovito (as
mentioned above). Now, spend some 30-60 minutes looking at the code
and understand how the output is produced and try to understand every
step in the code. The best way to do this is to start at the top of the
main() function and follow every line and every function call, step by step.
As a part of your report, you should explain the code structure
and draw a flow chart (a diagram showing how the program is
executed). This part is extremely important and will save you a lot of
time. And of course, please ask us if you have any questions!

Project 4a): Getting started. When working with MD, the system size is
usually limited by available computer resources. A typical large MD simulation
(with a parallelized code) contains a few million atoms corresponding to a system
much smaller than a cubic micron. In order to get rid of boundary effects,
we usually apply periodic boundary conditions so that we simulate a system
of infinite size. You need to implement the applyPeriodicBoundaryConditions
function in the System class. After doing so, run the program again and notice
how the atoms now are contained inside a box. Discuss the benefits of this
strategy.

Project 4b): Velocity distribution. The atoms are usually given velocities
according to the Maxwell-Boltzmann distribution (you should discuss why this is
the case) which will result in a nonzero net momentum in the system. Implement
the removeMomentum function in the System class so that the net momentum
is zero.

Project 4c): FCC lattice. The atoms are now uniformly distributed in space.
This is not very physical, so we should place the atoms in a crystal structure.
When we later implement the Lennard-Jones potential, we will see that the
face-centered cubic (FCC) lattice is a stable structure for the potential (it is

2

actually the crystalline structure of argon). A lattice is built up by unit cells -
a group of atoms - so that a larger system can be created by repeating these
cells in space. An FCC lattice unit cell of size b in Angstroms (this is the lattice
constant) consists of four atoms with local coordinates

r1 = 0̂i + 0ĵ + 0k̂, (2)

r2 = b

2 î + b

2 ĵ + 0k̂, (3)

r3 = 0̂i + b

2 ĵ + b

2 k̂, (4)

r4 = b

2 î + 0ĵ + b

2 k̂. (5)

You can now create Nx ×Ny ×Nz such unit cells next to each other to form a
larger system so that the origin of unit cell (i, j, k) is

Ri,j,k = iû1 + jû2 + kû3, (6)

where i = 0, 1, ..., Nx−1, j = 0, 1, ..., Ny−1, k = 0, 1, ..., Nz−1. The unit vectors
of the unit cells are scaled with the lattice constant b so that

û1 = b̂i, û2 = b̂j, û3 = bk̂. (7)

Implement the function createFCCLattice(int numberOfUnitCellsEachDimension,
double latticeConstant) in the System class. Remember to remove the 100 atoms
that are created as the code is right now. Use lattice constant b = 5.26 Angstrom.
Remember to update the system size so the applyPeriodicBoundaryConditions
function works properly. If you now visualize the result of the program, you
should see the nice crystalline structure in the beginning of the simulation. What
is the density ρ in your system?

Project 4d): Calculation of forces. While this looks nice, we need to
implement the computation of forces in order to see interesting physics. In this
project, we will use the Lennard-Jones potential which calculates the energy
between two atoms i and j as

U(rij) = 4ε
[(

σ

rij

)12
−
(
σ

rij

)6
]
, (8)

where rij = |ri − rj | is the distance from atom i to atom j, ε is the depth of
the potential well (with dimension energy) and σ is the distance at which the
potential is zero. For argon, optimal values of the parameters are:

3

http://en.wikipedia.org/wiki/Lennard-Jones_potential

ε

kB
= 119.8K, σ = 3.405Angstrom. (9)

In our code, we use the so called MD units (see the units definition at the end).
This potential reproduces thermodynamic equilibrium properties that are in
good agreement with experimental values for argon. The equation of state for
this system is the van der Waals equation of state. Phases such as solid, liquid
and gas are reproduced from this simple model with phase transitions and other
properties as well with a remarkable agreement with data.

The total potential energy V in the system is computed by summing over all
pairs of atoms (counting each pair only once)

V =
∑
i>j

U(rij). (10)

The force is calculated by taking the negative gradient of the potential

F(rij) = −∇U(rij), (11)

giving the x-component (the other components are calculated the same way)

Fx(rij) = − ∂U

∂rij

∂rij

∂xij
, (12)

where xij is the x-component of rij .
Calculate (analytically) the force and implement the calculateForces function

in the LennardJones class, using the Velocity Verlet algorithm that you developed
for project 3. You will have to take care of the periodic boundary conditions.
You could use the minimum image convention as described here. Now run the
simulation with 5 unit cells in each dimension (500 atoms) for different initial
temperatures. Can you tell if the system is in a solid state just by looking at
the system in Ovito? At what initial temperature is the crystal melting?

Project 4e): Kinetic and potential energies. We now have a working
Molecular dynamics code! The next step is to calculate some physical properties
of the system. The easiest properties to measure are the kinetic and potential
energy (calculated in the LennardJones class). The kinetic energy is defined as

Ek =
Natoms∑

i=1

1
2miv

2
i , (13)

where mi and vi is the mass and the speed of atom i. You can use the function
atom->velocity.lengthSquared() to calculate the dot product of the velocities.

4

http://en.wikipedia.org/wiki/Periodic_boundary_conditions

You can also calculate an estimate of the temperature through the equiparti-
tion theorem, see for example D. Schroeder’s An Introduction to Thermal Physics
for details,

〈Ek〉 = 3
2NatomskBT. (14)

We can use this to define an instantaneous temperature

T = 2
3

Ek

NatomskB
. (15)

All of these quantities should be calculated in the StatisticsSampler class. All
the statistical quantities should be saved to a file which needs to be implemented
in the saveToFile function in the same class.

