
Computational Physics Lectures:
Numerical integration, from

Newton-Cotes quadrature to Gaussian
quadrature

Morten Hjorth-Jensen1,2

1Department of Physics, University of Oslo
2Department of Physics and Astronomy and National Superconducting Cyclotron Laboratory, Michigan State University

Jan 8, 2018

Numerical Integration
Here we will discuss some of the classical methods for integrating a function.

The methods we discuss are

1. Equal step methods like the trapezoidal, rectangular and Simpson’s rule,
parts of what are called Newton-Cotes quadrature methods.

2. Integration approaches based on Gaussian quadrature.

The latter are more suitable for the case where the abscissas are not equally
spaced. We emphasize methods for evaluating few-dimensional (typically up
to four dimensions) integrals. Multi-dimensional integrals will be discussed in
connection with Monte Carlo methods.

Newton-Cotes Quadrature or equal-step methods
The integral

I =
∫ b

a

f(x)dx (1)

has a very simple meaning. The integral is the area enscribed by the function
f(x) starting from x = a to x = b. It is subdivided in several smaller areas
whose evaluation is to be approximated by different techniques. The areas under
the curve can for example be approximated by rectangular boxes or trapezoids.

c© 1999-2018, Morten Hjorth-Jensen. Released under CC Attribution-NonCommercial 4.0
license

Basic philosophy of equal-step methods
In considering equal step methods, our basic approach is that of approximating

a function f(x) with a polynomial of at most degree N − 1, given N integration
points. If our polynomial is of degree 1, the function will be approximated with
f(x) ≈ a0 + a1x.

Simple algorithm for equal step methods
The algorithm for these integration methods is rather simple, and the number

of approximations perhaps unlimited!

• Choose a step size h = (b− a)/N where N is the number of steps and a
and b the lower and upper limits of integration.

• With a given step length we rewrite the integral as∫ b

a

f(x)dx =
∫ a+h

a

f(x)dx+
∫ a+2h

a+h
f(x)dx+ . . .

∫ b

b−h
f(x)dx.

• The strategy then is to find a reliable polynomial approximation for f(x) in
the various intervals. Choosing a given approximation for f(x), we obtain
a specific approximation to the integral.

• With this approximation to f(x) we perform the integration by computing
the integrals over all subintervals.

Simple algorithm for equal step methods
One possible strategy then is to find a reliable polynomial expansion for f(x)

in the smaller subintervals. Consider for example evaluating∫ a+2h

a

f(x)dx,

which we rewrite as ∫ a+2h

a

f(x)dx =
∫ x0+h

x0−h
f(x)dx. (2)

We have chosen a midpoint x0 and have defined x0 = a+ h.

Lagrange’s interpolation formula
Using Lagrange’s interpolation formula

PN (x) =
N∑
i=0

∏
k 6=i

x− xk
xi − xk

yi,

2

we could attempt to approximate the function f(x) with a first-order polynomial
in x in the two sub-intervals x ∈ [x0 − h, x0] and x ∈ [x0, x0 + h]. A first order
polynomial means simply that we have for say the interval x ∈ [x0, x0 + h]

f(x) ≈ P1(x) = x− x0

(x0 + h)− x0
f(x0 + h) + x− (x0 + h)

x0 − (x0 + h)f(x0),

and for the interval x ∈ [x0 − h, x0]

f(x) ≈ P1(x) = x− (x0 − h)
x0 − (x0 − h)f(x0) + x− x0

(x0 − h)− x0
f(x0 − h).

Polynomial approximation
Having performed this subdivision and polynomial approximation, one from

x0 − h to x0 and the other from x0 to x0 + h,∫ a+2h

a

f(x)dx =
∫ x0

x0−h
f(x)dx+

∫ x0+h

x0

f(x)dx,

we can easily calculate for example the second integral as∫ x0+h

x0

f(x)dx ≈
∫ x0+h

x0

(
x− x0

(x0 + h)− x0
f(x0 + h) + x− (x0 + h)

x0 − (x0 + h)f(x0)
)
dx.

Simplifying the integral
This integral can be simplified to∫ x0+h

x0

f(x)dx ≈
∫ x0+h

x0

(
x− x0

h
f(x0 + h)− x− (x0 + h)

h
f(x0)

)
dx,

resulting in ∫ x0+h

x0

f(x)dx = h

2 (f(x0 + h) + f(x0)) +O(h3).

Here we added the error made in approximating our integral with a polynomial
of degree 1.

The trapezoidal rule
The other integral gives∫ x0

x0−h
f(x)dx = h

2 (f(x0) + f(x0 − h)) +O(h3),

and adding up we obtain∫ x0+h

x0−h
f(x)dx = h

2 (f(x0 + h) + 2f(x0) + f(x0 − h)) +O(h3), (3)

3

which is the well-known trapezoidal rule. Concerning the error in the approxi-
mation made, O(h3) = O((b− a)3/N3), you should note that this is the local
error. Since we are splitting the integral from a to b in N pieces, we will have to
perform approximately N such operations.

Global error
This means that the global error goes like ≈ O(h2). The trapezoidal reads

then

I =
∫ b

a

f(x)dx = h (f(a)/2 + f(a+ h) + f(a+ 2h) + · · ·+ f(b− h) + fb/2) ,

(4)
with a global error which goes like O(h2).

Hereafter we use the shorthand notations f−h = f(x0 − h), f0 = f(x0) and
fh = f(x0 + h).

Error in the trapezoidal rule
The correct mathematical expression for the local error for the trapezoidal

rule is ∫ b

a

f(x)dx− b− a
2 [f(a) + f(b)] = −h

3

12f
(2)(ξ),

and the global error reads∫ b

a

f(x)dx− Th(f) = −b− a12 h2f (2)(ξ),

where Th is the trapezoidal result and ξ ∈ [a, b].

Algorithm for the trapezoidal rule
The trapezoidal rule is easy to implement numerically through the following

simple algorithm

• Choose the number of mesh points and fix the step length.

• calculate f(a) and f(b) and multiply with h/2.

• Perform a loop over n = 1 to n− 1 (f(a) and f(b) are known) and sum up
the terms f(a+ h) + f(a+ 2h) + f(a+ 3h) + · · ·+ f(b− h). Each step in
the loop corresponds to a given value a+ nh.

• Multiply the final result by h and add hf(a)/2 and hf(b)/2.

