```
Computational Physics Lectures: Numerical
integration, from Newton-Cotes quadrature to
    Gaussian quadrature
Morten Hjorth-Jensen \({ }^{1,2}\)
Department of Physics, University of Oslo
Department of Physics and Astronomy and National Superconducting Cyclotron
\[
\text { Jan 8, } 2018
\]
```


Numerical Integration

Here we will discuss some of the classical methods for integrating a function. The methods we discuss are

Equal step methods like the trapezoidal rectangular and Simpson's rule, parts of what are called Newton-Cotes quadrature methods.

- Integration approaches based on Gaussian quadrature

The latter are more suitable for the case where the abscissas are
not equally spaced. We emphasize methods for evaluating few-dimensional (typically up to four dimensions) integrals. Monte Carlo methods.

Newton-Cotes Quadrature or equal-step methods

The integral

$$
I=\int_{a}^{b} f(x) d x
$$

has a very simple meaning. The integral is the area enscribed by the function $f(x)$ starting from $x=a$ to $x=b$. It is subdivided in several smaller areas whose evaluation is to be approximated by different techniques. The areas under the curve can for example be approximated by rectangular boxes or trapezoids.

Basic philosophy of equal-step methods

In considering equal step methods, our basic approach is that of approximating a function $f(x)$ with a polynomial of at most degree approximating a function $f(x)$ with a polynomial of at most degree
$N-1$, given N integration points. If our polynomial is of degree 1 , the function will be approximated with $f(x) \approx a_{0}+a_{1} x$

Simple algorithm for equal step methods

The algorithm for these integration methods is rather simple, and the number of approximations perhaps unlimited!

- Choose a step size $h=(b-a) / N$ where N is the number of steps and a and b the lower and upper limits of integration. - With a given step length we rewrite the integral as
$\int_{a}^{b} f(x) d x=\int_{a}^{a+h} f(x) d x+\int_{a+h}^{a+2 h} f(x) d x+\ldots \int_{b-h}^{b} f(x) d x$.
The strategy then is to find a reliable polynomial
approximation for $f(x)$ in the various intervals. Choosing a given approximation for $f(x)$, we obtain a specific approximation to the integral.
- With this approximation to $f(x)$ we perform the integration by computing the integrals over all subintervals.

Simple algorithm for equal step methods

One possible strategy then is to find a reliable polynomial expansion for $f(x)$ in the smaller subintervals. Consider for example evaluating

$$
\int_{a}^{a+2 h} f(x) d x
$$

which we rewrite as

$$
\begin{equation*}
\int_{a}^{a+2 h} f(x) d x=\int_{x_{0}-h}^{x_{0}+h} f(x) d x . \tag{2}
\end{equation*}
$$

We have chosen a midpoint x_{0} and have defined $x_{0}=a+h$.

Using Lagrange's interpolation formula

$$
P_{N}(x)=\sum_{i=0}^{N} \prod_{k \neq i} \frac{x-x_{k}}{x_{i}-x_{k}} y_{i},
$$

we could attempt to approximate the function $f(x)$ with a
first-order polynomial in x in the two sub-intervals $x \in\left[x_{0}-h, x_{0}\right]$ first-order polynomial in x in the two sub-intervals $x \in\left[x_{0}-h, x_{0}\right]$ and $x \in\left[x_{0}, x_{0}+h\right]$. A first order polynomial means simply that we
have for say the interval $x \in\left[x_{0}, x_{0}+h\right]$

$$
f(x) \approx P_{1}(x)=\frac{x-x_{0}}{\left(x_{0}+h\right)-x_{0}} f\left(x_{0}+h\right)+\frac{x-\left(x_{0}+h\right)}{x_{0}-\left(x_{0}+h\right)} f\left(x_{0}\right),
$$

and for the interval $x \in\left[x_{0}-h, x_{0}\right]$
$f(x) \approx P_{1}(x)=\frac{x-\left(x_{0}-h\right)}{x_{0}-\left(x_{0}-h\right)} f\left(x_{0}\right)+\frac{x-x_{0}}{\left(x_{0}-h\right)-x_{0}} f\left(x_{0}-h\right)$.
Having performed this subdivision and polynomial approximation, one from $x_{0}-h$ to x_{0} and the other from x_{0} to $x_{0}+h$

$$
\int_{a}^{a+2 h} f(x) d x=\int_{x_{0}-h}^{x_{0}} f(x) d x+\int_{x_{0}}^{x_{0}+h} f(x) d x,
$$

we can easily calculate for example the second integral as
$\int_{x_{0}}^{x_{0}+h} f(x) d x \approx \int_{x_{0}}^{x_{0}+h}\left(\frac{x-x_{0}}{\left(x_{0}+h\right)-x_{0}} f\left(x_{0}+h\right)+\frac{x-\left(x_{0}+h\right)}{x_{0}-\left(x_{0}+h\right)} f\left(x_{0}\right)\right)$

The trapezoidal rule

The other integral gives

$$
\int_{x_{0}-h}^{x_{0}} f(x) d x=\frac{h}{2}\left(f\left(x_{0}\right)+f\left(x_{0}-h\right)\right)+O\left(h^{3}\right),
$$

and adding up we obtain

$$
\int_{x_{0}-h}^{x_{0}+h} f(x) d x=\frac{h}{2}\left(f\left(x_{0}+h\right)+2 f\left(x_{0}\right)+f\left(x_{0}-h\right)\right)+O\left(h^{3}\right), \quad \text { (3) }
$$

which is the well-known trapezoidal rule. Concerning the error in the approximation made, $O\left(h^{3}\right)=O\left((b-a)^{3} / N^{3}\right)$, you should note that this is the local error. Since we are splitting the integral from a to b in N pieces, we will have to perform approximately N such operations.

Global error

This means that the global error goes like $\approx O\left(h^{2}\right)$. The trapezoidal reads then
$I=\int_{a}^{b} f(x) d x=h(f(a) / 2+f(a+h)+f(a+2 h)+\cdots+f(b-h)$ with a global error which goes like $O\left(h^{2}\right)$,
Hereafter we use the shorthand notations $f_{0}=f\left(x_{0}\right)$ and $f_{h}=f\left(x_{0}+h\right)$.

