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Important Matrix and vector handling packages
The Numerical Recipes codes have been rewritten in Fortran 90/95
and C/C++ by us. The original source codes are taken from the
widely used software package LAPACK, which follows two other
popular packages developed in the 1970s, namely EISPACK and
LINPACK.

LINPACK: package for linear equations and least square
problems.
LAPACK:package for solving symmetric, unsymmetric and
generalized eigenvalue problems. From LAPACK’s website
http://www.netlib.org it is possible to download for free
all source codes from this library. Both C/C++ and Fortran
versions are available.
BLAS (I, II and III): (Basic Linear Algebra Subprograms) are
routines that provide standard building blocks for performing
basic vector and matrix operations. Blas I is vector operations,
II vector-matrix operations and III matrix-matrix operations.
Highly parallelized and efficient codes, all available for
download from http://www.netlib.org.

Basic Matrix Features

Matrix properties reminder

A =




a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44


 I =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1




Basic Matrix Features

The inverse of a matrix is defined by

A−1 · A = I

Basic Matrix Features

Matrix Properties Reminder

Relations Name matrix elements
A = AT symmetric aij = aji

A =
(
AT
)−1 real orthogonal

∑
k aikajk =

∑
k akiakj = δij

A = A∗ real matrix aij = a∗ij
A = A† hermitian aij = a∗ji

A =
(
A†
)−1 unitary

∑
k aika

∗
jk =

∑
k a
∗
kiakj = δij

Some famous Matrices

Diagonal if aij = 0 for i 6= j

Upper triangular if aij = 0 for i > j

Lower triangular if aij = 0 for i < j

Upper Hessenberg if aij = 0 for i > j + 1
Lower Hessenberg if aij = 0 for i < j + 1
Tridiagonal if aij = 0 for |i − j | > 1
Lower banded with bandwidth p: aij = 0 for i > j + p

Upper banded with bandwidth p: aij = 0 for i < j + p

Banded, block upper triangular, block lower triangular....



Basic Matrix Features

Some Equivalent Statements
For an N × N matrix A the following properties are all equivalent

If the inverse of A exists, A is nonsingular.
The equation Ax = 0 implies x = 0.
The rows of A form a basis of RN .
The columns of A form a basis of RN .
A is a product of elementary matrices.
0 is not eigenvalue of A.

Important Mathematical Operations

The basic matrix operations that we will deal with are addition and
subtraction

A = B± C =⇒ aij = bij ± cij , (1)

scalar-matrix multiplication

A = γB =⇒ aij = γbij , (2)

vector-matrix multiplication

Important Mathematical Operations

y = Ax =⇒ yi =
n∑

j=1

aijxj , (3)

matrix-matrix multiplication

A = BC =⇒ aij =
n∑

k=1

bikckj , (4)

and transposition

A = BT =⇒ aij = bji (5)

Important Mathematical Operations

Similarly, important vector operations that we will deal with are
addition and subtraction

x = y ± z =⇒ xi = yi ± zi , (6)

scalar-vector multiplication

x = γy =⇒ xi = γyi , (7)

vector-vector multiplication (called Hadamard multiplication)

Important Mathematical Operations

x = yz =⇒ xi = yizi , (8)

the inner or so-called dot product resulting in a constant

x = yTz =⇒ x =
n∑

j=1

yjzj , (9)

and the outer product, which yields a matrix,

A = yzT =⇒ aij = yizj , (10)

Matrix Handling in C/C++, Static and Dynamical allocation

Static
We have an N × N matrix A with N = 100 In C/C++ this would
be defined as

int N = 100;
double A[100][100];
// initialize all elements to zero
for(i=0 ; i < N ; i++) {

for(j=0 ; j < N ; j++) {
A[i][j] = 0.0;

Note the way the matrix is organized, row-major order.



Matrix Handling in C/C++

Row Major Order, Addition
We have N × N matrices A, B and C and we wish to evaluate
A = B + C .

A = B± C =⇒ aij = bij ± cij ,

In C/C++ this would be coded like
for(i=0 ; i < N ; i++) {

for(j=0 ; j < N ; j++) {
a[i][j] = b[i][j]+c[i][j]

Matrix Handling in C/C++

Row Major Order, Multiplication
We have N × N matrices A, B and C and we wish to evaluate
A = BC .

A = BC =⇒ aij =
n∑

k=1

bikckj ,

In C/C++ this would be coded like
for(i=0 ; i < N ; i++) {

for(j=0 ; j < N ; j++) {
for(k=0 ; k < N ; k++) {

a[i][j]+=b[i][k]*c[k][j];

Matrix Handling in Fortran 90/95

Column Major Order
ALLOCATE (a(N,N), b(N,N), c(N,N))
DO j=1, N

DO i=1, N
a(i,j)=b(i,j)+c(i,j)

ENDDO
ENDDO
...
DEALLOCATE(a,b,c)

Fortran 90 writes the above statements in a much simpler way
a=b+c

Multiplication
a=MATMUL(b,c)

Fortran contains also the intrinsic functions TRANSPOSE and
CONJUGATE.

