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Theoretical background and description of the physical sys-
tem
The aim of this project is to use the Variational Monte Carlo (VMC) method to
evaluate the ground state energy, the relative distance between two electrons and
expectation values of the kinetic and potential energies of a quantum dots with
N = 2 electrons in three dimensions. It can be seen as a continuation of project
2, but instead of using eigenvalue solvers we will use a stochastic approach.

The systems we will focus on is thus a three-dimensional one, with two
electrons confined to move in harmonic oscillator like traps. As in project 2, we
have analytical results for the energy for specific frequencies, see Taut’s article in
the reference list below. Furthermore, for other frequencies, we have our results
from project 2 which can be used to test our Monte Carlo results.

These systems are called quantum dots and constitute a lively research area
in condensed matter physics and materials science, with applications spanning
from the contruction of quantum circuits to applications to solar cells and nano-
medicine. Although most studies are done for electrons in two dimensions, we
will limit ourselves to the three-dimensional case since it allows us to compare
our variational Monte Carlo (VMC) results with what we did in project 2.

Our aim here is to use the variational Monte Carlo method to study such
systems, with an emphasis on understanding correlations due to the repulsive
interaction between electrons. The advantage of the VMC approach is that we
can carry out our calculations using cartesian coordinates.

The relevant background material can be found in chapter 14 of the lecture
notes.

We consider a system of electrons confined in a pure three-dimensional
isotropic harmonic oscillator potential, with an idealized total Hamiltonian given
by
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where natural units (~ = c = e = me = 1) are used and all energies are in
so-called atomic units a.u. It means that all distances ri and rij are dimensionless.

We will study various trial wave functions for two electrons (N = 2) as
functions of the oscillator frequency ω using the above Hamiltonian. The
Hamiltonian includes a standard harmonic oscillator part

Ĥ0 =
N∑

i=1

(
−1

2∇
2
i + 1

2ω
2r2

i

)
,

and the repulsive interaction between two electrons given by
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∑
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with the distance between electrons given by rij =
√

r1 − r2. We define the modu-
lus of the positions of the electrons (for a given electron i) as ri =
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i .

Project 4a): Non-interacting system. We will first deal with a system of
two electrons in a quantum dot with a frequency of ~ω = 1. If we only include
the harmonic oscillator part of the Hamiltonian, the so-called unperturbed part,
for N = 2
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the exact energy is 3 a.u. This serves as an excellent benchmark when we develop
our code. The wave function for one electron in an oscillator potential in three
dimensions is

φnx,ny,nz
(x, y, z) = AHnx

(
√
ωx)Hny

(
√
ωy)Hnz

(
√
ωz) exp (−ω(x2 + y2 + z2)/2.

The functions Hnx(
√
ωx) etc are so-called Hermite polynomials, discussed below

here while A is a normalization constant. For the lowest-lying state we have
nx = ny = nz = 0 and an energy εnx,ny,nx

= ω(nx + ny + nz + 3/2) = 3/2ω.
Convince yourself that the lowest-lying energy for the two-electron system is
simply 3ω. This results provides a useful benchmark for your code.

The unperturbed wave function for the ground state of the two-electron
system is given by

Φ(r1, r2) = C exp
(
−ω(r2

1 + r2
2)/2

)
,

with C being a normalization constant and ri =
√
x2

i + y2
i + z2

i . Note that the
vector ri refers to the x, y and z coordinates for a given particle. What is the
total spin of this wave function? Find arguments for why the ground state should
have this specific total spin.
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Project 4b): Analytical form for the trial wave functions and local
energy. Find closed form expressions for the local energy (see below) for the
two trial wave functions presented here and explain shortly if these trial functions
satisfy the so-called cusp condition when r12 → 0. The first wave function

ΨT 1(r1, r2) = C exp
(
−αω(r2
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)
,

while the second trial function is
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exp
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where α and β are variational parameters. Show that the first trial function
gives an analytical expression for the local energy given by gives a closed-form
expression

EL1 = 1
2ω

2 (r2
1 + r2

2
) (

1− α2)+ 3αω.

Use this expression when developing your program. For the first trial function
it will give you the exact analytical result when you exclude the Coulomb
interaction. The exact result for the ground state is then 3ω. Adding the
repulsive Coulomb interaction gives us then

EL1 = 1
2ω

2 (r2
1 + r2

2
) (

1− α2)+ 3αω + 1
r12

.

When you study the final energy for the first trial function, this is the result you
should compare the second trial function with. The analytical expression for the
second trial wave function (with EL1 now including the Coulomb repulsion)

EL2 = EL1 + 1
2(1 + βr12)2

{
αωr12 −

1
2(1 + βr12)2 −

2
r12

+ 2β
1 + βr12

}
The exact ground state energy for ω = 1 is 3.558 a.u. Check this result against
your results from project 2 and remember to add the contribution from the
center-of-mass energy, which is 1.5 a.u.

You will need to program both equations when computing the expectation
value of the energy and the energy variance.

Project 4c): We want to perform a Variational Monte Carlo calculation of
the ground state of two electrons in a quantum dot well with different oscillator
energies, assuming total spin S = 0. Compute then

〈H〉 =
∫
dRΨ∗T (R)H(R)ΨT (R)∫
dRΨ∗T (R)ΨT (R)

,

for the two-electron system using a variational Monte Carlo method employing
the Metropolis algorithm to sample over different states. You will have to
calculate

〈H〉 =
∫
P (R)EL(R)dR,
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where EL is the local energy. Here all calculations are performed with the trial
wave function ψT 1(r1, r2, r12) only. Study the stability of your calculation as
function of the number of Monte Carlo cycles and compare these results with
the exact results from project 2 (remember to add the center-of-mass energy for
the results from project 2) Your Monte Carlo moves are determined by

R′ = R + δ × r

where r is a random number from the uniform distribution and δ a chosen step
length. In solving this exercise you need to devise an algorithm which finds an
optimal value of δ for each variational parameter α, resulting in roughly 50%
accepted moves.