Error in the trapezoidal rule

The correct mathematical expression for the local error for the trapezoidal rule is

$$
\int_{a}^{b} f(x) d x-\frac{b-a}{2}[f(a)+f(b)]=-\frac{h^{3}}{12} f^{(2)}(\xi),
$$

and the global error reads

$$
\int_{a}^{b} f(x) d x-T_{h}(f)=-\frac{b-a}{12} h^{2} f^{(2)}(\xi),
$$

where T_{h} is the trapezoidal result and $\xi \in[a, b]$.

The trapezoidal rule is easy to implement numerically through the following simple algorithm

- Choose the number of mesh points and fix the step length
calculate $f(a)$ and $f(b)$ and multiply with $h / 2$.
- Perform a loop over $n=1$ to $n-1(f(a)$ and $f(b)$ are known) and sum up the terms
$f(a+h)+f(a+2 h)+f(a+3 h)+\cdots+f(b-h)$. Each step in the loop corresponds to a given value $a+n h$.
- Multiply the final result by h and add $h f(a) / 2$ and $h f(b) / 2$.

A simple function which implements this algorithm is as follows double TrapezoidalRule (double a, double b, int n , double ((func) (d
${ }^{\wedge} \quad$ double Trapezoidele TrapezSum;
iouble fa, fb, x, step
step $=(b-a) /($ (double)
fa $=($ (func) $)(a) / 2$.

Trapezsumm $+=(*$ func $)$ (x)
${ }_{\text {TrapezSum }}{ }^{\text {(TrapezSum }+ \text { fb }+f a) \text {) step; }}$

TrapezSum=Crapern
return Trapessum;
end Trapezozolal Rule

The function returns a new value for the specific integral through
the variable TrapezSum.

Transfer of function names

There is one new feature to note here, namely the transfer of a user defined function called func in the definition
void TrapezoidalRule (double a, double b, int n, double *Tr What happens here is that we are transferring a pointer to th name of a user defined function, which has as input a double function
TrapezoidalRule (a, b,
in the calling function. We note that \mathbf{a}, \mathbf{b} and \mathbf{n} are called by value,
in the calling function. We note that \mathbf{a}, \mathbf{b} and \mathbf{n} are called by value, while TrapezSum cy reference.

Going back to Python, why?

Symbolic calculations and numerical calculations in one code!
Python offers an extremely versatile programming environment,
allowing for the inclusion of analytical studies in a numerical program. Here we show an example code with the trapezoida rule using SymPy to evaluate an integral and compute the absolute error with respect to the numerically evaluated one of the integral $4 \int_{0}^{1} d x /\left(1+x^{2}\right)=\pi$
from math import
from sympy import
from sympy import
def $\operatorname{Trapez}(\mathrm{a}, \mathrm{b}, \mathrm{f}, \mathrm{n})$:
$h=(b-a)$
$s=0$
$\mathrm{s}=0$
$\mathrm{x}=\mathrm{a}$
for
i
$\underset{\substack{i \\ i=x+h}}{ }(1, n, 1)$:
$x=x+h(x)$
$s=s+f(x)$
$5 \times(f(a)+f$
$s=0.5 *(f(\mathrm{a})+\mathrm{f}(\mathrm{b}))+\mathrm{s}$
return $\mathrm{h} * \mathrm{~s}$
\# function to compute $p i$
def function (x)
def function $(x):$
return $4.0 /(1+x * x)$

Integrating numerical mathematics with calculus

The last example shows the potential of combining numerical algorithms with symbolic calculations, allowing us thereby to

- Validate and verify our algorithms
- Including concepts like unit testing, one has the possibility to test and validate several or all parts of the code.
- Validation and verification are then included naturally.
- The above example allows you to test the mathematical error of the algorithm for the trapezoidal rule by changing the number of integration points. You get trained from day one to think error analysis.

Another very simple approach is the so-called midpoint or rectangle method. In this case the integration area is split in a given number of rectangles with length h and height given by the mid-point value of the function. This gives the following simple rule for
approximating an integral

$$
I=\int_{a}^{b} f(x) d x \approx h \sum_{i=1}^{N} f\left(x_{i-1 / 2}\right),
$$

where $f\left(x_{i-1 / 2}\right)$ is the midpoint value of f for a given rectangle. We will discuss its truncation error below. It is easy to implement this algorithm, as shown here
${ }_{f}$ double RectangleRule (double a, double b, int n, double (*func) (dquble)
double RectangleSum;
double fa, fb, x, step

step $=(\mathrm{b}-\mathrm{a}) /(($ double $) \mathrm{n})$;
RectangleSum $=0$;
 rectangular rule $R_{i}(h)$ for element i is

$$
\int_{-h}^{h} f(x) d x-R_{i}(h)=-\frac{h^{3}}{24} f^{(2)}(\xi),
$$

and the global error reads

$$
\int_{a}^{b} f(x) d x-R_{h}(f)=-\frac{b-a}{24} h^{2} f^{(2)}(\xi),
$$

where R_{h} is the result obtained with rectangular rule and $\xi \in[a, b]$.

Second-order polynomial

Simpson's rule

Note that the improved accuracy in the evaluation of the derivatives gives a better error approximation, $O\left(h^{5}\right)$ vs. $O\left(h^{3}\right)$ But this is again the local error approximation. Using Simpson's rule we can easily compute the integral of Eq. (1) to be
$I=\int_{a}^{b} f(x) d x=\frac{h}{3}(f(a)+4 f(a+h)+2 f(a+2 h)+\cdots+4 f(b-$ with a global error which goes like $O\left(h^{4}\right)$.

$$
\int_{-h}^{+h} f(x) d x=\frac{h}{3}\left(f_{h}+4 f_{0}+f_{-h}\right)+O\left(h^{5}\right),
$$

which is Simpson's rule.

Mathematical expressions for the truncation error

More formal expressions for the local and global errors are for the local error
$\int_{a}^{b} f(x) d x-\frac{b-a}{6}[f(a)+4 f((a+b) / 2)+f(b)]=-\frac{h^{5}}{90} f^{(4)}(\xi)$,
and for the global error

$$
\int_{a}^{b} f(x) d x-S_{h}(f)=-\frac{b-a}{180} h^{4} f^{(4)}(\xi) .
$$

with $\xi \in[a, b]$ and S_{h} the results obtained with Simpson's method.