4

Code example
A simple function which implements this algorithm is as follows

double TrapezoidalRule(double a, double b, int n, double (*func)(double))
{

double TrapezSum;
double fa, fb, x, step;
int j;
step=(b-a)/((double) n);
fa=(*func)(a)/2. ;
fb=(*func)(b)/2. ;
TrapezSum=0.;
for (j=1; j <= n-1; j++){

x=j*step+a;
TrapezSum+=(*func)(x);

}
TrapezSum=(TrapezSum+fb+fa)*step;
return TrapezSum;

} // end TrapezoidalRule

The function returns a new value for the specific integral through the variable
TrapezSum.

Transfer of function names
There is one new feature to note here, namely the transfer of a user defined

function called func in the definition
void TrapezoidalRule(double a, double b, int n, double *TrapezSum, double (*func)(double))

What happens here is that we are transferring a pointer to the name of a
user defined function, which has as input a double precision variable and returns
a double precision number. The function TrapezoidalRule is called as

TrapezoidalRule(a, b, n, &MyFunction)

in the calling function. We note that a, b and n are called by value, while
TrapezSum and the user defined function MyFunction are called by reference.

Going back to Python, why?
Symbolic calculations and numerical calculations in one code! Python
offers an extremely versatile programming environment, allowing for the inclusion
of analytical studies in a numerical program. Here we show an example code
with the trapezoidal rule using SymPy to evaluate an integral and compute
the absolute error with respect to the numerically evaluated one of the integral
4
∫ 1

0 dx/(1 + x2) = π:
from math import *
from sympy import *
def Trapez(a,b,f,n):

h = (b-a)/float(n)
s = 0
x = a

5

for i in range(1,n,1):
x = x+h
s = s+ f(x)

s = 0.5*(f(a)+f(b)) +s
return h*s

function to compute pi
def function(x):

return 4.0/(1+x*x)

a = 0.0; b = 1.0; n = 100
result = Trapez(a,b,function,n)
print "Trapezoidal rule=", result
define x as a symbol to be used by sympy
x = Symbol(’x’)
exact = integrate(function(x), (x, 0.0, 1.0))
print "Sympy integration=", exact
Find relative error
print "Relative error", abs((exact-result)/exact)

Error analysis
The following extended version of the trapezoidal rule allows you to plot the

relative error by comparing with the exact result. By increasing to 108 points
one arrives at a region where numerical errors start to accumulate.

from math import log10
import numpy as np
from sympy import Symbol, integrate
import matplotlib.pyplot as plt
function for the trapezoidal rule
def Trapez(a,b,f,n):

h = (b-a)/float(n)
s = 0
x = a
for i in range(1,n,1):

x = x+h
s = s+ f(x)

s = 0.5*(f(a)+f(b)) +s
return h*s

function to compute pi
def function(x):

return 4.0/(1+x*x)
define integration limits
a = 0.0; b = 1.0;
find result from sympy
define x as a symbol to be used by sympy
x = Symbol(’x’)
exact = integrate(function(x), (x, a, b))
set up the arrays for plotting the relative error
n = np.zeros(9); y = np.zeros(9);
find the relative error as function of integration points
for i in range(1, 8, 1):

npts = 10**i
result = Trapez(a,b,function,npts)
RelativeError = abs((exact-result)/exact)
n[i] = log10(npts); y[i] = log10(RelativeError);

plt.plot(n,y, ’ro’)
plt.xlabel(’n’)

6

plt.ylabel(’Relative error’)
plt.show()

Integrating numerical mathematics with calculus
The last example shows the potential of combining numerical algorithms with

symbolic calculations, allowing us thereby to

• Validate and verify our algorithms.

• Including concepts like unit testing, one has the possibility to test and
validate several or all parts of the code.

• Validation and verification are then included naturally.

• The above example allows you to test the mathematical error of the
algorithm for the trapezoidal rule by changing the number of integration
points. You get trained from day one to think error analysis.

The rectangle method
Another very simple approach is the so-called midpoint or rectangle method.

In this case the integration area is split in a given number of rectangles with
length h and height given by the mid-point value of the function. This gives the
following simple rule for approximating an integral

I =
∫ b

a

f(x)dx ≈ h
N∑
i=1

f(xi−1/2), (5)

where f(xi−1/2) is the midpoint value of f for a given rectangle. We will discuss
its truncation error below. It is easy to implement this algorithm, as shown here

double RectangleRule(double a, double b, int n, double (*func)(double))
{

double RectangleSum;
double fa, fb, x, step;
int j;
step=(b-a)/((double) n);
RectangleSum=0.;
for (j = 0; j <= n; j++){

x = (j+0.5)*step+; // midpoint of a given rectangle
RectangleSum+=(*func)(x); // add value of function.

}
RectangleSum *= step; // multiply with step length.
return RectangleSum;

} // end RectangleRule

7

Truncation error for the rectangular rule
The correct mathematical expression for the local error for the rectangular

rule Ri(h) for element i is∫ h

−h
f(x)dx−Ri(h) = −h

3

24f
(2)(ξ),

and the global error reads∫ b

a

f(x)dx−Rh(f) = −b− a24 h2f (2)(ξ),

where Rh is the result obtained with rectangular rule and ξ ∈ [a, b].

Second-order polynomial
Instead of using the above first-order polynomials approximations for f , we

attempt at using a second-order polynomials. In this case we need three points
in order to define a second-order polynomial approximation

f(x) ≈ P2(x) = a0 + a1x+ a2x
2.

Using again Lagrange’s interpolation formula we have

P2(x) = (x− x0)(x− x1)
(x2 − x0)(x2 − x1)y2 + (x− x0)(x− x2)

(x1 − x0)(x1 − x2)y1 + (x− x1)(x− x2)
(x0 − x1)(x0 − x2)y0.

Inserting this formula in the integral of Eq. (2) we obtain∫ +h

−h
f(x)dx = h

3 (fh + 4f0 + f−h) +O(h5),

which is Simpson’s rule.

Simpson’s rule
Note that the improved accuracy in the evaluation of the derivatives gives a

better error approximation, O(h5) vs. O(h3) . But this is again the local error
approximation. Using Simpson’s rule we can easily compute the integral of Eq.
(1) to be

I =
∫ b

a

f(x)dx = h

3 (f(a) + 4f(a+ h) + 2f(a+ 2h) + · · ·+ 4f(b− h) + fb) ,

(6)
with a global error which goes like O(h4).

8

Mathematical expressions for the truncation error
More formal expressions for the local and global errors are for the local error∫ b

a

f(x)dx− b− a
6 [f(a) + 4f((a+ b)/2) + f(b)] = −h

5

90f
(4)(ξ),

and for the global error∫ b

a

f(x)dx− Sh(f) = −b− a180 h4f (4)(ξ).

with ξ ∈ [a, b] and Sh the results obtained with Simpson’s method.

