
Computational Physics Lectures:
Introduction to the course

Morten Hjorth-Jensen1,2

1Department of Physics, University of Oslo
2Department of Physics and Astronomy and National Superconducting Cyclotron Laboratory, Michigan State University

2018

Overview of first week

• Wednesday (we have 1420 from 4pm to 6pm)

1. Presentation of the course, aims and content
2. Introduction to C++ programming and numerical precision. Discus-

sion of first project
3. Numerical differentiation and loss of numerical precision (chapter 3

lecture notes)

• Computer lab: Friday (we have 1420 from 4pm to 8pm)

1. The first two weeks we focus on simple programming tasks, start to
look at project 1 and to set up the software Git and a repository
at Github as well as Qt Creator as one possible IDE. This week we
discuss how to set up Git and obtain a Github account.

Please take the survey. Hopefully this information will allow us to tailor the
course to your interests and background.

Reading suggestions and exercises

• Read sections 2.1-2.5 and 3.1-3.2 of lecture notes:

– Introduction to C++ programming

c© 1999-2018, Morten Hjorth-Jensen. Released under CC Attribution-NonCommercial 4.0
license

https://git-scm.com/
https://github.com/
https://www.qt.io/ide/
http://compphysics.github.io/ComputationalPhysicsMSU/doc/web/compphys.html
http://compphysics.github.io/ComputationalPhysicsMSU/doc/web/compphys.html


– Numerical precision and C++ programming (chapter 2 of lecture
notes)

– Numerical differentiation and loss of numerical precision (chapter 3
lecture notes)

– Work on warm up exercise (exercise 3.1 in Lecture notes) to demon-
strate several programming elements and/or start looking at project
1

Lectures and ComputerLab

• Lectures: Wednesdays from 4pm to 5.45pm

• Weekly reading assignments needed to solve projects.

• First hour of each lab session may be used to discuss technicalities, address
questions etc linked with projects.

• Detailed lecture notes, exercises, all programs presented, projects etc can
be found at the Github address of the course.

• Computerlab: Fridays. We have reserved a time slot from 4pm to 8pm.

• Weekly plans and all other information are the github address of the course.

• Four projects, all have to be approved. The first project is pass/not passed
only while the last three projects are graded and count 25% each of the
final mark. The course ends with a final oral exam where you present a
project of your choice. The final oral exam accounts for the remaining 25%
of the final grade.

Course Format

• Use version control like Git for repository and all your material.

• C/C++ is the default programming language during lectures, but For-
tran2008 and Python are also used. All source codes discussed during the
lectures can be found at the github address of the course. We recommend
either C/C++, Fortran2008 or Python as languages. If you are tempted
to explore Julia, feel free to.

2

https://github.com/
https://github.com/CompPhysics/ComputationalPhysics1/tree/master/doc/Programs


Topics covered in this course

• Numerical precision and intro to C++ programming

• Numerical derivation and integration

• Random numbers and Monte Carlo integration

• Monte Carlo methods in statistical physics

• Quantum Monte Carlo methods

• Linear algebra and eigenvalue problems

• Non-linear equations and roots of polynomials

• Ordinary differential equations

• Partial differential equations (may not be covered)

• Parallelization of codes

• High-performance computing aspects and optimization of codes

Syllabus
Linear algebra and eigenvalue problems, chapters 6 and 7.

• Know Gaussian elimination and LU decomposition

• How to solve linear equations

• How to obtain the inverse and the determinant of a real symmetric matrix

• Cholesky and tridiagonal matrix decomposition

Syllabus
Linear algebra and eigenvalue problems, chapters 6 and 7.

• Householder’s tridiagonalization technique and finding eigenvalues based
on this

• Jacobi’s method for finding eigenvalues

• Singular value decomposition

• Cubic Spline interpolation

3



Syllabus
Numerical integration, standard methods and Monte Carlo methods
(chapters 4 and 11).

• Trapezoidal, rectangle and Simpson’s rules

• Gaussian quadrature, emphasis on Legendre polynomials, but you need to
know about other polynomials as well.