Algorithm for Simpson's rule

The method can easily be implemented numerically through the following simple algorithm

- Choose the number of mesh points and fix the step.
- calculate $f(a)$ and $f(b)$
- Perform a loop over $n=1$ to $n-1(f(a)$ and $f(b)$ are known) $4 f(a+h)+2 f(a+2 h)+4 f(a+3 h)+\cdots+4 f(b-h)$. Each step in the loop corresponds to a given value $a+n h$. Odd values of n give 4 as factor while even values yield 2 as factor. - Multiply the final result by ${ }_{3}$

In more general terms, what we have done here is to approximate a given function $f(x)$ with a polynomial of a certain degree. One can show that given $n+1$ distinct points $x_{0}, \ldots, x_{n} \in[a, b]$ and $n+1$ values y_{0}, \ldots, y_{n} there exists a unique polynomial $P_{n}(x)$ with the property $\quad P_{n}\left(x_{j}\right)=y_{j} \quad j=0, \ldots, n$

In the Lagrange representation the interpolating polynomial is given
by

$$
P_{n}=\sum_{k=0}^{n} I_{k} y_{k},
$$

with the Lagrange factors

$$
I_{k}(x)=\prod_{\substack{i=0 \\ i \neq k}}^{n} \frac{x-x_{i}}{x_{k}-x_{i}} k=0, \ldots, n .
$$

Gaussian Quadrature

The methods we have presented hitherto are tailored to problems where the mesh poi
The basic idea behind all integration methods is to approximate the integral

$$
I=\int_{a}^{b} f(x) d x \approx \sum_{i=1}^{N} \omega_{i} f\left(x_{i}\right),
$$

where ω and x are the weights and the chosen mesh points, respectively. In our previous discussion, these mesh points were fixed at the beginning, by choosing a given number of points N. The weigths ω resulted then from the integration method we applied. Simpson's rule, see Eq. (6) would give

$$
\omega:\{h / 3,4 h / 3,2 h / 3,4 h / 3, \ldots, 4 h / 3, h / 3\},
$$

for the weights, while the trapezoidal rule resulted in
$\omega:\{h / 2, h, h, \ldots, h, h / 2\}$

Gaussian Quadrature, main idea

In general, an integration formula which is based on a Taylor series using N points, will integrate exactly a polynomial P of degree using N points, will integrate exactly a polynomial P of degree
$N-1$. That is, the N weights ω_{n} can be chosen to satisfy N linear $N-1$. That is, the N weights ω_{n} can be chosen to satisfy N linear
equations, see chapter 3 of Ref. [3]. A greater precision for a given amount of numerical work can be achieved if we are willing to give up the requirement of equally spaced integration points. In Gaussian quadrature (hereafter GQ), both the mesh points and the weights are to be determined. The points will not be equally spaced.
The theory behind GQ is to obtain an arbitrary weight ω through the use of so-called orthogonal polynomials. These polynomials are orthogonal in some interval say e.g., $[-1,1]$. Our points x_{i} are chosen in some optimal sense subject only to the constraint that en $2 N$ (N lo then $2 N$ (N the number of points) parameters at our disposal.

Gaussian Quadrature

Even though the integrand is not smooth, we could render it smooth by extracting from it the weight function of an orthogonal polynomial, i.e., we are rewriting

$$
\begin{equation*}
I=\int_{a}^{b} f(x) d x=\int_{a}^{b} W(x) g(x) d x \approx \sum_{i=1}^{N} \omega_{i} g\left(x_{i}\right), \tag{7}
\end{equation*}
$$

where g is smooth and W is the weight function, which is to be associated with a given orthogonal polynomial. Note that with a given weight function we end up evaluating the integrand for the function $g\left(x_{i}\right)$.

The weight function W is non-negative in the integration interval $x \in[a, b]$ such that for any $n \geq 0$, the integral $\int_{a}|x|^{n} W(x) d x$ is integrable. The naming weight function arises from the fact that it may be used to give more emphasis to one part of the interval than another. A quadrature formula

$$
\int_{a}^{b} W(x) f(x) d x \approx \sum_{i=1}^{N} \omega_{i} f\left(x_{i}\right),
$$

with N distinct quadrature points (mesh points) is a called Gaussian quadrature formula if it integrates all polynomials $p \in P_{2 N-1}$ exactly, that is

It is assumed that $W(x)$ is continuous and positive and that the integral

The quadrature weights or just weights (not to be confused with the weight function) are positive and the sequence of Gaussian ardrature formulae is convergent if the sequence Q_{N} of quadrature formulae

$$
Q_{N}(f) \rightarrow Q(f)=\int_{a}^{b} f(x) d x,
$$

in the limit $N \rightarrow \infty$

Gaussian Quadrature

Error in Gaussian Quadrature

The error for the Gaussian quadrature formulae of order N is given by

$$
\int_{a}^{b} W(x) f(x) d x-\sum_{k=1}^{N} w_{k} f\left(x_{k}\right)=\frac{f^{2 N}(\xi)}{(2 N)!} \int_{a}^{b} W(x)\left[q_{N}(x)\right]^{2} d x
$$

where q_{N} is the chosen orthogonal polynomial and ξ is a number in the interval $[a, b]$. We have assumed that $f \in C^{2 N}[a, b]$, viz. the space of all real or complex $2 N$ times continuously differentiable functions.
for all N which are natural numbers.

Important polynomials in Gaussian Quadrature

In science there are several important orthogonal polynomials which arise from the solution of differential equations. Well-known
examples are the Legendre, Hermite, Laguerre and Chebyshev
polynomials. They have the following weight functions

Weight function	Interval	Polynomial
$W(x)=1$	$x \in[-1,1]$	Legendre

$W(x)=e^{-x^{2}} \quad$ Legendre
$W(x)=x^{\alpha} e^{-x} \quad 0 \leq x \leq \infty \quad$ Laguerre $\begin{array}{ll}W(x)=1 /\left(\sqrt{1-x^{2}}\right) & -1 \leq x \leq 1 \quad \text { Chebyshev } \\ \text { The importance of the use of orthogonal polynomials in the }\end{array}$ evaluation of integrals can be summarized as follows.

