
Computational Physics Lectures: Introduction to
programming (C++ and Fortran)

Morten Hjorth-Jensen1,2

Department of Physics, University of Oslo1

Department of Physics and Astronomy and National Superconducting Cyclotron
Laboratory, Michigan State University2

Jan 8, 2018
c© 1999-2018, Morten Hjorth-Jensen. Released under CC Attribution-NonCommercial 4.0 license

Extremely useful tools, strongly recommended

and discussed at the lab sessions the first two weeks
GIT for version control, discussed at the lab this week (and
next week as well)
ipython notebook, mentioned this week
QTcreator for editing and mastering computational projects
Armadillo as a useful numerical library for C++, highly
recommended
Unit tests

A structured programming approach

Before writing a single line, have the algorithm clarified and
understood. It is crucial to have a logical structure of e.g., the
flow and organization of data before one starts writing.
Always try to choose the simplest algorithm. Computational
speed can be improved upon later.
Try to write a as clear program as possible. Such programs are
easier to debug, and although it may take more time, in the
long run it may save you time. If you collaborate with other
people, it reduces spending time on debuging and trying to
understand what the codes do. A clear program will also allow
you to remember better what the program really does!

A structured programming approach

The planning of the program should be from top down to
bottom, trying to keep the flow as linear as possible. Avoid
jumping back and forth in the program. First you need to
arrange the major tasks to be achieved. Then try to break the
major tasks into subtasks. These can be represented by
functions or subprograms. They should accomplish limited
tasks and as far as possible be independent of each other.
That will allow you to use them in other programs as well.
Try always to find some cases where an analytical solution
exists or where simple test cases can be applied. If possible,
devise different algorithms for solving the same problem. If you
get the same answers, you may have coded things correctly or
made the same error twice or more.

Getting Started

Compiling and linking, without QTcreator
In order to obtain an executable file for a C++ program, the
following instructions under Linux/Unix can be used
c++ -c -Wall myprogram.cpp
c++ -o myprogram myprogram.o

where the compiler is called through the command c++/g++.
The compiler option -Wall means that a warning is issued in case of
non-standard language. The executable file is in this case
myprogram. The option -c is for compilation only, where the
program is translated into machine code, while the -o option links
the produced object file myprogram.o and produces the executable
myprogram .
For Fortran2008 we use the Intel compiler, replace c++ with ifort.
Also, to speed up the code use compile options like
c++ -O3 -c -Wall myprogram.cpp

Makefiles and simple scripts

Under Linux/Unix it is often convenient to create a so-called
makefile, which is a script which includes possible compiling
commands.

Comment lines
General makefile for c - choose PROG = name of given program
Here we define compiler option, libraries and the target
CC= g++ -Wall
PROG= myprogram
this is the math library in C, not necessary for C++
LIB = -lm
Here we make the executable file
${PROG} : ${PROG}.o

${CC} ${PROG}.o ${LIB} -o ${PROG}
whereas here we create the object file
${PROG}.o : ${PROG}.c

${CC} -c ${PROG}.c

If you name your file for makefile, simply type the command make
and Linux/Unix executes all of the statements in the above
makefile. Note that C++ files have the extension .cpp.

Hello world

The C encounter
Here we present first the C version.
/* comments in C begin like this and end with */
#include <stdlib.h> /* atof function */
#include <math.h> /* sine function */
#include <stdio.h> /* printf function */
int main (int argc, char* argv[])
{

double r, s; /* declare variables */
r = atof(argv[1]); /* convert the text argv[1] to double */
s = sin(r);
printf("Hello, World! sin(%g)=%g\n", r, s);
return 0; /* success execution of the program */

Hello World, dissecting the code

Dissection I
The compiler must see a declaration of a function before you can
call it (the compiler checks the argument and return types). The
declaration of library functions appears in so-called “header files”
that must be included in the program, e.g.,

#include <stdlib.h> /* atof function */

We call three functions (atof, sin, printf) and these are declared in
three different header files. The main program is a function called
main with a return value set to an integer, int (0 if success). The
operating system stores the return value, and other
programs/utilities can check whether the execution was successful
or not. The command-line arguments are transferred to the main
function through

int main (int argc, char* argv[])

Hello World, more dissection
Dissection II
The command-line arguments are transferred to the main function
through

int main (int argc, char* argv[])

The integer argc is the no of command-line arguments, set to one
in our case, while argv is a vector of strings containing the
command-line arguments with argv[0] containing the name of the
program and argv[1], argv[2], ... are the command-line args,
i.e., the number of lines of input to the program. Here we define
floating points, see also below, through the keywords float for
single precision real numbers and double for double precision. The
function atof transforms a text (argv[1]) to a float. The sine
function is declared in math.h, a library which is not automatically
included and needs to be linked when computing an executable file.
With the command printf we obtain a formatted printout. The
printf syntax is used for formatting output in many C-inspired
languages (Perl, Python, Awk, partly C++).