Algorithm for Simpson’s rule
The method can easily be implemented numerically through the following

simple algorithm

• Choose the number of mesh points and fix the step.

• calculate f(a) and f(b)

• Perform a loop over n = 1 to n− 1 (f(a) and f(b) are known) and sum
up the terms 4f(a+ h) + 2f(a+ 2h) + 4f(a+ 3h) + · · ·+ 4f(b− h). Each
step in the loop corresponds to a given value a+ nh. Odd values of n give
4 as factor while even values yield 2 as factor.

• Multiply the final result by h
3 .

Summary for equal-step methods
In more general terms, what we have done here is to approximate a given

function f(x) with a polynomial of a certain degree. One can show that given
n+ 1 distinct points x0, . . . , xn ∈ [a, b] and n+ 1 values y0, . . . , yn there exists a
unique polynomial Pn(x) with the property

Pn(xj) = yj j = 0, . . . , n

Lagrange’s polynomial
In the Lagrange representation the interpolating polynomial is given by

Pn =
n∑
k=0

lkyk,

with the Lagrange factors

lk(x) =
n∏

i = 0
i 6= k

x− xi
xk − xi

k = 0, . . . , n.

9

Polynomial approximation
If we for example set n = 1, we obtain

P1(x) = y0
x− x1

x0 − x1
+ y1

x− x0

x1 − x0
= y1 − y0

x1 − x0
x− y1x0 + y0x1

x1 − x0
,

which we recognize as the equation for a straight line.
The polynomial interpolatory quadrature of order n with equidistant quadra-

ture points xk = a + kh and step h = (b − a)/n is called the Newton-Cotes
quadrature formula of order n.

Gaussian Quadrature
The methods we have presented hitherto are tailored to problems where the

mesh points xi are equidistantly spaced, xi differing from xi+1 by the step h.
The basic idea behind all integration methods is to approximate the integral

I =
∫ b

a

f(x)dx ≈
N∑
i=1

ωif(xi),

where ω and x are the weights and the chosen mesh points, respectively. In our
previous discussion, these mesh points were fixed at the beginning, by choosing
a given number of points N . The weigths ω resulted then from the integration
method we applied. Simpson’s rule, see Eq. (6) would give

ω : {h/3, 4h/3, 2h/3, 4h/3, . . . , 4h/3, h/3} ,

for the weights, while the trapezoidal rule resulted in

ω : {h/2, h, h, . . . , h, h/2} .

Gaussian Quadrature, main idea
In general, an integration formula which is based on a Taylor series using N

points, will integrate exactly a polynomial P of degree N − 1. That is, the N
weights ωn can be chosen to satisfy N linear equations, see chapter 3 of Ref. [3].
A greater precision for a given amount of numerical work can be achieved if we
are willing to give up the requirement of equally spaced integration points. In
Gaussian quadrature (hereafter GQ), both the mesh points and the weights are
to be determined. The points will not be equally spaced.

The theory behind GQ is to obtain an arbitrary weight ω through the use
of so-called orthogonal polynomials. These polynomials are orthogonal in some
interval say e.g., [-1,1]. Our points xi are chosen in some optimal sense subject
only to the constraint that they should lie in this interval. Together with the
weights we have then 2N (N the number of points) parameters at our disposal.

10

Gaussian Quadrature
Even though the integrand is not smooth, we could render it smooth by

extracting from it the weight function of an orthogonal polynomial, i.e., we are
rewriting

I =
∫ b

a

f(x)dx =
∫ b

a

W (x)g(x)dx ≈
N∑
i=1

ωig(xi), (7)

where g is smooth and W is the weight function, which is to be associated with
a given orthogonal polynomial. Note that with a given weight function we end
up evaluating the integrand for the function g(xi).

Gaussian Quadrature, weight function
The weight function W is non-negative in the integration interval x ∈ [a, b]

such that for any n ≥ 0, the integral
∫ b
a
|x|nW (x)dx is integrable. The naming

weight function arises from the fact that it may be used to give more emphasis
to one part of the interval than another. A quadrature formula∫ b

a

W (x)f(x)dx ≈
N∑
i=1

ωif(xi), (8)

with N distinct quadrature points (mesh points) is a called a Gaussian quadrature
formula if it integrates all polynomials p ∈ P2N−1 exactly, that is∫ b

a

W (x)p(x)dx =
N∑
i=1

ωip(xi), (9)

It is assumed that W (x) is continuous and positive and that the integral∫ b

a

W (x)dx

exists. Note that the replacement of f →Wg is normally a better approximation
due to the fact that we may isolate possible singularities of W and its derivatives
at the endpoints of the interval.

Gaussian Quadrature weights and integration points
The quadrature weights or just weights (not to be confused with the weight

function) are positive and the sequence of Gaussian quadrature formulae is
convergent if the sequence QN of quadrature formulae

QN (f)→ Q(f) =
∫ b

a

f(x)dx,

in the limit N →∞.

11

Gaussian Quadrature
Then we say that the sequence

QN (f) =
N∑
i=1

ω
(N)
i f(x(N)

i),

is convergent for all polynomials p, that is

QN (p) = Q(p)

if there exits a constant C such that
N∑
i=1
|ω(N)
i | ≤ C,

for all N which are natural numbers.

Error in Gaussian Quadrature
The error for the Gaussian quadrature formulae of order N is given by∫ b

a

W (x)f(x)dx−
N∑
k=1

wkf(xk) = f2N (ξ)
(2N)!

∫ b

a

W (x)[qN (x)]2dx

where qN is the chosen orthogonal polynomial and ξ is a number in the interval
[a, b]. We have assumed that f ∈ C2N [a, b], viz. the space of all real or complex
2N times continuously differentiable functions.

Important polynomials in Gaussian Quadrature
In science there are several important orthogonal polynomials which arise from

the solution of differential equations. Well-known examples are the Legendre,
Hermite, Laguerre and Chebyshev polynomials. They have the following weight
functions

Weight function Interval Polynomial
W (x) = 1 x ∈ [−1, 1] Legendre

W (x) = e−x
2 −∞ ≤ x ≤ ∞ Hermite

W (x) = xαe−x 0 ≤ x ≤ ∞ Laguerre
W (x) = 1/(

√
1− x2) −1 ≤ x ≤ 1 Chebyshev

The importance of the use of orthogonal polynomials in the evaluation of
integrals can be summarized as follows.