• Brute force Monte Carlo integration

• Random numbers (simplest algo, ran0) and probability distribution func-
tions, expectation values

• Improved Monte Carlo integration and importance sampling.

Syllabus
Monte Carlo methods in physics (chapters 12, 13, and 14).

• Random walks and Markov chains and relation with diffusion equation

• Metropolis algorithm, detailed balance and ergodicity

• Simple spin systems and phase transitions

• Variational Monte Carlo

• How to construct trial wave functions for quantum systems

Syllabus
Ordinary differential equations (chapters 8 and 9).

• Euler’s method and improved Euler’s method, truncation errors

• Runge Kutta methods, 2nd and 4th order, truncation errors

• How to implement a second-order differential equation, both linear and
non-linear. How to make your equations dimensionless.

• Boundary value problems, shooting and matching method (chap 9).

4



Syllabus
Partial differential equations, chapter 10.

• Set up diffusion, Poisson and wave equations up to 2 spatial dimensions
and time

• Set up the mathematical model and algorithms for these equations, with
boundary and initial conditions. Their stability conditions.

• Explicit, implicit and Crank-Nicolson schemes, and how to solve them.

• How to compute the Laplacian in Poisson’s equation.

• How to solve the wave equation in one and two dimensions.

Overarching aims of this course
• Develop a critical approach to all steps in a project, which methods are
most relevant, which natural laws and physical processes are important.
Sort out initial conditions and boundary conditions etc.

• This means to teach you structured scientific computing, learn to structure
a project.

• A critical understanding of central mathematical algorithms and methods
from numerical analysis. In particular their limits and stability criteria.

• Always try to find good checks of your codes (like solutions on closed form)

• To enable you to develop a critical view on the mathematical model and
the physics.

Additional learning outcomes

• has a thorough understanding of how computing is used to solve scientific
problems

• knows some central algorithms used in science

• has knowledge of high-performance computing elements: memory usage,
vectorization and parallel algorithms

• understands approximation errors and what can go wrong with algorithms

• has experience with programming in a compiled language (Fortran, C,
C++)

5



• has experience with debugging software

• has experience with test frameworks and procedures

• can critically evaluate results and errors

• understands how to increase the efficiency of numerical algorithms and
pertinent software

• understands tools to make science reproducible and has a sound ethical
approach to scientific problems

• Is able to write a scientific report with software like Latex

Computing knowledge
Our ideal about knowledge on computational science
Hopefully this is not what you will feel towards the end of the semester!

And, there is nothing like a code which gives correct re-
sults!!

6

http://hplgit.github.io/edu/py_vs_m/computing_competence.html


• J. J. Barton and L. R. Nackman,*Scientific and Engineering C++*, Addison
Wesley, 3rd edition 2000.

• B. Stoustrup, The C++ programming language, Pearson, 1997.

• An excellent text is Discovering Modern C++

• D. Yang, C++ and Object-oriented Numeric Computing for Scientists and
Engineers, Springer 2000.

• And the C++ resource network provides great help.

• The Fortran tutorial is also very useful.

• And for Python programmers, see the textbook by Hans Petter Langtangen

Extremely useful tools, strongly recommended
and discussed at the lab sessions.

• Git and a repository at Github, this and next week (and later weeks as
well).

• ipython notebook (Jupiter notebook, a great tool)

• Qt Creator as one possible IDE for editing and mastering computational
projects (for C++ codes, see webpage of course), discussed during the whole
semester. You can however use other IDEs as well such as VisualC++.

• Armadillo as a useful numerical library for C++, highly recommended,
discussed in connection with LinAlgebra lectures

• Unit tests, discussed throughout the whole semester

• Piazza for discussions and teaching material

7

http://ptgmedia.pearsoncmg.com/images/9780134383583/samplepages/9780134383583.pdf
http://www.cplusplus.com/
http://www.fortrantutorial.com/
https://github.com/CompPhysics/ComputationalPhysicsMSU/blob/master/doc/Lectures/HPLpython.pdf
https://git-scm.com/
https://github.com/
https://www.qt.io/ide/
https://www.microsoft.com/en-us/download/details.aspx?id=48145