Hello World with namespace

Now in C++
Here we present the C++ version using namespace.
// A comment line begins like this in C++ programs
// Standard ANSI-C++ include files
#include <iostream> // input and output
#include <cmath> // math functions
using namespace std;
int main (int argc, char* argv[])
{

// convert the text argv[1] to double using atof:
double r = atof(argv[1]); // convert the text argv[1] to double
double s = sin(r);
cout << "Hello, World! sin(" << r << ") =" << s << endl;
return 0; // success execution of the program

}

Hello World without namespace

Without namespace
Namespaces provide a method for preventing name conflicts in
large projects. Symbols declared inside a namespace block are
placed in a named scope that prevents them from being mistaken
for identically-named symbols in other scopes. Multiple namespace
blocks with the same name are allowed. All declarations within
those blocks are declared in the named scope.
Here we present the C++ version without using namespace.
// A comment line begins like this in C++ programs
// Standard ANSI-C++ include files
#include <iostream> // input and output
#include <cmath> // math functions
using namespace std;
int main (int argc, char* argv[])
{

// convert the text argv[1] to double using atof:
double r = atof(argv[1]); // convert the text argv[1] to double
double s = sin(r);
// Note std::cout and std::endl
std::cout << "Hello, World! sin(" << r << ") =" << s << std::endl;
return 0; // success execution of the program

}

C++ Hello World

Dissection I
We have replaced the call to printf with the standard C++
function cout. The header file <iostream.h> is then needed. In
addition, we don’t need to declare variables like r and s at the
beginning of the program. I personally prefer however to declare all
variables at the beginning of a function, as this gives me a feeling
of greater readability.

Brief summary

C/C++ program

A C/C++ program begins with include statements of header
files (libraries,intrinsic functions etc)
Functions which are used are normally defined at top (details
next week)
The main program is set up as an integer, it returns 0
(everything correct) or 1 (something went wrong)
Standard if, while and for statements as in Java, Fortran,
Python...
Integers have a very limited range.

Brief summary

Arrays

A C/C++ array begins by indexing at 0!
Array allocations are done by size, not by the final index
value.If you allocate an array with 10 elements, you should
index them from 0, 1, . . . , 9.
Initialize always an array before a computation.

Serious problems and representation of numbers

Integer and Real Numbers
Overflow
Underflow
Roundoff errors
Loss of precision

Limits, you must declare variables

C++ and Fortran declarations
type in C/C++ and Fortran2008 bits range
int/INTEGER (2) 16 -32768 to 32767
unsigned int 16 0 to 65535
signed int 16 -32768 to 32767
short int 16 -32768 to 32767
unsigned short int 16 0 to 65535
signed short int 16 −32768 to 32767
int/long int/INTEGER (4) 32 -2147483648 to 2147483647
signed long int 32 -2147483648 to 2147483647
float/REAL(4) 32 3.4× 10−44 to 3.4× 10+38

double/REAL(8) 64 1.7× 10−322 to 1.7× 10+308

long double 64 1.7× 10−322 to 1.7× 10+308

From decimal to binary representation

How to do it

an2n + an−12n−1 + an−22n−2 + · · ·+ a020.

In binary notation we have thus (417)10 = (110110001)2 since we
have

(110100001)2 = 1× 28 + 1× 27 + 0× 26 + 1× 25 + 0× 24 + 0× 23

+ 0× 22 + 0× 22 + 0× 21 + 1× 20.

From decimal to binary representation, the actual operation

To see this, we have performed the following divisions by 2

417/2=208 remainder 1 coefficient of 20 is 1
208/2=104 remainder 0 coefficient of 21 is 0
104/2=52 remainder 0 coefficient of 22 is 0
52/2=26 remainder 0 coefficient of 23 is 0
26/2=13 remainder 1 coefficient of 24 is 0
13/2= 6 remainder 1 coefficient of 25 is 1
6/2= 3 remainder 0 coefficient of 26 is 0
3/2= 1 remainder 1 coefficient of 27 is 1
1/2= 0 remainder 1 coefficient of 28 is 1

From decimal to binary representation
Integer numbers
#include <iostream>
#include <cmath>
#include <cstdio>
#include <cstdlib>
using namespace std;
int main (int argc, char* argv[])
{

int i;
int terms[32]; // storage of a0, a1, etc, up to 32 bits
int save;
int number = atoi(argv[1]);
save = number;
// initialise the term a0, a1 etc
for (i=0; i < 32 ; i++){ terms[i] = 0;}
for (i=0; i < 32 ; i++){

terms[i] = number%2;
number /= 2;

}
// write out results
cout << "Number of bytes used= " << sizeof(number) << endl;
for (i=0; i < 32 ; i++){

cout << " Term nr: " << i << "Value= " << terms[i];
cout << endl;

}
return 0;