12

Gaussian Quadrature, win-win situation
Methods based on Taylor series using N points will integrate exactly a poly-

nomial P of degree N − 1. If a function f(x) can be approximated with a
polynomial of degree N − 1

f(x) ≈ PN−1(x),

with N mesh points we should be able to integrate exactly the polynomial PN−1.
Gaussian quadrature methods promise more than this. We can get a better

polynomial approximation with order greater than N to f(x) and still get away
with only N mesh points. More precisely, we approximate

f(x) ≈ P2N−1(x),

and with only N mesh points these methods promise that∫
f(x)dx ≈

∫
P2N−1(x)dx =

N−1∑
i=0

P2N−1(xi)ωi,

Gaussian Quadrature, determining mesh points and weights
The reason why we can represent a function f(x) with a polynomial of degree

2N − 1 is due to the fact that we have 2N equations, N for the mesh points and
N for the weights.

The mesh points are the zeros of the chosen orthogonal polynomial of order
N , and the weights are determined from the inverse of a matrix. An orthogonal
polynomials of degree N defined in an interval [a, b] has precisely N distinct
zeros on the open interval (a, b).

Before we detail how to obtain mesh points and weights with orthogonal
polynomials, let us revisit some features of orthogonal polynomials by specializing
to Legendre polynomials. In the text below, we reserve hereafter the labelling
LN for a Legendre polynomial of order N , while PN is an arbitrary polynomial
of order N . These polynomials form then the basis for the Gauss-Legendre
method.

Orthogonal polynomials, Legendre
The Legendre polynomials are the solutions of an important differential equation
in Science, namely

C(1− x2)P −m2
l P + (1− x2) d

dx

(
(1− x2)dP

dx

)
= 0.

Here C is a constant. For ml = 0 we obtain the Legendre polynomials as
solutions, whereas ml 6= 0 yields the so-called associated Legendre polynomials.
This differential equation arises in for example the solution of the angular
dependence of Schroedinger’s equation with spherically symmetric potentials
such as the Coulomb potential.

13

Orthogonal polynomials, Legendre
The corresponding polynomials P are

Lk(x) = 1
2kk!

dk

dxk
(x2 − 1)k k = 0, 1, 2, . . . ,

which, up to a factor, are the Legendre polynomials Lk. The latter fulfil the
orthogonality relation ∫ 1

−1
Li(x)Lj(x)dx = 2

2i+ 1δij , (10)

and the recursion relation

(j + 1)Lj+1(x) + jLj−1(x)− (2j + 1)xLj(x) = 0. (11)

Orthogonal polynomials, Legendre
It is common to choose the normalization condition

LN (1) = 1.

With these equations we can determine a Legendre polynomial of arbitrary order
with input polynomials of order N − 1 and N − 2.

As an example, consider the determination of L0, L1 and L2. We have that

L0(x) = c,

with c a constant. Using the normalization equation L0(1) = 1 we get that

L0(x) = 1.

Orthogonal polynomials, Legendre
For L1(x) we have the general expression

L1(x) = a+ bx,

and using the orthogonality relation∫ 1

−1
L0(x)L1(x)dx = 0,

we obtain a = 0 and with the condition L1(1) = 1, we obtain b = 1, yielding

L1(x) = x.

14

Orthogonal polynomials, Legendre
We can proceed in a similar fashion in order to determine the coefficients of L2

L2(x) = a+ bx+ cx2,

using the orthogonality relations∫ 1

−1
L0(x)L2(x)dx = 0,

and ∫ 1

−1
L1(x)L2(x)dx = 0,

and the condition L2(1) = 1 we would get

L2(x) = 1
2
(
3x2 − 1

)
. (12)

Orthogonal polynomials, Legendre
We note that we have three equations to determine the three coefficients a, b
and c.

Alternatively, we could have employed the recursion relation of Eq. (11),
resulting in

2L2(x) = 3xL1(x)− L0,

which leads to Eq. (12).

Orthogonal polynomials, Legendre
The orthogonality relation above is important in our discussion on how to obtain
the weights and mesh points. Suppose we have an arbitrary polynomial QN−1 of
order N − 1 and a Legendre polynomial LN (x) of order N . We could represent
QN−1 by the Legendre polynomials through

QN−1(x) =
N−1∑
k=0

αkLk(x), (13)

where αk’s are constants.
Using the orthogonality relation of Eq. (10) we see that∫ 1

−1
LN (x)QN−1(x)dx =

N−1∑
k=0

∫ 1

−1
LN (x)αkLk(x)dx = 0. (14)

We will use this result in our construction of mesh points and weights in the
next subsection.

15

Orthogonal polynomials, Legendre
In summary, the first few Legendre polynomials are

L0(x) = 1,

L1(x) = x,

L2(x) = (3x2 − 1)/2,
L3(x) = (5x3 − 3x)/2,

and
L4(x) = (35x4 − 30x2 + 3)/8.

Orthogonal polynomials, simple code for Legendre polyno-
mials
The following simple function implements the above recursion relation of Eq.
(11). for computing Legendre polynomials of order N .

// This function computes the Legendre polynomial of degree N

double Legendre(int n, double x)
{

double r, s, t;
int m;
r = 0; s = 1.;
// Use recursion relation to generate p1 and p2
for (m=0; m < n; m++)
{

t = r; r = s;
s = (2*m+1)*x*r - m*t;
s /= (m+1);

} // end of do loop
return s;

} // end of function Legendre

The variable s represents Lj+1(x), while r holds Lj(x) and t the value Lj−1(x).

Integration points and weights with orthogonal polynomials
To understand how the weights and the mesh points are generated, we define
first a polynomial of degree 2N − 1 (since we have 2N variables at hand, the
mesh points and weights for N points). This polynomial can be represented
through polynomial division by

P2N−1(x) = LN (x)PN−1(x) +QN−1(x),
where PN−1(x) and QN−1(x) are some polynomials of degree N − 1 or less. The
function LN (x) is a Legendre polynomial of order N .

Recall that we wanted to approximate an arbitrary function f(x) with a
polynomial P2N−1 in order to evaluate∫ 1

−1
f(x)dx ≈

∫ 1

−1
P2N−1(x)dx.