The reason why we can represent a function $f(x)$ with a polynomial of degree $2 N-1$ is due to the fact that we have $2 N$ equations, N for the mesh points and N for the weights.
The mesh points are the zeros of the chosen orthogonal polynomial of order N, and the weights are determined from the inverse of a matrix. An orthogonal polynomials of degree N defined in an interval $[a, b]$ has precisely N distinct zeros on the open interval (a, b).
Before we detail how to obtain mesh points and weights with orthogonal polynomials, let us revisit some features of orthogonal polynomials by specializing to Legendre polynomials. In the text below, we resve her while P_{N} iselling L_{N} for a Legendre
N. These polynomials form then the basis for
N. These polynomials form then the basis for the Gauss-Legendre
method.

The Legendre polynomials are the solutions of an important differential equation in Science, namely

$$
C\left(1-x^{2}\right) P-m_{l}^{2} P+\left(1-x^{2}\right) \frac{d}{d x}\left(\left(1-x^{2}\right) \frac{d P}{d x}\right)=0 .
$$

Here C is a constant. For $m_{l}=0$ we obtain the Legendre polynomials as solutions, whereas $m_{l} \neq 0$ yields the so-called associated Legendre polynomials. This differential equation arises in exam.
 as the Coulomb potential.

Orthogonal polynomials, Legendre

Orthogonal polynomials, Legendre

It is common to choose the normalization condition

$$
L_{N}(1)=1 .
$$

With these equations we can determine a Legendre polynomial of arbitrary order with input polynomials of order $N-1$ and $N-2$. As an example, consider the determination of L_{0}, L_{1} and L_{2}. We have that

$$
L_{0}(x)=c,
$$

with c a constant. Using the normalization equation $L_{0}(1)=1$ we get that

$$
L_{0}(x)=1 .
$$

Orthogonal polynomials, Legendre

For $L_{1}(x)$ we have the general expression

$$
L_{1}(x)=a+b x
$$

and using the orthogonality relation

$$
\int_{-1}^{1} L_{0}(x) L_{1}(x) d x=0
$$

we obtain $a=0$ and with the condition $L_{1}(1)=1$, we obtain
$b=1$, yielding $\quad L_{1}(x)=x$.

Orthogonal polynomials, Legendre

We can proceed in a similar fashion in order to determine the
coefficients of L_{2}

$$
L_{2}(x)=a+b x+c x^{2},
$$

using the orthogonality relations

$$
\int_{-1}^{1} L_{0}(x) L_{2}(x) d x=0
$$

and

$$
\int_{-1}^{1} L_{1}(x) L_{2}(x) d x=0
$$

and the condition $L_{2}(1)=1$ we would get

$$
L_{2}(x)=\frac{1}{2}\left(3 x^{2}-1\right) .
$$

The orthogonality relation above is important in our discussion on how to obtain the weights and mesh points. Suppose we have an arbitrary polynomial Q_{N-1} of order $N-1$ and a Legendre
polynomial $L_{N}(x)$ of order N. We could represent Q_{N-1} by the Legendre polynomials throug

$$
\begin{equation*}
Q_{N-1}(x)=\sum_{k=0}^{N-1} \alpha_{k} L_{k}(x), \tag{13}
\end{equation*}
$$

where α_{k} 's are constants.
Using the orthogonality relation of Eq. (10) we see that

$$
\begin{equation*}
\int_{-1}^{1} L_{N}(x) Q_{N-1}(x) d x=\sum_{k=0}^{N-1} \int_{-1}^{1} L_{N}(x) \alpha_{k} L_{k}(x) d x=0 \tag{14}
\end{equation*}
$$

We will use this result in our construction of mesh points and weights in the next subsection

Orthogonal polynomials, Legendre

In summary, the first few Legendre polynomials are
$L_{0}(x)=1$,
$L_{1}(x)=x$, $L_{2}(x)=\left(3 x^{2}-1\right) / 2$ $L_{3}(x)=\left(5 x^{3}-3 x\right) / 2$,
and
$L_{4}(x)=\left(35 x^{4}-30 x^{2}+3\right) / 8$.

Integration points and weights with orthogonal polynomials

Integration points and weights with orthogonal polynomials We can use Eq. (14) to rewrite the above integral as
To understand how the weights and the mesh points are generated we define first a polynomial of degree $2 N-1$ (since we have $2 N$ variables at hand, the mesh points and weights for N points). This polynomial can be represented through polynomial division by

$$
P_{2 N-1}(x)=L_{N}(x) P_{N-1}(x)+Q_{N-1}(x),
$$

where $P_{N-1}(x)$ and $Q_{N-1}(x)$ are some polynomials of degree $N-1$ or less. The function $L_{N}(x)$ is a Legendre polynomial of order N. Recall that we wanted to approximate an arbitrary function $f(x)$ with a polynomial $P_{2 N-1}$ in order to evaluate

$$
\int_{-1}^{1} f(x) d x \approx \int_{-1}^{1} P_{2 N-1}(x) d x
$$

Orthogonal polynomials, simple code for Legendre

polynomials

The following simple function implements the above recursion N.

This function computes the Legendre polynomial of degree

double $r, s, t ;$
int $m ;$
$r=0 ; s=1 ;$
/ Use recursion relation
for $(\mathrm{m}=0 ; \mathrm{m}<\mathrm{n} ; \mathrm{m}+\mathrm{t})$
$\mathrm{t}=\mathrm{r} ; \mathrm{r}=\mathrm{s} ;$
$\mathrm{s}=(2 \times \mathrm{m}+1) * \times \mathrm{x} * \mathrm{r}-\mathrm{m} * \mathrm{t} ;$
$\mathrm{s} /=(\mathrm{m}+1) ;$
$\mathrm{f} / /$ end of do loop
return s;
(/ end of function Legendr
The variable s represents $L_{j+1}(x)$, while r holds $L_{j}(x)$ and t the value $L_{i-1}(x)$.
$\int_{-1}^{1} P_{2 N-1}(x) d x=\int_{-1}^{1}\left(L_{N}(x) P_{N-1}(x)+Q_{N-1}(x)\right) d x=\int_{-1}^{1} Q_{N-1}(x) d x$
due to the orthogonality properties of the Legendre polynomials. We see that it suffices to evaluate the integral over $\int_{-1}^{1} Q_{N-1}(x) d x$ in order to evaluate $\int_{-1}^{1} P_{2 N-1}(x) d x$. In addition, at the points x_{k} where L_{N} is zero, we have

$$
P_{2 N-1}\left(x_{k}\right)=Q_{N-1}\left(x_{k}\right) \quad k=0,1, \ldots, N-1,
$$

and we see that through these N points we can fully define
$Q_{N-1}(x)$ and thereby the integral. Note that we have chosen to let the numbering of the points run from 0 to $N-1$. The reason for this choice is that we wish to have the same numbering as the order of a polynomial of degree $N-1$. This numbering will b e the matrix elements which define the integration weights w.