}

From decimal to binary representation

Integer numbers, Fortran
PROGRAM binary_integer
IMPLICIT NONE

INTEGER i, number, terms(0:31) ! storage of a0, a1, etc, up to 32 bits

WRITE(*,*) ’Give a number to transform to binary notation’
READ(*,*) number

! Initialise the terms a0, a1 etc
terms = 0

! Fortran takes only integer loop variables
DO i=0, 31

terms(i) = MOD(number,2)
number = number/2

ENDDO
! write out results

WRITE(*,*) ’Binary representation ’
DO i=0, 31

WRITE(*,*)’ Term nr and value’, i, terms(i)
ENDDO

END PROGRAM binary_integer

Representing Integer Numbers

Possible Overflow for Integers
// A comment line begins like this in C++ programs
// Program to calculate 2**n
// Standard ANSI-C++ include files */
#include <iostream>
#include <cmath>
using namespace std
int main()
{

int int1, int2, int3;
// print to screen

cout << "Read in the exponential N for 2^N =" << endl;
// read from screen

cin >> int2;
int1 = (int) pow(2., (double) int2);
cout << " 2^N * 2^N = " << int1*int1 << endl;
int3 = int1 - 1;
cout << " 2^N*(2^N - 1) = " << int1 * int3 << endl;
cout << " 2^N- 1 = " << int3 << endl;
return 0;

// End: program main()

Loss of Precision
Machine Numbers
In the decimal system we would write a number like 9.90625 in
what is called the normalized scientific notation.

9.90625 = 0.990625× 101,

and a real non-zero number could be generalized as

x = ±r × 10n, (1)

with r a number in the range 1/10 ≤ r < 1. In a similar way we
can use represent a binary number in scientific notation as

x = ±q × 2m, (2)

with q a number in the range 1/2 ≤ q < 1. This means that the
mantissa of a binary number would be represented by the general
formula

(0.a−1a−2 . . . a−n)2 = a−1×2−1+a−2×2−2+ · · ·+a−n×2−n. (3)

Loss of Precision

Machine Numbers
In a typical computer, floating-point numbers are represented in the
way described above, but with certain restrictions on q and m
imposed by the available word length. In the machine, our number
x is represented as

x = (−1)s ×mantissa× 2exponent, (4)

where s is the sign bit, and the exponent gives the available range.
With a single-precision word, 32 bits, 8 bits would typically be
reserved for the exponent, 1 bit for the sign and 23 for the mantissa.

Loss of Precision

Machine Numbers
A modification of the scientific notation for binary numbers is to
require that the leading binary digit 1 appears to the left of the
binary point. In this case the representation of the mantissa q
would be (1.f)2 and 1 ≤ q < 2. This form is rather useful when
storing binary numbers in a computer word, since we can always
assume that the leading bit 1 is there. One bit of space can then be
saved meaning that a 23 bits mantissa has actually 24 bits. This
means explicitely that a binary number with 23 bits for the
mantissa reads

(1.a−1a−2 . . . a−23)2 = 1×20+a−1×2−1++a−2×2−2+· · ·+a−23×2−23.
(5)

Loss of Precision, example

As an example, consider the 32 bits binary number

(10111110111101000000000000000000)2,

where the first bit is reserved for the sign, 1 in this case yielding a
negative sign. The exponent m is given by the next 8 binary
numbers 01111101 resulting in 125 in the decimal system.

Loss of Precision

Machine Numbers
However, since the exponent has eight bits, this means it has
28 − 1 = 255 possible numbers in the interval −128 ≤ m ≤ 127,
our final exponent is 125− 127 = −2 resulting in 2−2. Inserting the
sign and the mantissa yields the final number in the decimal
representation as

−2−2 (1× 20 + 1× 2−1 + 1× 2−2 + 1× 2−3 + 0× 2−4 + 1× 2−5) =

(−0.4765625)10.

In this case we have an exact machine representation with 32 bits
(actually, we need less than 23 bits for the mantissa).

Loss of Precision, consequences

If our number x can be exactly represented in the machine, we call
x a machine number. Unfortunately, most numbers cannot and are
thereby only approximated in the machine. When such a number
occurs as the result of reading some input data or of a
computation, an inevitable error will arise in representing it as
accurately as possible by a machine number.

Loss of Precision
Machine Numbers
A floating number x, labelled fl(x) will therefore always be
represented as

fl(x) = x(1± εx), (6)

with x the exact number and the error |εx | ≤ |εM |, where εM is the
precision assigned. A number like 1/10 has no exact binary
representation with single or double precision. Since the mantissa

(1.a−1a−2 . . . a−n)2

is always truncated at some stage n due to its limited number of
bits, there is only a limited number of real binary numbers. The
spacing between every real binary number is given by the chosen
machine precision. For a 32 bit words this number is approximately
εM ∼ 10−7 and for double precision (64 bits) we have εM ∼ 10−16,
or in terms of a binary base as 2−23 and 2−52 for single and double
precision, respectively.