16

Integration points and weights with orthogonal polynomials
We can use Eq. (14) to rewrite the above integral as∫ 1

−1
P2N−1(x)dx =

∫ 1

−1
(LN (x)PN−1(x) +QN−1(x))dx =

∫ 1

−1
QN−1(x)dx,

due to the orthogonality properties of the Legendre polynomials. We see that
it suffices to evaluate the integral over

∫ 1
−1QN−1(x)dx in order to evaluate∫ 1

−1 P2N−1(x)dx. In addition, at the points xk where LN is zero, we have

P2N−1(xk) = QN−1(xk) k = 0, 1, . . . , N − 1,

and we see that through these N points we can fully define QN−1(x) and thereby
the integral. Note that we have chosen to let the numbering of the points run
from 0 to N − 1. The reason for this choice is that we wish to have the same
numbering as the order of a polynomial of degree N − 1. This numbering will be
useful below when we introduce the matrix elements which define the integration
weights wi.

Integration points and weights with orthogonal polynomials
We develope then QN−1(x) in terms of Legendre polynomials, as done in Eq.
(13),

QN−1(x) =
N−1∑
i=0

αiLi(x). (15)

Using the orthogonality property of the Legendre polynomials we have∫ 1

−1
QN−1(x)dx =

N−1∑
i=0

αi

∫ 1

−1
L0(x)Li(x)dx = 2α0,

where we have just inserted L0(x) = 1!

Integration points and weights with orthogonal polynomials
Instead of an integration problem we need now to define the coefficient α0. Since
we know the values of QN−1 at the zeros of LN , we may rewrite Eq. (15) as

QN−1(xk) =
N−1∑
i=0

αiLi(xk) =
N−1∑
i=0

αiLik k = 0, 1, . . . , N − 1. (16)

Since the Legendre polynomials are linearly independent of each other, none of
the columns in the matrix Lik are linear combinations of the others.

17

Integration points and weights with orthogonal polynomials
This means that the matrix Lik has an inverse with the properties

L̂−1L̂ = Î .

Multiplying both sides of Eq. (16) with
∑N−1
j=0 L−1

ji results in

N−1∑
i=0

(L−1)kiQN−1(xi) = αk. (17)

Integration points and weights with orthogonal polynomials
We can derive this result in an alternative way by defining the vectors

x̂k =


x0
x1
.
.

xN−1

 α̂ =


α0
α1
.
.

αN−1

 ,

and the matrix

L̂ =


L0(x0) L1(x0) . . . LN−1(x0)
L0(x1) L1(x1) . . . LN−1(x1)
.

L0(xN−1) L1(xN−1) . . . LN−1(xN−1)

 .

Integration points and weights with orthogonal polynomials
We have then

QN−1(x̂k) = L̂α̂,

yielding (if L̂ has an inverse)

L̂−1QN−1(x̂k) = α̂,

which is Eq. (17).

Integration points and weights with orthogonal polynomials
Using the above results and the fact that∫ 1

−1
P2N−1(x)dx =

∫ 1

−1
QN−1(x)dx,

we get∫ 1

−1
P2N−1(x)dx =

∫ 1

−1
QN−1(x)dx = 2α0 = 2

N−1∑
i=0

(L−1)0iP2N−1(xi).

18

Integration points and weights with orthogonal polynomials
If we identify the weights with 2(L−1)0i, where the points xi are the zeros of
LN , we have an integration formula of the type∫ 1

−1
P2N−1(x)dx =

N−1∑
i=0

ωiP2N−1(xi)

and if our function f(x) can be approximated by a polynomial P of degree
2N − 1, we have finally that∫ 1

−1
f(x)dx ≈

∫ 1

−1
P2N−1(x)dx =

N−1∑
i=0

ωiP2N−1(xi).

In summary, the mesh points xi are defined by the zeros of an orthogonal
polynomial of degree N , that is LN , while the weights are given by 2(L−1)0i.

Application to the case N = 2
Let us apply the above formal results to the case N = 2. This means that we
can approximate a function f(x) with a polynomial P3(x) of order 2N − 1 = 3.

The mesh points are the zeros of L2(x) = 1/2(3x2 − 1). These points are
x0 = −1/

√
3 and x1 = 1/

√
3.

Specializing Eq. (16)

QN−1(xk) =
N−1∑
i=0

αiLi(xk) k = 0, 1, . . . , N − 1.

to N = 2 yields

Q1(x0) = α0 − α1
1√
3
,

and

Q1(x1) = α0 + α1
1√
3
,

since L0(x = ±1/
√

3) = 1 and L1(x = ±1/
√

3) = ±1/
√

3.

Application to the case N = 2
The matrix Lik defined in Eq. (16) is then

L̂ =
(

1 − 1√
3

1 1√
3

)
,

with an inverse given by

19

L̂−1 =
√

3
2

(1√
3

1√
3

−1 1

)
.

The weights are given by the matrix elements 2(L0k)−1. We have thence ω0 = 1
and ω1 = 1.

Application to the case N = 2
Obviously, there is no problem in changing the numbering of the matrix elements
i, k = 0, 1, 2, . . . , N − 1 to i, k = 1, 2, . . . , N . We have chosen to start from zero,
since we deal with polynomials of degree N − 1.

Summarizing, for Legendre polynomials with N = 2 we have weights

ω : {1, 1} ,

and mesh points

x :
{
− 1√

3
,

1√
3

}
.

Application to the case N = 2
If we wish to integrate ∫ 1

−1
f(x)dx,

with f(x) = x2, we approximate

I =
∫ 1

−1
x2dx ≈

N−1∑
i=0

ωix
2
i .

Application to the case N = 2
The exact answer is 2/3. Using N = 2 with the above two weights and mesh
points we get

I =
∫ 1

−1
x2dx =

1∑
i=0

ωix
2
i = 1

3 + 1
3 = 2

3 ,

the exact answer!
If we were to emply the trapezoidal rule we would get

I =
∫ 1

−1
x2dx = b− a

2
(
(a)2 + (b)2) /2 = 1− (−1)

2
(
(−1)2 + (1)2) /2 = 1!

With just two points we can calculate exactly the integral for a second-order
polynomial since our methods approximates the exact function with higher order
polynomial. How many points do you need with the trapezoidal rule in order to
achieve a similar accuracy?

20

General integration intervals for Gauss-Legendre
Note that the Gauss-Legendre method is not limited to an interval [-1,1], since
we can always through a change of variable

t = b− a
2 x+ b+ a

2 ,

rewrite the integral for an interval [a,b]∫ b

a

f(t)dt = b− a
2

∫ 1

−1
f

(
(b− a)x

2 + b+ a

2

)
dx.