We develope then $Q_{N-1}(x)$ in terms of Legendre polynomials, as done in Eq. (13),

$$
Q_{N-1}(x)=\sum_{i=0}^{N-1} \alpha_{i} L_{i}(x) .
$$

Using the orthogonality property of the Legendre polynomials we have

$$
\int_{-1}^{1} Q_{N-1}(x) d x=\sum_{i=0}^{N-1} \alpha_{i} \int_{-1}^{1} L_{0}(x) L_{i}(x) d x=2 \alpha_{0},
$$

where we have just inserted $L_{0}(x)=1$!
Instead of an integration problem we need now to define the coefficient α_{0}. Since we know the values of Q_{N-1} at the zeros of L_{N}, we may rewrite Eq. (15) as
$Q_{N-1}\left(x_{k}\right)=\sum_{i=0}^{N-1} \alpha_{i} L_{i}\left(x_{k}\right)=\sum_{i=0}^{N-1} \alpha_{i} L_{i k} \quad k=0,1, \ldots, N-1$.
Since the Legendre polynomials are linearly independent of each other, none of the columns in the matrix $L_{i k}$ are linear combinations of the others.

Integration points and weights with orthogonal polynomials

This means that the matrix $L_{i k}$ has an inverse with the properties

$$
\hat{L}^{-1} \hat{L}=\hat{I} .
$$

Multiplying both sides of Eq. (16) with $\sum_{j=0}^{N-1} L_{j i}^{-1}$ results in

$$
\sum_{i=0}^{N-1}\left(L^{-1}\right)_{k i} Q_{N-1}\left(x_{i}\right)=\alpha_{k}
$$

Integration points and weights with orthogonal polynomials

We can derive this result in an alternative way by defining the
vectors

$$
\hat{x}_{k}=\left(\begin{array}{c}
x_{0} \\
x_{1} \\
\cdot \\
\cdot \\
x_{N-1}
\end{array}\right) \quad \hat{\alpha}=\left(\begin{array}{c}
\alpha_{0} \\
\alpha_{1} \\
\cdot \\
\cdot \\
\alpha_{N-1}
\end{array}\right),
$$

and the matrix

$$
\hat{L}=\left(\begin{array}{cccc}
L_{0}\left(x_{0}\right) & L_{1}\left(x_{0}\right) & \ldots & L_{N-1}\left(x_{0}\right) \\
L_{0}\left(x_{1}\right) & L_{1}\left(x_{1}\right) & \ldots & L_{N-1}\left(x_{1}\right) \\
\ldots & \ldots & \ldots & \ldots \\
L_{0}\left(x_{N-1}\right) & L_{1}\left(x_{N-1}\right) & \ldots & L_{N-1}\left(x_{N-1}\right)
\end{array}\right) .
$$

We have then

$$
Q_{N-1}\left(\hat{x}_{k}\right)=\hat{L} \hat{\alpha},
$$

Using the above results and the fact that

$$
\int_{-1}^{1} P_{2 N-1}(x) d x=\int_{-1}^{1} Q_{N-1}(x) d x
$$

we get
$\int_{-1}^{1} P_{2 N-1}(x) d x=\int_{-1}^{1} Q_{N-1}(x) d x=2 \alpha_{0}=2 \sum_{i=0}^{N-1}\left(L^{-1}\right)_{0 i} P_{2 N-1}\left(x_{i}\right)$.

Integration points and weights with orthogonal polynomials

Application to the case $N=2$

Let us apply the above formal results to the case $N=2$. This means that we can approximate a function $f(x)$ with a polynomial $P_{3}(x)$ of order $2 N-1=3$.

The mesh points are the zeros of $L_{2}(x)=1 / 2\left(3 x^{2}-1\right)$. These points are $x_{0}=-1 / \sqrt{3}$ and $x_{1}=1 / \sqrt{3}$.
Specializing Eq. (16)

$$
Q_{N-1}\left(x_{k}\right)=\sum_{i=0}^{N-1} \alpha_{i} L_{i}\left(x_{k}\right) \quad k=0,1, \ldots, N-1 .
$$

to $N=2$ yields

$$
Q_{1}\left(x_{0}\right)=\alpha_{0}-\alpha_{1} \frac{1}{\sqrt{3}},
$$

and

Application to the case $N=2$

Obviously, there is no problem in changing the numbering of the matrix elements $i, k=0,1,2, \ldots, N-1$ to $i, k=1,2, \ldots, N$. W have chosen to start from zero, since we deal with polynomials of degree $N-1$
Summarizing, for Legendre polynomials with $N=2$ we have weights

$$
\omega:\{1,1\},
$$

and mesh points

$$
x:\left\{-\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right\} .
$$

Application to the case $N=2$

The exact answer is $2 / 3$. Using $N=2$ with the above two weights and mesh points we ge

$$
I=\int_{-1}^{1} x^{2} d x=\sum_{i=0}^{1} \omega_{i} x_{i}^{2}=\frac{1}{3}+\frac{1}{3}=\frac{2}{3},
$$

the exact answer!
If we were to emply the trapezoidal rule we would get
$I=\int_{-1}^{1} x^{2} d x=\frac{b-a}{2}\left((a)^{2}+(b)^{2}\right) / 2=\frac{1-(-1)}{2}\left((-1)^{2}+(1)^{2}\right) / 2=$
With just two points we can calculate exactly the integral for a
second-order polynomial since our methods approximates the exact
function with higher order polynomial. How many points do you
need with

Note that the Gauss-Legendre method is not limited to an interval
$[-1,1]$, since we can always through a change of variable

$$
t=\frac{b-a}{2} x+\frac{b+a}{2},
$$

rewrite the integral for an interval $[a, b]$

$$
\int_{a}^{b} f(t) d t=\frac{b-a}{2} \int_{-1}^{1} f\left(\frac{(b-a) x}{2}+\frac{b+a}{2}\right) d x .
$$

If we have an integral on the form

$$
\int_{0}^{\infty} f(t) d t,
$$

we can choose new mesh points and weights by using the mapping

$$
\tilde{x}_{i}=\tan \left\{\frac{\pi}{4}\left(1+x_{i}\right)\right\},
$$

and

$$
\tilde{\omega}_{i}=\frac{\pi}{4} \frac{\omega_{i}}{\cos ^{2}\left(\frac{\pi}{4}\left(1+x_{i}\right)\right)},
$$

where x_{i} and ω_{i} are the original mesh points and weights in the interval $[-1,1]$, while \tilde{x}_{i} and $\tilde{\omega}_{i}$ are the new mesh points and weights for the interval $[0, \infty)$.