Plot the energy as a function of the variational parameter α and discuss your
results. Plot the variance as well and find the energy and variance minima as
functions of α. Discuss your results.

Compute also the expectation value of the mean distance at the energy
minimun r12 =

√
r1 − r2 between the two electrons for the optimal set of the

variational parameters using ω = 0.01, ω = 0.5 and ω = 1.0. Comment your
results. You will find it convenient to object orient your code.

Project 4d): Use thereafter the optimal value for α as a starting point for
computing the ground state energy of the two-electron quantum dot using the
trial wave functions ψT 2(r1, r2, r12). Use the analytical expression for the local
energy. In this case you need to vary both α and β. The strategy here is to use
α from the previous exercise, [5c)] and then vary β in order to find the lowest
energy as function of β. Thereafter you change α in order to see whether you
find an even lower energy and so forth.

With the optimal parameters for the ground state wave function, compute
the expectation values of the energy and the variance using ω = 0.01, ω = 0.5
and ω = 1.0. How important are the correlations introduced by the Jastrow
factor? Comment your results. Compare the best VMC results wth those from
project 2 for the same frequencies. Compute also the expectation value of the
mean distance at the energy minimun r12 =

√
r1 − r2 between the two electrons

for the optimal set of the variational parameters using ω = 0.01, ω = 0.5 and
ω = 1.0. Comment your results and compare the results with and without the
Jastrow factor.

Project 4e): Finally, we want to test the virial theorem for a range of frequen-
cies. The virial theorem states that the expectation value of the total kinetic
energy 〈T 〉 is proportional to the expectation value of the total potential energy
〈V 〉. For a pure harmonic oscillator this proportionality is given by

〈T 〉 = 〈V 〉.

Use your optimal results for ω = 0.01, ω = 0.5 and ω = 1.0 and add to these
other values in the range ω ∈ [0.01, 1] and compute the expectation value of the
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kinetic energy and potential energy with and without the repulsive interaction
between electrons for N = 2. Plot the ratio 〈T 〉/〈V 〉 as function of ω and
comment your results.

Background literature
• M. Taut, Phys. Rev. A 48, 3561 (1993).

• B. L. Hammond, W. A. Lester and P. J. Reynolds, Monte Carlo methods in
Ab Initio Quantum Chemistry, World Scientific, Singapore, 1994, chapters
2-5 and appendix B.

Additional material on Hermite polynomials
The Hermite polynomials are the solutions of the following differential equation

d2H(x)
dx2 − 2xdH(x)

dx
+ (λ− 1)H(x) = 0. (2)

The first few polynomials are

H0(x) = 1,

H1(x) = 2x,

H2(x) = 4x2 − 2,

H3(x) = 8x3 − 12x,

and

H4(x) = 16x4 − 48x2 + 12.

They fulfil the orthogonality relation∫ ∞
−∞

e−x2
Hn(x)2dx = 2nn!

√
π,

and the recursion relation

Hn+1(x) = 2xHn(x)− 2nHn−1(x).

5

http://journals.aps.org/pra/abstract/10.1103/PhysRevA.48.3561


Introduction to numerical projects
Here follows a brief recipe and recommendation on how to write a report for
each project.

• Give a short description of the nature of the problem and the eventual
numerical methods you have used.

• Describe the algorithm you have used and/or developed. Here you may
find it convenient to use pseudocoding. In many cases you can describe
the algorithm in the program itself.

• Include the source code of your program. Comment your program properly.

• If possible, try to find analytic solutions, or known limits in order to test
your program when developing the code.

• Include your results either in figure form or in a table. Remember to label
your results. All tables and figures should have relevant captions and labels
on the axes.

• Try to evaluate the reliabilty and numerical stability/precision of your
results. If possible, include a qualitative and/or quantitative discussion of
the numerical stability, eventual loss of precision etc.

• Try to give an interpretation of you results in your answers to the problems.

• Critique: if possible include your comments and reflections about the
exercise, whether you felt you learnt something, ideas for improvements
and other thoughts you’ve made when solving the exercise. We wish to
keep this course at the interactive level and your comments can help us
improve it.

• Try to establish a practice where you log your work at the computerlab.
You may find such a logbook very handy at later stages in your work,
especially when you don’t properly remember what a previous test version
of your program did. Here you could also record the time spent on solving
the exercise, various algorithms you may have tested or other topics which
you feel worthy of mentioning.

Format for electronic delivery of report and programs
The preferred format for the report is a PDF file. You can also use DOC or
postscript formats or as an ipython notebook file. As programming language we
prefer that you choose between C/C++, Fortran2008 or Python. The following
prescription should be followed when preparing the report:

• Use your github repository to upload your report. Indicate where the
report is by creating for example a Report folder. Please send us as soon
as possible your github username.
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• Place your programs in a folder called for example Programs or src, in
order to indicate where your programs are. You can use a README file
to tell us how your github folders are organized.

• In your git repository, please include a folder which contains selected results.
These can be in the form of output from your code for a selected set of
runs and input parameters.

• In this and all later projects, you should include tests (for example unit
tests) of your code(s).

• Comments from us on your projects, with score and detailed feedback will
be emailed to you.

Finally, we encourage you to work two and two together. Optimal working
groups consist of 2-3 students. You can then hand in a common report.
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