Dynamic memory allocation in C/C++

At least three possibilities in this course

Do it yourself
Use the functions provided in the library package lib.cpp
Use Armadillo http://arma.sourceforgenet (a C++ linear
algebra library, discussion both here and at lab).

Matrix Handling in C/C++, Dynamic Allocation

Do it yourself
int N;
double ** A;
A = new double*[N]
for ( i = 0; i < N; i++)

A[i] = new double[N];

Always free space when you don’t need an array anymore.
for ( i = 0; i < N; i++)

delete[] A[i];
delete[] A;

Armadillo, recommended!!
Armadillo is a C++ linear algebra library (matrix maths)
aiming towards a good balance between speed and ease of use.
The syntax is deliberately similar to Matlab.
Integer, floating point and complex numbers are supported, as
well as a subset of trigonometric and statistics functions.
Various matrix decompositions are provided through optional
integration with LAPACK, or one of its high performance
drop-in replacements (such as the multi-threaded MKL or
ACML libraries).
A delayed evaluation approach is employed (at compile-time)
to combine several operations into one and reduce (or
eliminate) the need for temporaries. This is accomplished
through recursive templates and template meta-programming.
Useful for conversion of research code into production
environments, or if C++ has been decided as the language of
choice, due to speed and/or integration capabilities.
The library is open-source software, and is distributed under a
license that is useful in both open-source and
commercial/proprietary contexts.



Armadillo, simple examples

#include <iostream>
#include <armadillo>

using namespace std;
using namespace arma;

int main(int argc, char** argv)
{
mat A = randu<mat>(5,5);
mat B = randu<mat>(5,5);

cout << A*B << endl;

return 0;

Armadillo, how to compile and install

For people using Ubuntu, Debian, Linux Mint, simply go to the
synaptic package manager and install armadillo from there. You
may have to install Lapack as well. For Mac and Windows users,
follow the instructions from the webpage
http://arma.sourceforge.net. To compile, use for example
(linux/ubuntu)

c++ -O2 -o program.x program.cpp -larmadillo -llapack -lblas

where the -l option indicates the library you wish to link to.

For OS X users you may have to declare the paths to the include
files and the libraries as

c++ -O2 -o program.x program.cpp -L/usr/local/lib -I/usr/local/include -larmadillo -llapack -lblas

Armadillo, simple examples

#include <iostream>
#include "armadillo"
using namespace arma;
using namespace std;

int main(int argc, char** argv)
{
// directly specify the matrix size (elements are uninitialised)
mat A(2,3);
// .n_rows = number of rows (read only)
// .n_cols = number of columns (read only)
cout << "A.n_rows = " << A.n_rows << endl;
cout << "A.n_cols = " << A.n_cols << endl;
// directly access an element (indexing starts at 0)
A(1,2) = 456.0;
A.print("A:");
// scalars are treated as a 1x1 matrix,
// hence the code below will set A to have a size of 1x1
A = 5.0;
A.print("A:");
// if you want a matrix with all elements set to a particular value
// the .fill() member function can be used
A.set_size(3,3);
A.fill(5.0); A.print("A:");

Armadillo, simple examples

mat B;

// endr indicates "end of row"
B << 0.555950 << 0.274690 << 0.540605 << 0.798938 << endr

<< 0.108929 << 0.830123 << 0.891726 << 0.895283 << endr
<< 0.948014 << 0.973234 << 0.216504 << 0.883152 << endr
<< 0.023787 << 0.675382 << 0.231751 << 0.450332 << endr;

// print to the cout stream
// with an optional string before the contents of the matrix
B.print("B:");

// the << operator can also be used to print the matrix
// to an arbitrary stream (cout in this case)
cout << "B:" << endl << B << endl;
// save to disk
B.save("B.txt", raw_ascii);
// load from disk
mat C;
C.load("B.txt");
C += 2.0 * B;
C.print("C:");

Armadillo, simple examples

// submatrix types:
//
// .submat(first_row, first_column, last_row, last_column)
// .row(row_number)
// .col(column_number)
// .cols(first_column, last_column)
// .rows(first_row, last_row)

cout << "C.submat(0,0,3,1) =" << endl;
cout << C.submat(0,0,3,1) << endl;

// generate the identity matrix
mat D = eye<mat>(4,4);

D.submat(0,0,3,1) = C.cols(1,2);
D.print("D:");

// transpose
cout << "trans(B) =" << endl;
cout << trans(B) << endl;

// maximum from each column (traverse along rows)
cout << "max(B) =" << endl;
cout << max(B) << endl;