Loss of Precision

Machine Numbers
In the machine a number is represented as

fl(x) = x(1+ ε) (7)

where |ε| ≤ εM and ε is given by the specified precision, 10−7 for
single and 10−16 for double precision, respectively. εM is the given
precision. In case of a subtraction a = b − c , we have

fl(a) = fl(b)− fl(c) = a(1+ εa), (8)

or
fl(a) = b(1+ εb)− c(1+ εc), (9)

Loss of Precision

The above means that

fl(a)/a = 1+ εb
b

a
− εc

c

a
, (10)

and if b ≈ c we see that there is a potential for an increased error
in fl(a).

Loss of Precision

Machine Numbers
Define the absolute error as

|fl(a)− a|, (11)

whereas the relative error is

|fl(a)− a|
a

≤ εa. (12)

Loss of Precision

The above subraction is thus

|fl(a)− a|
a

=
|fl(b)− fl(c)− (b − c)|

a
, (13)

yielding

|fl(a)− a|
a

=
|bεb − cεc |

a
. (14)

The relative error is the quantity of interest in scientific work.
Information about the absolute error is normally of little use in the
absence of the magnitude of the quantity being measured.

Loss of numerical precision
Suppose we wish to evaluate the function

f (x) =
1− cos(x)
sin(x)

,

for small values of x . Five leading digits. If we multiply the
denominator and numerator with 1+ cos(x) we obtain the
equivalent expression

f (x) =
sin(x)

1+ cos(x)
.

If we now choose x = 0.007 (in radians) our choice of precision
results in

sin(0.007) ≈ 0.69999× 10−2,

and

cos(0.007) ≈ 0.99998.

Loss of numerical precision

The first expression for f (x) results in

f (x) =
1− 0.99998

0.69999× 10−2 =
0.2× 10−4

0.69999× 10−2 = 0.28572× 10−2,

while the second expression results in

f (x) =
0.69999× 10−2

1+ 0.99998
=

0.69999× 10−2

1.99998
= 0.35000× 10−2,

which is also the exact result. In the first expression, due to our
choice of precision, we have only one relevant digit in the
numerator, after the subtraction. This leads to a loss of precision
and a wrong result due to a cancellation of two nearly equal
numbers. If we had chosen a precision of six leading digits, both
expressions yield the same answer.

Loss of numerical precision

If we were to evaluate x ∼ π, then the second expression for f (x)
can lead to potential losses of precision due to cancellations of
nearly equal numbers.

This simple example demonstrates the loss of numerical precision
due to roundoff errors, where the number of leading digits is lost in
a subtraction of two near equal numbers. The lesson to be drawn is
that we cannot blindly compute a function. We will always need to
carefully analyze our algorithm in the search for potential pitfalls.
There is no magic recipe however, the only guideline is an
understanding of the fact that a machine cannot represent correctly
all numbers.

Loss of precision can cause serious problems

Real Numbers
Overflow: When the positive exponent exceeds the max
value, e.g., 308 for DOUBLE PRECISION (64 bits). Under such
circumstances the program will terminate and some compilers
may give you the warning OVERFLOW.
Underflow: When the negative exponent becomes smaller
than the min value, e.g., -308 for DOUBLE PRECISION.
Normally, the variable is then set to zero and the program
continues. Other compilers (or compiler options) may warn
you with the UNDERFLOW message and the program terminates.

Loss of precision, real numbers

Roundoff errors. A floating point number like

x = 1.234567891112131468 = 0.1234567891112131468× 101

(15)
may be stored in the following way. The exponent is small and is
stored in full precision. However, the mantissa is not stored fully. In
double precision (64 bits), digits beyond the 15th are lost since the
mantissa is normally stored in two words, one which is the most
significant one representing 123456 and the least significant one
containing 789111213. The digits beyond 3 are lost. Clearly, if we
are summing alternating series with large numbers, subtractions
between two large numbers may lead to roundoff errors, since not
all relevant digits are kept. This leads eventually to the next
problem, namely

More on loss of precision
Real Numbers

Loss of precision: When one has to e.g., multiply two large
numbers where one suspects that the outcome may be beyond
the bonds imposed by the variable declaration, one could
represent the numbers by logarithms, or rewrite the equations
to be solved in terms of dimensionless variables. When dealing
with problems in e.g., particle physics or nuclear physics where
distance is measured in fm (10−15 m), it can be quite
convenient to redefine the variables for distance in terms of a
dimensionless variable of the order of unity. To give an
example, suppose you work with single precision and wish to
perform the addition 1+ 10−8. In this case, the information
containing in 10−8 is simply lost in the addition. Typically,
when performing the addition, the computer equates first the
exponents of the two numbers to be added. For 10−8 this has
however catastrophic consequences since in order to obtain an
exponent equal to 100, bits in the mantissa are shifted to the
right. At the end, all bits in the mantissa are zeros.

A problematic case
Three ways of computing e−x

Brute force:

exp (−x) =
∞∑

n=0

(−1)n xn

n!