As you will see, since the temperature is proportional to the kinetic energy,
its initial value will drop in the beginning when the system is initialized in the
crystal structure. Why does this happen? What happens to the total energy?
In order to have a system with final temperature T , what initial temperature
Ti is needed? What is the ratio T/Ti? Do multiple simulations with different
random seeds and plot this ratio as a function of time. Again visualize with for
example Ovito and try to determine at what temperature the system actually
melts at. After the temperature drops, it will reach a more or less stable value.
The system is then said to be in an equilibrium state.

Project 4f): Diffusion constant. The last exercise is to compute the dif-
fusion constant and use this to measure the melting temperature. We use the
Einstein relation that relates the so called mean square displacement (MSD) to
the diffusion constant

〈r2(t)〉 = 6Dt, (16)

where D is the diffusion constant, t is time. The mean square displacement for
atom i is calculated as

r2
i (t) = |ri(t)− ri(0)|2, (17)

where ri(t) is the position of atom i at time t. When you implement this you
need to add the initial position as a new property in the Atom class. You also
need to update the applyPeriodicBoundaryConditions so that r2

i (t) is the actual
displacement as if no periodic boundary condition has occured. Why is this
important?

We can use the diffusion constant to find the melting temperature. Atoms
in a solid will not diffuse much, meaning that a solid will have a diffusion
constant close to zero. Now solve the Einstein relation for the diffusion constant

5

D and add a function in StatisticsSampler thats measures this quantity. Plot
the diffusion constant as a function of temperature T and use this to find an
estimate for the melting temperature. Use what you found earlier to make sure
you simulate temperatures both above and below the melting temperature. Also
remember not to use the initial temperature, but the measured temperature
after the system has reached equilibrium. You can use the builtin UnitConverter
to convert the temperature to SI units as illustrated in the top of the main
function.

What is really going on here?
The idea of an MD simulation is to sample microstates from a statistical ensemble.
In our simulation, we have a constant number of atoms N , a constant volume
V and a (more or less, depending on our integrator) constant energy E. This
corresponds to the microcanonical ensemble (NVE).

Although we produce the dynamics of atoms, we should not see MD as a
model that will give the true trajectories of the atoms, but rather a model
that allows us to explore the phase space according to the probabilities we can
calculate with statistical mechanics. A fundamental assumption in any MD
simulation is the ergodic hypothesis. It states that over long periods of time, the
time spent by a system in some region of the phase space of microstates with the
same energy is proportional to the volume of this region, i.e., that all accessible
microstates are equiprobable over a long period of time. This means that by
evolving the atoms through time will visit microstates of the ensemble according
to the true probabilities given by the ensemble.

Units
The program uses by default a set of units. We have chosen the following four
units

1 unit of mass = 1 a.m.u = 1.661× 10−27kg, (18)
1 unit of length = 1.0angstrom = 1.0× 10−10m, (19)
1 unit of energy = 1.651× 10−21J, (20)

1 unit of temperature = 119.735K. (21)

Boltzmann’s constant is then equal to one (convince yourself about this), and
other units can be derived by using known relations. We can for example find
the unit of time by using E = mc2. We have that

Energy = Mass× Length2

Time2 , (22)

6

which can be solved for time

Time = Length×

√
Mass
Energy . (23)

By inserting the values above, we get

1 unit of time = 1.0× 10−10
√

1.661× 10−27

1.651× 10−21 s = 1.00224× 10−13s. (24)

This way, we can continue working out the values of the other units. What are
the units of force? And pressure? In the project, a class that calculates these
values is given.

Introduction to numerical projects
Here follows a brief recipe and recommendation on how to write a report for
each project.

• Give a short description of the nature of the problem and the eventual
numerical methods you have used.

• Describe the algorithm you have used and/or developed. Here you may
find it convenient to use pseudocoding. In many cases you can describe
the algorithm in the program itself.

• Include the source code of your program. Comment your program properly.

• If possible, try to find analytic solutions, or known limits in order to test
your program when developing the code.

• Include your results either in figure form or in a table. Remember to label
your results. All tables and figures should have relevant captions and labels
on the axes.

• Try to evaluate the reliabilty and numerical stability/precision of your
results. If possible, include a qualitative and/or quantitative discussion of
the numerical stability, eventual loss of precision etc.

• Try to give an interpretation of you results in your answers to the problems.

• Critique: if possible include your comments and reflections about the
exercise, whether you felt you learnt something, ideas for improvements
and other thoughts you’ve made when solving the exercise. We wish to
keep this course at the interactive level and your comments can help us
improve it.

7

• Try to establish a practice where you log your work at the computerlab.
You may find such a logbook very handy at later stages in your work,
especially when you don’t properly remember what a previous test version
of your program did. Here you could also record the time spent on solving
the exercise, various algorithms you may have tested or other topics which
you feel worthy of mentioning.

Format for electronic delivery of report and programs
The preferred format for the report is a PDF file. You can also use DOC or
postscript formats or as an ipython notebook file. As programming language we
prefer that you choose between C/C++, Fortran2008 or Python. The following
prescription should be followed when preparing the report:

• Use your github repository to upload your report. Indicate where the
report is by creating for example a Report folder. Please send us as soon
as possible your github username.

• Place your programs in a folder called for example Programs or src, in
order to indicate where your programs are. You can use a README file
to tell us how your github folders are organized.

• In your git repository, please include a folder which contains selected results.
These can be in the form of output from your code for a selected set of
runs and input parameters.

• You should include tests (for example unit tests) of your code(s).

• Comments from us on your projects, with score and detailed feedback will
be emailed to you.

Finally, we encourage you to work two and two together. Optimal working
groups consist of 2-3 students. You can then hand in a common report.

8