Mapping integration points and weights
If we have an integral on the form∫ ∞

0
f(t)dt,

we can choose new mesh points and weights by using the mapping

x̃i = tan
{π

4 (1 + xi)
}
,

and

ω̃i = π

4
ωi

cos2
(
π
4 (1 + xi)

) ,
where xi and ωi are the original mesh points and weights in the interval [−1, 1],
while x̃i and ω̃i are the new mesh points and weights for the interval [0,∞).

Mapping integration points and weights
To see that this is correct by inserting the the value of xi = −1 (the lower end
of the interval [−1, 1]) into the expression for x̃i. That gives x̃i = 0, the lower
end of the interval [0,∞). For xi = 1, we obtain x̃i =∞. To check that the new
weights are correct, recall that the weights should correspond to the derivative
of the mesh points. Try to convince yourself that the above expression fulfills
this condition.

Other orthogonal polynomials, Laguerre polynomials
If we are able to rewrite our integral of Eq. (7) with a weight function W (x) =
xαe−x with integration limits [0,∞), we could then use the Laguerre polynomials.
The polynomials form then the basis for the Gauss-Laguerre method which can
be applied to integrals of the form

I =
∫ ∞

0
f(x)dx =

∫ ∞
0

xαe−xg(x)dx.

21

Other orthogonal polynomials, Laguerre polynomials
These polynomials arise from the solution of the differential equation(

d2

dx2 −
d

dx
+ λ

x
− l(l + 1)

x2

)
L(x) = 0,

where l is an integer l ≥ 0 and λ a constant. This equation arises for example
from the solution of the radial Schrödinger equation with a centrally symmetric
potential such as the Coulomb potential.

Other orthogonal polynomials, Laguerre polynomials
The first few polynomials are

L0(x) = 1,

L1(x) = 1− x,

L2(x) = 2− 4x+ x2,

L3(x) = 6− 18x+ 9x2 − x3,

and
L4(x) = x4 − 16x3 + 72x2 − 96x+ 24.

Other orthogonal polynomials, Laguerre polynomials
They fulfil the orthogonality relation∫ ∞

0
e−xLn(x)2dx = 1,

and the recursion relation

(n+ 1)Ln+1(x) = (2n+ 1− x)Ln(x)− nLn−1(x).

Other orthogonal polynomials, Hermite polynomials
In a similar way, for an integral which goes like

I =
∫ ∞
−∞

f(x)dx =
∫ ∞
−∞

e−x
2
g(x)dx.

we could use the Hermite polynomials in order to extract weights and mesh
points. The Hermite polynomials are the solutions of the following differential
equation

d2H(x)
dx2 − 2xdH(x)

dx
+ (λ− 1)H(x) = 0. (18)

22

Other orthogonal polynomials, Hermite polynomials
A typical example is again the solution of Schrodinger’s equation, but this time
with a harmonic oscillator potential. The first few polynomials are

H0(x) = 1,

H1(x) = 2x,

H2(x) = 4x2 − 2,

H3(x) = 8x3 − 12,

and
H4(x) = 16x4 − 48x2 + 12.

They fulfil the orthogonality relation∫ ∞
−∞

e−x
2
Hn(x)2dx = 2nn!

√
π,

and the recursion relation

Hn+1(x) = 2xHn(x)− 2nHn−1(x).

Demonstration of Gaussian Quadrature
Let us here compare three methods for integrating, namely the trapezoidal rule,
Simpson’s method and the Gauss-Legendre approach. We choose two functions
to integrate: ∫ 100

1

exp (−x)
x

dx,

and ∫ 3

0

1
2 + x2 dx.

Demonstration of Gaussian Quadrature, simple program
A program example which uses the trapezoidal rule, Simpson’s rule and the
Gauss-Legendre method is included here.

#include <iostream>
#include "lib.h"
using namespace std;
// Here we define various functions called by the main program
// this function defines the function to integrate
double int_function(double x);
// Main function begins here
int main()
{

int n;
double a, b;

23

cout << "Read in the number of integration points" << endl;
cin >> n;
cout << "Read in integration limits" << endl;
cin >> a >> b;

// reserve space in memory for vectors containing the mesh points
// weights and function values for the use of the gauss-legendre
// method

double *x = new double [n];
double *w = new double [n];

// set up the mesh points and weights
gauss_legendre(a, b,x,w, n);

// evaluate the integral with the Gauss-Legendre method
// Note that we initialize the sum

double int_gauss = 0.;
for (int i = 0; i < n; i++){

int_gauss+=w[i]*int_function(x[i]);
}

// final output
cout << "Trapez-rule = " << trapezoidal_rule(a, b,n, int_function)

<< endl;
cout << "Simpson’s rule = " << simpson(a, b,n, int_function)

<< endl;
cout << "Gaussian quad = " << int_gauss << endl;
delete [] x;
delete [] w;
return 0;

} // end of main program
// this function defines the function to integrate
double int_function(double x)
{

double value = 4./(1.+x*x);
return value;

} // end of function to evaluate

Demonstration of Gaussian Quadrature
To be noted in this program is that we can transfer the name of a given function
to integrate. In the table here we show the results for the first integral using
various mesh points,.

N Trapez Simpson Gauss-Legendre
10 1.821020 1.214025 0.1460448
20 0.912678 0.609897 0.2178091
40 0.478456 0.333714 0.2193834
100 0.273724 0.231290 0.2193839
1000 0.219984 0.219387 0.2193839

We note here that, since the area over where we integrate is rather large and
the integrand goes slowly to zero for large values of x, both the trapezoidal
rule and Simpson’s method need quite many points in order to approach the
Gauss-Legendre method. This integrand demonstrates clearly the strength of
the Gauss-Legendre method (and other GQ methods as well), viz., few points
are needed in order to achieve a very high precision.

24

Demonstration of Gaussian Quadrature
The second table however shows that for smaller integration intervals, both the
trapezoidal rule and Simpson’s method compare well with the results obtained
with the Gauss-Legendre approach.

N Trapez Simpson Gauss-Legendre
10 0.798861 0.799231 0.799233
20 0.799140 0.799233 0.799233
40 0.799209 0.799233 0.799233
100 0.799229 0.799233 0.799233
1000 0.799233 0.799233 0.799233

Comparing methods and using symbolic Python
The following python code allows you to run interactively either in a browser

or using ipython notebook. It compares the trapezoidal rule and Gaussian
quadrature with the exact result from symbolic python SYMPY up to 1000
integration points for the integral

I = 2 =
∫ ∞

0
x2 exp−xdx.