Recursion relation for

exp (−x) =
∞∑

n=0

sn =
∞∑

n=0

(−1)n xn

n!

sn = −sn−1
x

n
,

exp (x) =
∞∑

n=0

sn

exp (−x) =
1

exp (x)

Program to compute exp (−x)

Brute Force
// Program to calculate function exp(-x)
// using straightforward summation with differing precision
using namespace std
#include <iostream>
#include <cmath>
// type float: 32 bits precision
// type double: 64 bits precision
#define TYPE double
#define PHASE(a) (1 - 2 * (abs(a) % 2))
#define TRUNCATION 1.0E-10
// function declaration
TYPE factorial(int);

Program to compute exp (−x)

Still Brute Force
int main()
{

int n;
TYPE x, term, sum;
for(x = 0.0; x < 100.0; x += 10.0) {

sum = 0.0; //initialization
n = 0;
term = 1;
while(fabs(term) > TRUNCATION) {

term = PHASE(n) * (TYPE) pow((TYPE) x,(TYPE) n)
/ factorial(n);

sum += term;
n++;

} // end of while() loop

Program to compute exp (−x)

Oh, it never ends!
printf("\nx = %4.1f exp = %12.5E series = %12.5E

number of terms = %d",
x, exp(-x), sum, n);

} // end of for() loop

printf("\n"); // a final line shift on output
return 0;

} // End: function main()
// The function factorial()
// calculates and returns n!
TYPE factorial(int n)
{

int loop;
TYPE fac;
for(loop = 1, fac = 1.0; loop <= n; loop++) {

fac *= loop;

return fac;
} // End: function factorial()

Results exp (−x)

What is going on?

x exp (−x) Series Number of terms in series
0.0 0.100000E+01 0.100000E+01 1
10.0 0.453999E-04 0.453999E-04 44
20.0 0.206115E-08 0.487460E-08 72
30.0 0.935762E-13 -0.342134E-04 100
40.0 0.424835E-17 -0.221033E+01 127
50.0 0.192875E-21 -0.833851E+05 155
60.0 0.875651E-26 -0.850381E+09 171
70.0 0.397545E-30 NaN 171
80.0 0.180485E-34 NaN 171
90.0 0.819401E-39 NaN 171
100.0 0.372008E-43 NaN 171

Program to compute exp (−x)

// program to compute exp(-x) without exponentials
using namespace std
#include <iostream>
#include <cmath>
#define TRUNCATION 1.0E-10

int main()
{

int loop, n;
double x, term, sum;
for(loop = 0; loop <= 100; loop += 10)
{

x = (double) loop; // initialization
sum = 1.0;
term = 1;
n = 1;

Program to compute exp (−x)

Last statements
while(fabs(term) > TRUNCATION)

{
term *= -x/((double) n);
sum += term;
n++;

} // end while loop
cout << "x = " << x << " exp = " << exp(-x) <<"series = "

<< sum << " number of terms =" << n << endl;
} // end of for() loop

cout << endl; // a final line shift on output

} /* End: function main() */

Results exp (−x)

More Problems
x exp (−x) Series Number of terms in series

0.000000 0.10000000E+01 0.10000000E+01 1
10.000000 0.45399900E-04 0.45399900E-04 44
20.000000 0.20611536E-08 0.56385075E-08 72
30.000000 0.93576230E-13 -0.30668111E-04 100
40.000000 0.42483543E-17 -0.31657319E+01 127
50.000000 0.19287498E-21 0.11072933E+05 155
60.000000 0.87565108E-26 -0.33516811E+09 182
70.000000 0.39754497E-30 -0.32979605E+14 209
80.000000 0.18048514E-34 0.91805682E+17 237
90.000000 0.81940126E-39 -0.50516254E+22 264
100.000000 0.37200760E-43 -0.29137556E+26 291

Most used formula for derivatives

3 point formulae

First derivative (f0 = f (x0), f−h = f (x0 − h) and f+h = f (x0 + h)

fh − f−h
2h

= f ′0 +
∞∑

j=1

f
(2j+1)
0

(2j + 1)!
h2j .

Second derivative

fh − 2f0 + f−h
h2 = f ′′0 + 2

∞∑

j=1

f
(2j+2)
0

(2j + 2)!
h2j .

Error Analysis

ε = log10

(∣∣∣∣∣
f ′′computed − f ′′exact

f ′′exact

∣∣∣∣∣

)
,

εtot = εapprox + εro.

For the computed second derivative we have

f ′′0 =
fh − 2f0 + f−h

h2 − 2
∞∑

j=1

f
(2j+2)
0

(2j + 2)!
h2j ,

and the truncation or approximation error goes like

εapprox ≈
f
(4)
0
12

h2.