Other orthogonal polynomials, Laguerre polynomials

If we are able to rewrite our integral of Eq. (7) with a weight function $W(x)=x^{\alpha} e^{-x}$ with integration limits $[0, \infty)$, we could
 integrals of the form

$$
I=\int_{0}^{\infty} f(x) d x=\int_{0}^{\infty} x^{\alpha} e^{-x} g(x) d x .
$$

Other orthogonal polynomials, Laguerre polynomials

The first few polynomials are
$\mathcal{L}_{0}(x)=1$
$\mathcal{L}_{1}(x)=1-x$,
$\mathcal{L}_{2}(x)=2-4 x+x^{2}$,
$\mathcal{L}_{3}(x)=6-18 x+9 x^{2}-x^{3}$,
and
$\mathcal{C}_{4}(x)=x^{4}-16 x^{3}+72 x^{2}-96 x+24$

They fulfil the orthogonality relation

$$
\int_{0}^{\infty} e^{-x} \mathcal{L}_{n}(x)^{2} d x=1
$$

and the recursion relation
$(n+1) \mathcal{L}_{n+1}(x)=(2 n+1-x) \mathcal{L}_{n}(x)-n \mathcal{L}_{n-1}(x)$.

Other orthogonal polynomials, Hermite polynomials
A typical example is again the solution of Schrodinger's equation, but this time with a harmonic oscillator potential. The first few polynomials are
$H_{0}(x)=1$,
$H_{1}(x)=2 x$,
$H_{2}(x)=4 x^{2}-2$,
$H_{3}(x)=8 x^{3}-12$,
and
$H_{4}(x)=16 x^{4}-48 x^{2}+12$.
They fulfil the orthogonality relation

$$
\int_{-\infty}^{\infty} e^{-x^{2}} H_{n}(x)^{2} d x=2^{n} n!\sqrt{\pi},
$$

and the recursion relation
$H_{n+1}(x)=2 x H_{n}(x)-2 n H_{n-1}(x)$.

In a similar way, for an integral which goes like

$$
I=\int_{-\infty}^{\infty} f(x) d x=\int_{-\infty}^{\infty} e^{-x^{2}} g(x) d x
$$

we could use the Hermite polynomials in order to extract weights and mesh points. The Hermite polynomials are the solutions of the following differential equation

$$
\begin{equation*}
\frac{d^{2} H(x)}{d x^{2}}-2 x \frac{d H(x)}{d x}+(\lambda-1) H(x)=0 . \tag{18}
\end{equation*}
$$

Demonstration of Gaussian Quadrature

Let us here compare three methods for integrating, namely the trapezoidal rule, Simpson's method and the Gauss-Legendre aproch. We choose two functions to integrate:

$$
\int_{1}^{100} \frac{\exp (-x)}{x} d x,
$$

and

$$
\int_{0}^{3} \frac{1}{2+x^{2}} d x .
$$

Demonstration of Gaussian Quadrature

To be noted in this program is that we can transfer the name of given function to integrate. In the table here we show the results for the first integral using various mesh points.

N	Trapez	Simpson	Gauss-Legendre

| 10 | 1.821020 | 1.214025 | 0.1460448 |
| :--- | :--- | :--- | :--- | :--- |
| | | | |

$\begin{array}{llll}20 & 0.912678 & 0.609897 & 0.2178091 \\ 40 & 0.478456 & 0.33714\end{array}$

40	0.478456	0.333714	0.2193834
100	0.273724	0.231290	0.2193839

100	0.273724	0.231290	0.2193839
1000	0.219984	0.219387	0.2193839

We note here that, since the area over where we integrate is rather
We note here that, since the area over where we integrate is rath
large and the integrand goes slowly to zero for large values of x large and the integrand goes slowly to zero for large values of x,
both the trapezoidal rule and Simpson's method need quite many both the trapezoidal rule and Simpson's method need quite m,
points in order to approach the Gauss-Legendre method. This integrand demonstrates clearly the strength of the Gauss-Legendre method (and other GQ methods as well), viz., few points are needed in order to achieve a very high precision.

The following python code allows you to run interactively either in a browser or using ipython notebook. It compares the trapezoidal rule and Gaussian quadrature with the exact result from symbolic python SYMPY up to 1000 integration points for the integral

The second table however shows that for smaller integration intervals, both the trapezoidal rule and Simpson's method compare well with the results obtained with the Gauss-Legendre approach. | N | Trapez | Simpson | Gauss-Legendre |
| :---: | :---: | :---: | :---: |
| 10 | 0.7 | | |

$\begin{array}{lllll} & 0.798861 & 0.799231 & 0.799233 \\ 20 & 0.799140 & 0.799233 & 0.799233\end{array}$
$\begin{array}{llll}20 & 0.799140 & 0.799233 & 0.799233 \\ 40 & 0.799209 & 0.799233 & 0.799233\end{array}$

100	0.799229	0.799233	0.799233

Treatment of Singular Integrals

Treatment of Singular Integrals

So-called principal value (PV) integrals are often employed in physics, from Green's functions for scattering to dispersion relations. Dispersion relations are often related to measurable quantities and provide important consistency checks in atomic nuclear and particle physics. A PV integral is defined as

$$
I(x)=\mathcal{P} \int_{a}^{b} d t \frac{f(t)}{t-x}=\lim _{\epsilon \rightarrow 0^{+}}\left[\int_{a}^{x-\epsilon} d t \frac{f(t)}{t-x}+\int_{x+\epsilon}^{b} d t \frac{f(t)}{t-x}\right],
$$

and arises in applications of Cauchy's residue theorem when the pole x lies on the real axis within the interval of integration $[a, b]$. that the function $f(t)$ is continuous on the interval of integration.