For the trapezoidal rule the results will vary strongly depending on how the
infinity limit is approximated. Try to run the code below for different finite
approximations to ∞.

from math import exp
import numpy as np
from sympy import Symbol, integrate, exp, oo

function for the trapezoidal rule
def TrapezoidalRule(a,b,f,n):

h = (b-a)/float(n)
s = 0
x = a
for i in range(1,n,1):

x = x+h
s = s+ f(x)

s = 0.5*(f(a)+f(b)) +s
return h*s

function for the Gaussian quadrature with Laguerre polynomials
def GaussLaguerreRule(n):

s = 0
xgauleg, wgauleg = np.polynomial.laguerre.laggauss(n)
for i in range(1,n,1):

s = s+ xgauleg[i]*xgauleg[i]*wgauleg[i]
return s

function to compute
def function(x):

return x*x*exp(-x)

25

Integration limits for the Trapezoidal rule
a = 0.0; b = 10000.0
define x as a symbol to be used by sympy
x = Symbol(’x’)
find result from sympy
exact = integrate(function(x), (x, a, oo))
set up the arrays for plotting the relative error
n = np.zeros(40); Trapez = np.zeros(4); LagGauss = np.zeros(4);
find the relative error as function of integration points
for i in range(1, 3, 1):

npts = 10**i
n[i] = npts
Trapez[i] = abs((TrapezoidalRule(a,b,function,npts)-exact)/exact)
LagGauss[i] = abs((GaussLaguerreRule(npts)-exact)/exact)

print "Integration points=", n[1], n[2]
print "Trapezoidal relative error=", Trapez[1], Trapez[2]
print "LagGuass relative error=", LagGauss[1], LagGauss[2]

Treatment of Singular Integrals
So-called principal value (PV) integrals are often employed in physics, from

Green’s functions for scattering to dispersion relations. Dispersion relations are
often related to measurable quantities and provide important consistency checks
in atomic, nuclear and particle physics. A PV integral is defined as

I(x) = P
∫ b

a

dt
f(t)
t− x

= lim
ε→0+

[∫ x−ε

a

dt
f(t)
t− x

+
∫ b

x+ε
dt
f(t)
t− x

]
,

and arises in applications of Cauchy’s residue theorem when the pole x lies
on the real axis within the interval of integration [a, b]. Here P stands for the
principal value. An important assumption is that the function f(t) is continuous
on the interval of integration.

Treatment of Singular Integrals
In case f(t) is a closed form expression or it has an analytic continuation in

the complex plane, it may be possible to obtain an expression on closed form for
the above integral.

However, the situation which we are often confronted with is that f(t) is
only known at some points ti with corresponding values f(ti). In order to obtain
I(x) we need to resort to a numerical evaluation.

To evaluate such an integral, let us first rewrite it as

P
∫ b

a

dt
f(t)
t− x

=
∫ x−∆

a

dt
f(t)
t− x

+
∫ b

x+∆
dt
f(t)
t− x

+ P
∫ x+∆

x−∆
dt
f(t)
t− x

,

where we have isolated the principal value part in the last integral.

26

Treatment of Singular Integrals, change of variables
Defining a new variable u = t− x, we can rewrite the principal value integral

as
I∆(x) = P

∫ +∆

−∆
du
f(u+ x)

u
. (19)

One possibility is to Taylor expand f(u + x) around u = 0, and compute
derivatives to a certain order as we did for the Trapezoidal rule or Simpson’s
rule. Since all terms with even powers of u in the Taylor expansion dissapear,
we have that

I∆(x) ≈
Nmax∑
n=0

f (2n+1)(x) ∆2n+1

(2n+ 1)(2n+ 1)! .

Treatment of Singular Integrals, higher-order derivatives
To evaluate higher-order derivatives may be both time consuming and delicate

from a numerical point of view, since there is always the risk of loosing precision
when calculating derivatives numerically. Unless we have an analytic expression
for f(u+x) and can evaluate the derivatives in a closed form, the above approach
is not the preferred one.

Rather, we show here how to use the Gauss-Legendre method to compute
Eq. (19). Let us first introduce a new variable s = u/∆ and rewrite Eq. (19) as

I∆(x) = P
∫ +1

−1
ds
f(∆s+ x)

s
. (20)

Treatment of Singular Integrals
The integration limits are now from −1 to 1, as for the Legendre polynomials.

The principal value in Eq. (20) is however rather tricky to evaluate numerically,
mainly since computers have limited precision. We will here use a subtraction
trick often used when dealing with singular integrals in numerical calculations.
We introduce first the calculus relation∫ +1

−1

ds

s
= 0.

It means that the curve 1/(s) has equal and opposite areas on both sides of the
singular point s = 0.

Treatment of Singular Integrals
If we then note that f(x) is just a constant, we have also

f(x)
∫ +1

−1

ds

s
=
∫ +1

−1
f(x)ds

s
= 0.

27

Subtracting this equation from Eq. (20) yields

I∆(x) = P
∫ +1

−1
ds
f(∆s+ x)

s
=
∫ +1

−1
ds
f(∆s+ x)− f(x)

s
, (21)

and the integrand is no longer singular since we have that lims→0(f(s + x) −
f(x)) = 0 and for the particular case s = 0 the integrand is now finite.

Treatment of Singular Integrals
Eq. (21) is now rewritten using the Gauss-Legendre method resulting in∫ +1

−1
ds
f(∆s+ x)− f(x)

s
=

N∑
i=1

ωi
f(∆si + x)− f(x)

si
, (22)

where si are the mesh points (N in total) and ωi are the weights.
In the selection of mesh points for a PV integral, it is important to use an

even number of points, since an odd number of mesh points always picks si = 0
as one of the mesh points. The sum in Eq. (22) will then diverge.

Treatment of Singular Integrals
Let us apply this method to the integral

I(x) = P
∫ +1

−1
dt
et

t
. (23)

The integrand diverges at x = t = 0. We rewrite it using Eq. (21) as

P
∫ +1

−1
dt
et

t
=
∫ +1

−1

et − 1
t

, (24)

since ex = e0 = 1. With Eq. (22) we have then∫ +1

−1

et − 1
t
≈

N∑
i=1

ωi
eti − 1
ti

. (25)

Treatment of Singular Integrals
The exact results is 2.11450175075..... With just two mesh points we recall

from the previous subsection that ω1 = ω2 = 1 and that the mesh points are
the zeros of L2(x), namely x1 = −1/

√
3 and x2 = 1/

√
3. Setting N = 2 and

inserting these values in the last equation gives

I2(x = 0) =
√

3
(
e1/
√

3 − e−1/
√

3
)

= 2.1129772845.