Error Analysis

If we were not to worry about loss of precision, we could in principle
make h as small as possible. However, due to the computed
expression in the above program example

f ′′0 =
fh − 2f0 + f−h

h2 =
(fh − f0) + (f−h − f0)

h2 ,

we reach fairly quickly a limit for where loss of precision due to the
subtraction of two nearly equal numbers becomes crucial.
If (f±h − f0) are very close, we have (f±h − f0) ≈ εM , where
|εM | ≤ 10−7 for single and |εM | ≤ 10−15 for double precision,
respectively.
We have then

∣∣f ′′0
∣∣ =

∣∣∣∣
(fh − f0) + (f−h − f0)

h2

∣∣∣∣ ≤
2εM
h2 .

Error Analysis

Our total error becomes

|εtot| ≤
2εM
h2 +

f
(4)
0
12

h2.

It is then natural to ask which value of h yields the smallest total
error. Taking the derivative of |εtot| with respect to h results in

h =

(
24εM
f
(4)
0

)1/4

.

With double precision and x = 10 we obtain

h ≈ 10−4.

Beyond this value, it is essentially the loss of numerical precision
which takes over.

Error Analysis

Due to the subtractive cancellation in the expression for f ′′ there is
a pronounced detoriation in accuracy as h is made smaller and
smaller.
It is instructive in this analysis to rewrite the numerator of the
computed derivative as

(fh − f0) + (f−h − f0) = (ex+h − ex) + (ex−h − ex),

as

(fh − f0) + (f−h − f0) = ex(eh + e−h − 2),

since it is the difference (eh + e−h − 2) which causes the loss of
precision.

Error Analysis

x h = 0.01 h = 0.001 h = 0.0001 h = 0.0000001 Exact
0.0 1.000008 1.000000 1.000000 1.010303 1.000000
1.0 2.718304 2.718282 2.718282 2.753353 2.718282
2.0 7.389118 7.389057 7.389056 7.283063 7.389056
3.0 20.085704 20.085539 20.085537 20.250467 20.085537
4.0 54.598605 54.598155 54.598151 54.711789 54.598150
5.0 148.414396 148.413172 148.413161 150.635056 148.413159

Error Analysis

The results for x = 10 are shown in the Table
h eh + e−h eh + e−h − 2

10−1 2.0100083361116070 1.0008336111607230× 10−2

10−2 2.0001000008333358 1.0000083333605581× 10−4

10−3 2.0000010000000836 1.0000000834065048× 10−6

10−5 2.0000000099999999 1.0000000050247593× 10−8

10−5 2.0000000001000000 9.9999897251734637× 10−11

10−6 2.0000000000010001 9.9997787827987850× 10−13

10−7 2.0000000000000098 9.9920072216264089× 10−15

10−8 2.0000000000000000 0.0000000000000000× 100

10−9 2.0000000000000000 1.1102230246251565× 10−16

10−10 2.0000000000000000 0.0000000000000000× 100

Program to compute derivative
We list here the program to compute the above derivative
#include <iostream>
#include <cmath>
#include <fstream>
#include <iomanip>
// Note: not using namespace for std
// output file as global variable

std::ofstream ofile;

// Begin of main program

int main(int argc, char* argv[])
{

char *outfilename;
// Read in output file, abort if there are too few command-line arguments
if(argc <= 3){

std::cout << "Bad Usage: " << argv[0] <<
" read also output file and number of elements on same line" << std::endl;

exit(1);
}
else{

outfilename=argv[1];
}
// opening a file for the program
ofile.open(outfilename);
// extracting number of mesh points
int i = atoi(argv[2]);
double x = atof(argv[3]); // reading x-value
double h = 1.0/((double) i); // setting up step size
double Derivative = (exp(x+h)-2.*exp(x)+exp(x-h))/(h*h);
double RelativeError = log10(fabs(Derivative-exp(x))/exp(x));
ofile << std::setw(15) << std::setprecision(8) << "relative error=" << RelativeError << std::endl;
ofile.close(); // close output file
return 0;

}

Technical Matter in C/C++: Pointers

A pointer specifies where a value resides in the computer’s memory
(like a house number specifies where a particular family resides on a
street).
A pointer points to an address not to a data container of any kind!
Simple example declarations:

using namespace std; // note use of namespace
int main()

{
// what are the differences?
int var;
cin >> var;
int *p, q;
int *s, *t;
int * a new[var]; // dynamic memory allocation
delete [] a;

}

Technical Matter in C/C++: Pointer example I

using namespace std; // note use of namespace
int main()
{

int var;
int *p;
p = &var;
var = 421;
printf("Address of integer variable var : %p\n",&var);
printf("Its value: %d\n", var);
printf("Value of integer pointer p : %p\n",p);
printf("The value p points at : %d\n",*p);
printf("Address of the pointer p : %p\n",&p);
return 0;