In case $f(t)$ is a closed form expression or it has an analytic continuation in the complex plane, it may be possible to obtain an expression on closed form for the above integral.
However, the situation which we are often confronted with is that
$f(t)$ is only known at some points t_{i} with corresponding values
$f\left(t_{i}\right)$. In order to obtain $I(x)$ we need to resort to a numerica
evaluation
To evaluate such an integral, let us first rewrite it as
$\mathcal{P} \int_{a}^{b} d t \frac{f(t)}{t-x}=\int_{a}^{x-\Delta} d t \frac{f(t)}{t-x}+\int_{x+\Delta}^{b} d t \frac{f(t)}{t-x}+\mathcal{P} \int_{x-\Delta}^{x+\Delta} d t \frac{f(t)}{t-x}$
where we have isolated the principal value part in the last integral.

Treatment of Singular Integrals, change of variables

Defining a new variable $u=t-x$, we can rewrite the principa value integral as

$$
\begin{equation*}
I_{\Delta}(x)=\mathcal{P} \int_{-\Delta}^{+\Delta} d u \frac{f(u+x)}{u} . \tag{19}
\end{equation*}
$$

One possibility is to Taylor expand $f(u+x)$ around $u=0$, and compute derivatives to a certain order as we did for the Trapezoidal rule or Simpson's rule. Since all terms with even powers of u in the Taylor expansion dissapear, we have that

$$
I_{\Delta}(x) \approx \sum_{n=0}^{N_{\text {max }}} f^{(2 n+1)}(x) \frac{\Delta^{2 n+1}}{(2 n+1)(2 n+1)!}
$$

To evaluate higher-order derivatives may be both time consuming and delicate from a numerical point of view, since there is always the risk of loosing precision when calculating derivatives
numerically. Unless we have an analytic expression for $f(u+x)$ and can evaluate the derivatives in a closed form, the above approach is not the preferred one.
Rather, we show here how to use the Gauss-Legendre method to and rewrite Eq. (19) a

$$
I_{\Delta}(x)=\mathcal{P} \int_{-1}^{+1} d s \frac{f(\Delta s+x)}{s} .
$$

The integration limits are now from -1 to 1 , as for the Legendre polynomials. The principal value in Eq. (20) is however rather tricky to evaluate numerically, mainly since computers have limited precision. We will here use a subtraction trick often used when dealing with singular integrals in numerical calculations. We introduce first the calculus relation

$$
\int_{-1}^{+1} \frac{d s}{s}=0
$$

It means that the curve $1 /(s)$ has equal and opposite areas on both sides of the singular point $s=0$.

If we then note that $f(x)$ is just a constant, we have also

$$
f(x) \int_{-1}^{+1} \frac{d s}{s}=\int_{-1}^{+1} f(x) \frac{d s}{s}=0
$$

Subtracting this equation from Eq. (20) yields
$I_{\Delta}(x)=\mathcal{P} \int_{-1}^{+1} d s \frac{f(\Delta s+x)}{s}=\int_{-1}^{+1} d s \frac{f(\Delta s+x)-f(x)}{s}$, (21)
and the integrand is no longer singular since we have that
$\lim _{s \rightarrow 0}(f(s+x)-f(x))=0$ and for the particular case $s=0$ the integrand is now finite.

Treatment of Singular Integrals

Eq. (21) is now rewritten using the Gauss-Legendre method resulting in

$$
\int_{-1}^{+1} d s \frac{f(\Delta s+x)-f(x)}{s}=\sum_{i=1}^{N} \omega_{i} \frac{f\left(\Delta s_{i}+x\right)-f(x)}{s_{i}}
$$

where s_{i} are the mesh points (N in total) and ω_{i} are the weights. In the selection of mesh points for a PV integral, it is important to In the selection of mesh points for a PV integral, it is important to use an even number of points, since an odd number of mesh po. (22) will then diverge.

Treatment of Singular Integrals

Let us apply this method to the integral

$$
\begin{equation*}
I(x)=\mathcal{P} \int_{-1}^{+1} d t \frac{e^{t}}{t} \tag{23}
\end{equation*}
$$

The integrand diverges at $x=t=0$. We rewrite it using Eq. (21) as

$$
\begin{equation*}
\mathcal{P} \int_{-1}^{+1} d \frac{e^{t}}{t}=\int_{-1}^{+1} \frac{e^{t}-1}{t}, \tag{24}
\end{equation*}
$$

since $e^{x}=e^{0}=1$. With Eq. (22) we have then

$$
\begin{equation*}
\int_{-1}^{+1} \frac{e^{t}-1}{t} \approx \sum_{i=1}^{N} \omega_{i} \frac{e^{t_{i}}-1}{t_{i}} . \tag{25}
\end{equation*}
$$

Treatment of Singular Integrals

The exact results is 2.11450175075 With just two mesh points we recall from the previous subsection that $\omega_{1}=\omega_{2}=1$ and that the mesh points are the zeros of $L_{2}(x)$, namely $x_{1}=-1 / \sqrt{3}$ and $x_{2}=1 / \sqrt{3}$. Setting $N=2$ and inserting these values in the last equation gives

$$
I_{2}(x=0)=\sqrt{3}\left(e^{1 / \sqrt{3}}-e^{-1 / \sqrt{3}}\right)=2.1129772845 .
$$

With six mesh points we get even the exact result to the tenth digit

Treatment of Singular Integrals

We can repeat the above subtraction trick for more complicated integrands. First we modify the integration limits to $\pm \infty$ and us the fact that

$$
\int_{-\infty}^{\infty} \frac{d k}{k-k_{0}}=\int_{-\infty}^{0} \frac{d k}{k-k_{0}}+\int_{0}^{\infty} \frac{d k}{k-k_{0}}=0 .
$$

A change of variable $u=-k$ in the integral with limits from $-\infty$ to 0 gives
$\int_{-\infty}^{\infty} \frac{d k}{k-k_{0}}=\int_{\infty}^{0} \frac{-d u}{-u-k_{0}}+\int_{0}^{\infty} \frac{d k}{k-k_{0}}=\int_{0}^{\infty} \frac{d k}{-k-k_{0}}+\int_{0}^{\infty} \frac{d k}{k-k_{0}}$