With six mesh points we get even the exact result to the tenth digit

I6(x = 0) = 2.11450175075!

28

Treatment of Singular Integrals
We can repeat the above subtraction trick for more complicated integrands.

First we modify the integration limits to ±∞ and use the fact that∫ ∞
−∞

dk

k − k0
=
∫ 0

−∞

dk

k − k0
+
∫ ∞

0

dk

k − k0
= 0.

A change of variable u = −k in the integral with limits from −∞ to 0 gives

∫ ∞
−∞

dk

k − k0
=
∫ 0

∞

−du
−u− k0

+
∫ ∞

0

dk

k − k0
=
∫ ∞

0

dk

−k − k0
+
∫ ∞

0

dk

k − k0
= 0.

Treatment of Singular Integrals
It means that the curve 1/(k− k0) has equal and opposite areas on both sides

of the singular point k0. If we break the integral into one over positive k and
one over negative k, a change of variable k → −k allows us to rewrite the last
equation as ∫ ∞

0

dk

k2 − k2
0

= 0.

Treatment of Singular Integrals
We can use this to express a principal values integral as

P
∫ ∞

0

f(k)dk
k2 − k2

0
=
∫ ∞

0

(f(k)− f(k0))dk
k2 − k2

0
, (26)

where the right-hand side is no longer singular at k = k0, it is proportional to
the derivative df/dk, and can be evaluated numerically as any other integral.

Such a trick is often used when evaluating integral equations.

Example of a multidimensional integral
Here we show an example of a multidimensional integral which appears in

quantum mechanical calculations.
The ansatz for the wave function for two electrons is given by the product of

two 1s wave functions as

Ψ(r1, r2) = exp−(α(r1 + r2)).

The integral we need to solve is the quantum mechanical expectation value of
the correlation energy between two electrons, namely

I =
∫ ∞
−∞

dr1dr2 exp−2(α(r1 + r2)) 1
|r1 − r2|

.

The integral has an exact solution 5π2/16 = 0.19277.

29

Parts of code and brute force Gauss-Legendre quadrature
If we use Gaussian quadrature with Legendre polynomials (without rewriting

the integral), we have
double *x = new double [N];
double *w = new double [N];

// set up the mesh points and weights
GaussLegendrePoints(a,b,x,w, N);

// evaluate the integral with the Gauss-Legendre method
// Note that we initialize the sum

double int_gauss = 0.;
// six-double loops

for (int i=0;i<N;i++){
for (int j = 0;j<N;j++){
for (int k = 0;k<N;k++){
for (int l = 0;l<N;l++){
for (int m = 0;m<N;m++){
for (int n = 0;n<N;n++){

int_gauss+=w[i]*w[j]*w[k]*w[l]*w[m]*w[n]
*int_function(x[i],x[j],x[k],x[l],x[m],x[n]);

}}}}}
}

The function to integrate, code example

// this function defines the function to integrate
double int_function(double x1, double y1, double z1, double x2, double y2, double z2)
{

double alpha = 2.;
// evaluate the different terms of the exponential

double exp1=-2*alpha*sqrt(x1*x1+y1*y1+z1*z1);
double exp2=-2*alpha*sqrt(x2*x2+y2*y2+z2*z2);
double deno=sqrt(pow((x1-x2),2)+pow((y1-y2),2)+pow((z1-z2),2));
return exp(exp1+exp2)/deno;

} // end of function to evaluate

Laguerre polynomials
Using Legendre polynomials for the Gaussian quadrature is not very efficient.

There are several reasons for this:
• You can easily end up in situations where the integrand diverges

• The limits ±∞ have to be approximated with a finite number
It is very useful here to change to spherical coordinates

dr1dr2 = r2
1dr1r

2
2dr2dcos(θ1)dcos(θ2)dφ1dφ2,

and
1
r12

= 1√
r2
1 + r2

2 − 2r1r2cos(β)
with

cos(β) = cos(θ1) cos(θ2) + sin(θ1) sin(θ2) cos(φ1 − φ2))

30

Laguerre polynomials, the new integrand
This means that our integral becomes

I =
∫ ∞

0
r2
1dr1

∫ ∞
0

r2
2dr2

∫ π

0
dcos(θ1)

∫ π

0
dcos(θ2)

∫ 2π

0
dφ1

∫ 2π

0
dφ2

exp−2α(r1 + r2)
r12

where we have defined
1
r12

= 1√
r2
1 + r2

2 − 2r1r2cos(β)

with
cos(β) = cos(θ1) cos(θ2) + sin(θ1) sin(θ2) cos(φ1 − φ2))

Laguerre polynomials, new integration rule: Gauss-Laguerre
Our integral is now given by

I =
∫ ∞

0
r2
1dr1

∫ ∞
0

r2
2dr2

∫ π

0
dcos(θ1)

∫ π

0
dcos(θ2)

∫ 2π

0
dφ1

∫ 2π

0
dφ2

exp−2α(r1 + r2)
r12

For the angles we need to perform the integrations over θi ∈ [0, π] and φi ∈ [0, 2π].
However, for the radial part we can now either use

• Gauss-Legendre wth an appropriate mapping or

• Gauss-Laguerre taking properly care of the integrands involving the r2
i exp−(2αri)

terms.

Results with N = 20 with Gauss-Legendre
rmax Integral Error
1.00 0.161419805 0.0313459063
1.50 0.180468967 0.012296744
2.00 0.177065182 0.0157005292
2.50 0.167970694 0.0247950165
3.00 0.156139391 0.0366263199

Results for rmax = 2 with Gauss-Legendre
N Integral Error
10 0.129834248 0.0629314631
16 0.167860437 0.0249052742
20 0.177065182 0.0157005292
26 0.183543237 0.00922247353
30 0.185795624 0.00697008738

31

Results with Gauss-Laguerre
N Integral Error
10 0.186457345 0.00630836601
16 0.190113364 0.00265234708
20 0.19108178 0.00168393093
26 0.191831828 0.000933882594
30 0.192113712 0.000651999339

The code that was used to generate these results can be found under the program
link.

32

https://github.com/CompPhysics/ComputationalPhysics/blob/master/doc/Programs/LecturePrograms/programs/NumericalIntegration/cpp/program2.cpp
https://github.com/CompPhysics/ComputationalPhysics/blob/master/doc/Programs/LecturePrograms/programs/NumericalIntegration/cpp/program2.cpp