}

Dissection: Pointer example I

Discussion
int main()
{

int var; // Define an integer variable var
int *p; // Define a pointer to an integer
p = &var; // Extract the address of var
var = 421; // Change content of var
printf("Address of integer variable var : %p\n", &var);
printf("Its value: %d\n", var); // 421
printf("Value of integer pointer p : %p\n", p); // = &var
// The content of the variable pointed to by p is *p
printf("The value p points at : %d\n", *p);
// Address where the pointer is stored in memory
printf("Address of the pointer p : %p\n", &p);
return 0;

}

Pointer example II

int matr[2];
int *p;
p = &matr[0];
matr[0] = 321;
matr[1] = 322;
printf("\nAddress of matrix element matr[1]: %p",&matr[0]);
printf("\nValue of the matrix element matr[1]; %d",matr[0]);
printf("\nAddress of matrix element matr[2]: %p",&matr[1]);
printf("\nValue of the matrix element matr[2]: %d\n", matr[1]);
printf("\nValue of the pointer p: %p",p);
printf("\nThe value p points to: %d",*p);
printf("\nThe value that (p+1) points to %d\n",*(p+1));
printf("\nAddress of pointer p : %p\n",&p);

Dissection: Pointer example II

int matr[2]; // Define integer array with two elements
int *p; // Define pointer to integer
p = &matr[0]; // Point to the address of the first element in matr
matr[0] = 321; // Change the first element
matr[1] = 322; // Change the second element
printf("\nAddress of matrix element matr[1]: %p", &matr[0]);
printf("\nValue of the matrix element matr[1]; %d", matr[0]);
printf("\nAddress of matrix element matr[2]: %p", &matr[1]);
printf("\nValue of the matrix element matr[2]: %d\n", matr[1]);
printf("\nValue of the pointer p: %p", p);
printf("\nThe value p points to: %d", *p);
printf("\nThe value that (p+1) points to %d\n", *(p+1));
printf("\nAddress of pointer p : %p\n", &p);

Output of Pointer example II

Address of the matrix element matr[1]: 0xbfffef70
Value of the matrix element matr[1]; 321
Address of the matrix element matr[2]: 0xbfffef74
Value of the matrix element matr[2]: 322
Value of the pointer: 0xbfffef70
The value pointer points at: 321
The value that (pointer+1) points at: 322
Address of the pointer variable : 0xbfffef6c

File handling; C-way

using namespace std;
#include <iostream>
int main(int argc, char *argv[])
{

FILE *in_file, *out_file;
if(argc < 3) {

printf("The programs has the following structure :\n");
printf("write in the name of the input and output files \n");
exit(0);

}
in_file = fopen(argv[1], "r");// returns pointer to the input file
if(in_file == NULL) { // NULL means that the file is missing

printf("Can’t find the input file %s\n", argv[1]);
exit(0);

File handling; C way cont.

out_file = fopen(argv[2], "w"); // returns a pointer to the output file
if(out_file == NULL) { // can’t find the file

printf("Can’t find the output file%s\n", argv[2]);
exit(0);

}
fclose(in_file);
fclose(out_file);
return 0;

File handling, C++-way

#include <fstream>

// input and output file as global variable
ofstream ofile;
ifstream ifile;

File handling, C++-way

int main(int argc, char* argv[])
{

char *outfilename;
//Read in output file, abort if there are too
//few command-line arguments
if(argc <= 1){

cout << "Bad Usage: " << argv[0] <<
" read also output file on same line" << endl;

exit(1);
}
else{

outfilename=argv[1];
}
ofile.open(outfilename);
.....
ofile.close(); // close output file

File handling, C++-way

void output(double r_min , double r_max, int max_step,
double *d)

{
int i;
ofile << "RESULTS:" << endl;
ofile << setiosflags(ios::showpoint | ios::uppercase);
ofile <<"R_min = " << setw(15) << setprecision(8) <<r_min <<endl;
ofile <<"R_max = " << setw(15) << setprecision(8) <<r_max <<endl;
ofile <<"Number of steps = " << setw(15) << max_step << endl;
ofile << "Five lowest eigenvalues:" << endl;
for(i = 0; i < 5; i++) {

ofile << setw(15) << setprecision(8) << d[i] << endl;

} // end of function output

File handling, C++-way

int main(int argc, char* argv[])
{

char *infilename;
// Read in input file, abort if there are too
// few command-line arguments
if(argc <= 1){

cout << "Bad Usage: " << argv[0] <<
" read also input file on same line" << endl;

exit(1);
}
else{

infilename=argv[1];
}
ifile.open(infilename);
....
ifile.close(); // close input file

File handling, C++-way

const char* filename1 = "myfile";
ifstream ifile(filename1);
string filename2 = filename1 + ".out"
ofstream ofile(filename2); // new output file
ofstream ofile(filename2, ios_base::app); // append

// Read something from the file:

double a; int b; char c[200];
ifile >> a >> b >> c; // skips white space in between

// Can test on success of reading:

if (!(ifile >> a >> b >> c)) ok = 0;

Call by value or reference
C++ allows the programmer to use solely call by reference (note
that call by reference is implemented as pointers). To see the
difference between C and C++, consider the following simple
examples. In C we would write

int n; n =8;
func(&n); /* &n is a pointer to n */
....
void func(int *i)
{

i = 10; / n is changed to 10 */
....