It means that the curve $1 /\left(k-k_{0}\right)$ has equal and opposite areas on
It means that the curve $1 /\left(k-k_{0}\right.$) has equal and opposite areas on
both sides of the singular point k_{0}. If we break the integral into one over positive k and one over negative k, a change of variable
$k \rightarrow-k$ allows us to rewrite the last equation as

$$
\int_{0}^{\infty} \frac{d k}{k^{2}-k_{0}^{2}}=0 .
$$

Example of a multidimensional integral

Here we show an example of a multidimensional integral which appears in quantum mechanical calculations.
The ansatz for the wave function for two electrons is given by the product of two $1 s$ wave functions as

$$
\Psi\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right)=\exp -\left(\alpha\left(r_{1}+r_{2}\right)\right) .
$$

The integral we need to solve is the quantum mechanical expectation value of the correlation energy between two electrons,
namely namely

$$
I=\int_{-\infty}^{\infty} d \mathbf{r}_{1} d \mathbf{r}_{2} \exp -2\left(\alpha\left(r_{1}+r_{2}\right)\right) \frac{1}{\left|\mathbf{r}_{1}-\mathbf{r}_{2}\right|} .
$$

The integral has an exact solution $5 \pi^{2} / 16=0.19277$

We can use this to express a principal values integral as

$$
\mathcal{P} \int_{0}^{\infty} \frac{f(k) d k}{k^{2}-k_{0}^{2}}=\int_{0}^{\infty} \frac{\left(f(k)-f\left(k_{0}\right)\right) d k}{k^{2}-k_{0}^{2}},
$$

where the right-hand side is no longer singular at $k=k_{0}$, it is proportional to the derivative $d f / d k$, and can be evaluated numerically as any other integral.
Such a trick is often used when evaluating integral equations.

Parts of code and brute force Gauss-Legendre quadrature

If we use Gaussian quadrature with Legendre polynomials (without rewriting the integral), we have
double $* x=$ new double
double $* x=$ new double $[\mathbb{N}]$
double $w=$ new double $[N]$]
set up the mesh points and weights
GaussLegendrePoints (a, b, x, u, N);
// evaluate the integral with the Gauss-Legendre method
Novatuate the integrat with the
Nouble int int gaus inalize the sum
doun
double int_gauss
six-double loops
six-double loops
for (int $\mathrm{i}=0 ; \mathrm{i}<\mathrm{N} ; \mathrm{i}+$)

\qquad

The function to integrate, code example

Laguerre polynomials

Using Legendre polynomials for the Gaussian quadrature is not very efficient. There are several reasons for this

- You can easily end up in situations where the integrand
diverges
- The limits $\pm \infty$ have to be approximated with a finite number It is very useful here to change to spherical coordinates
$d \mathbf{r}_{1} d \mathbf{r}_{2}=r_{1}^{2} d r_{1} r_{2}^{2} d r_{2} d \cos \left(\theta_{1}\right) d \cos \left(\theta_{2}\right) d \phi_{1} d \phi_{2}$,
and

$$
\frac{1}{r_{12}}=\frac{1}{\sqrt{r_{1}^{2}+r_{2}^{2}-2 r_{1} r_{2} \cos (\beta)}}
$$

with
$\cos (\beta)=\cos \left(\theta_{1}\right) \cos \left(\theta_{2}\right)+\sin \left(\theta_{1}\right) \sin \left(\theta_{2}\right) \cos \left(\phi_{1}-\phi_{2}\right)$

This means that our integral becomes
$I=\int_{0}^{\infty} r_{1}^{2} d r_{1} \int_{0}^{\infty} r_{2}^{2} d r_{2} \int_{0}^{\pi} d \cos \left(\theta_{1}\right) \int_{0}^{\pi} d \cos \left(\theta_{2}\right) \int_{0}^{2 \pi} d \phi_{1} \int_{0}^{2 \pi} d \phi_{2} \exp$ where we have defined

$$
\frac{1}{r_{12}}=\frac{1}{\sqrt{r_{1}^{2}+r_{2}^{2}-2 r_{1} r_{2} \cos (\beta)}}
$$

with
$\left.\cos (\beta)=\cos \left(\theta_{1}\right) \cos \left(\theta_{2}\right)+\sin \left(\theta_{1}\right) \sin \left(\theta_{2}\right) \cos \left(\phi_{1}-\phi_{2}\right)\right)$

Our integral is now given by
$I=\int_{0}^{\infty} r_{1}^{2} d r_{1} \int_{0}^{\infty} r_{2}^{2} d r_{2} \int_{0}^{\pi} d \cos \left(\theta_{1}\right) \int_{0}^{\pi} d \cos \left(\theta_{2}\right) \int_{0}^{2 \pi} d \phi_{1} \int_{0}^{2 \pi} d \phi_{2} \underline{\exp }$ For the angles we need to perform the integrations over $\theta_{i} \in[0, \pi]$ and $\phi_{i} \in[0,2 \pi]$. However, for the radial part we can now either use

- Gauss-Legendre wth an appropriate mapping or
- Gauss-Laguerre taking properly care of the integrands involving the $r_{i}^{2} \exp -\left(2 \alpha r_{i}\right)$ terms

	$r_{\text {max }}$	Integral	Error
1.00	0.161419805	0.0313459063	

$\begin{array}{llll}1.50 & 0.180468967 & 0.0313459063\end{array}$
$\begin{array}{lll}1.50 & 0.180468967 & 0.012296744 \\ 2.00 & 0.177065182 & 0.0157005292\end{array}$

Results for $r_{\text {max }}=2$ with Gauss-Legendre

```
N Integral Emror
lllll
lll
    20
    lll}\begin{array}{lll}{26}&{0.183543237}&{0.00922247353}\\{30}&{0.185795624}&{0.00697008738}\\{\hline}
```

Results with Gauss-Laguerre

| N | Integral | Error |
| :--- | :--- | :--- | :--- |

| | Thtegral | Eror |
| :--- | :--- | :--- | :--- |
| 10 | 0.18647345 | 0.00630836601 |

 \(\begin{array}{llll}16 & 0.190113364 & 0.000265234708\end{array}\)
 \(\begin{array}{lll}10 & 0.190113364 & 0.00265234708 \\ 20 & 0.19108178 & 0.00168393093\end{array}\)
 \begin{tabular}{lll}
 26 \& 0.191831828 \& 0.000933882594

\hline
\end{tabular}

 The code that was used to generate these results can be found
 under the program link.