}

whereas in C++ we would write

int n; n =8;
func(n); // just transfer n itself
....
void func(int& i)
{

i = 10; // n is changed to 10
....

}

Call by value or reference

The reason why we emphasize the difference between call by value
and call by reference is that it allows the programmer to avoid
pitfalls like unwanted changes of variables. However, many people
feel that this reduces the readability of the code.

Call by value and reference, F90/95

In Fortran we can use INTENT(IN), INTENT(OUT), INTENT(INOUT)
to let the program know which values should or should not be
changed.

SUBROUTINE coulomb_integral(np,lp,n,l,coulomb)
USE effective_interaction_declar
USE energy_variables
USE wave_functions
IMPLICIT NONE
INTEGER, INTENT(IN) :: n, l, np, lp
INTEGER :: i
REAL(KIND=8), INTENT(INOUT) :: coulomb
REAL(KIND=8) :: z_rel, oscl_r, sum_coulomb
...

This hinders unwanted changes and increases readability.

Example codes in c++, dynamic memory allocation

#include <iostream>
#include <cmath>
using namespace std; // note use of namespace
int main (int argc, char* argv[])
{

int i = atoi(argv[1]);
// Dynamic memory allocation: need tp declare -a- as a pointer
// You can use double *a = new double[i]; or
double *a;
a = new double[i];
// the first of element of a, a[0], and its address is the
// value of the pointer.
/* This is a longer comment

if we want a static memory allocation
this is the way to do it

*/
cout << " bytes for i=" << sizeof(i) << endl;
for (int j = 0; j < i; j++) {

a[j] = j*exp(2.0);
cout << "a=" << a[j] << endl;

}
// freeing memory
delete [] a;
// to check for memory leaks, use the software called -valgrind-
return 0; /* success execution of the program */

}

Example codes in c++, writing to file and dynamic
allocation for arrays

#include <iostream>
#include <cmath>
#include <fstream>
#include <iomanip>
using namespace std; // note use of namespace

// output file as global variable

ofstream ofile;

// Begin of main program

int main(int argc, char* argv[])
{

char *outfilename;
// Read in output file, abort if there are too few command-line arguments
if(argc <= 2){

cout << "Bad Usage: " << argv[0] <<
" read also output file and number of elements on same line" << endl;

exit(1);
}
else{

outfilename=argv[1];
}

// opening a file for the program
ofile.open(outfilename);
int i = atoi(argv[2]);
// int *a;
//a = new int[i];
double *a = new double[i];
cout << " bytes for i=" << sizeof(i) << endl;
for (int j = 0; j < i; j++) {

a[j] = j*exp(2.0);
// ofile instead of cout
ofile << setw(15) << setprecision(8) << "a=" << a[j] << endl;

}
delete [] a; // free memory
ofile.close(); // close output file
return 0;

}

Example codes in c++, transfer of data using call by value
and call by reference

#include <iostream>
using namespace std;
// Declare functions before main
void func(int, int*);
int main(int argc, char *argv[])
{

int a;
int *b;
a = 10;
b = new int[10];
for(int i = 0; i < 10; i++) {

b[i] = i;
cout << b[i] << endl;

}
// the variable a is transferred by call by value. This means
// that the function func cannot change a in the calling function
func(a,b);

delete [] b ;
return 0;

} // End: function main()

void func(int x, int *y)
{

// a becomes locally x and it can be changed locally
x+=7;
// func gets the address of the first element of y (b)
// it changes y[0] to 10 and when returning control to main
// it changes also b[0]. Call by reference
*y += 10; // *y = *y+10;
// explicit element
y[6] += 10;
// in this function y[0] and y[6] have been changed and when returning
// control to main this means that b[0] and b[6] are changed.
return;

} // End: function func()

Example codes in c++, operating on several arrays and
printing time used

#include <cstdlib>
#include <iostream>
#include <cmath>
#include <iomanip>
#include "time.h"

using namespace std; // note use of namespace
int main (int argc, char* argv[])
{

int i = atoi(argv[1]);
double *a, *b, *c;
a = new double[i];
b = new double[i];
c = new double[i];

clock_t start, finish;
start = clock();
for (int j = 0; j < i; j++) {

a[j] = cos(j*1.0);
b[j] = sin(j+3.0);
c[j] = 0.0;

}
for (int j = 0; j < i; j++) {

c[j] = a[j]+b[j];
}
finish = clock();
double timeused = (double) (finish - start)/(CLOCKS_PER_SEC);
cout << setiosflags(ios::showpoint | ios::uppercase);
cout << setprecision(10) << setw(20) << "Time used for vector addition=" << timeused << endl;
delete [] a;
delete [] b;
delete [] c;
return 0; /* success execution of the program */

}