Armadillo, simple examples

// maximum from each row (traverse along columns)
cout << "max(B,1) =" << endl;
cout << max(B,1) << endl;
// maximum value in B
cout << "max(max(B)) = " << max(max(B)) << endl;
// sum of each column (traverse along rows)
cout << "sum(B) =" << endl;
cout << sum(B) << endl;
// sum of each row (traverse along columns)
cout << "sum(B,1) =" << endl;
cout << sum(B,1) << endl;
// sum of all elements
cout << "sum(sum(B)) = " << sum(sum(B)) << endl;
cout << "accu(B) = " << accu(B) << endl;
// trace = sum along diagonal
cout << "trace(B) = " << trace(B) << endl;
// random matrix -- values are uniformly distributed in the [0,1] interval
mat E = randu<mat>(4,4);
E.print("E:");



Armadillo, simple examples

// row vectors are treated like a matrix with one row
rowvec r;
r << 0.59499 << 0.88807 << 0.88532 << 0.19968;
r.print("r:");

// column vectors are treated like a matrix with one column
colvec q;
q << 0.81114 << 0.06256 << 0.95989 << 0.73628;
q.print("q:");

// dot or inner product
cout << "as_scalar(r*q) = " << as_scalar(r*q) << endl;

// outer product
cout << "q*r =" << endl;
cout << q*r << endl;

// sum of three matrices (no temporary matrices are created)
mat F = B + C + D;
F.print("F:");

return 0;

Armadillo, simple examples

#include <iostream>
#include "armadillo"
using namespace arma;
using namespace std;

int main(int argc, char** argv)
{
cout << "Armadillo version: " << arma_version::as_string() << endl;

mat A;

A << 0.165300 << 0.454037 << 0.995795 << 0.124098 << 0.047084 << endr
<< 0.688782 << 0.036549 << 0.552848 << 0.937664 << 0.866401 << endr
<< 0.348740 << 0.479388 << 0.506228 << 0.145673 << 0.491547 << endr
<< 0.148678 << 0.682258 << 0.571154 << 0.874724 << 0.444632 << endr
<< 0.245726 << 0.595218 << 0.409327 << 0.367827 << 0.385736 << endr;

A.print("A =");

// determinant
cout << "det(A) = " << det(A) << endl;

Armadillo, simple examples

// inverse
cout << "inv(A) = " << endl << inv(A) << endl;
double k = 1.23;

mat B = randu<mat>(5,5);
mat C = randu<mat>(5,5);

rowvec r = randu<rowvec>(5);
colvec q = randu<colvec>(5);

// examples of some expressions
// for which optimised implementations exist
// optimised implementation of a trinary expression
// that results in a scalar
cout << "as_scalar( r*inv(diagmat(B))*q ) = ";
cout << as_scalar( r*inv(diagmat(B))*q ) << endl;

// example of an expression which is optimised
// as a call to the dgemm() function in BLAS:
cout << "k*trans(B)*C = " << endl << k*trans(B)*C;

return 0;

Gaussian Elimination

We start with the linear set of equations

Ax = w.

We assume also that the matrix A is non-singular and that the
matrix elements along the diagonal satisfy aii 6= 0. Simple 4× 4
example




a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44







x1
x2
x3
x4


 =




w1
w2
w3
w4


 .

Gaussian Elimination

or

a11x1 + a12x2 + a13x3 + a14x4 =w1

a21x1 + a22x2 + a23x3 + a24x4 =w2

a31x1 + a32x2 + a33x3 + a34x4 =w3

a41x1 + a42x2 + a43x3 + a44x4 =w4.

Gaussian Elimination

The basic idea of Gaussian elimination is to use the first equation
to eliminate the first unknown x1 from the remaining n − 1
equations. Then we use the new second equation to eliminate the
second unknown x2 from the remaining n − 2 equations. With
n− 1 such eliminations we obtain a so-called upper triangular set of
equations of the form

b11x1 + b12x2 + b13x3 + b14x4 =y1

b22x2 + b23x3 + b24x4 =y2

b33x3 + b34x4 =y3

b44x4 =y4.

We can solve this system of equations recursively starting from xn
(in our case x4) and proceed with what is called a backward
substitution.



Gaussian Elimination

This process can be expressed mathematically as

xm =
1

bmm

(
ym −

n∑

k=m+1

bmkxk

)
m = n − 1, n − 2, . . . , 1. (11)

To arrive at such an upper triangular system of equations, we start
by eliminating the unknown x1 for j = 2, n. We achieve this by
multiplying the first equation by aj1/a11 and then subtract the
result from the jth equation. We assume obviously that a11 6= 0
and that A is not singular.

Gaussian Elimination
Our actual 4× 4 example reads after the first operation




a11 a12 a13 a14
0 (a22 − a21a12

a11
) (a23 − a21a13

a11
) (a24 − a21a14

a11
)

0 (a32 − a31a12
a11

) (a33 − a31a13
a11

) (a34 − a31a14
a11

)

0 (a42 − a41a12
a11

) (a43 − a41a13
a11

) (a44 − a41a14
a11

)







x1
x2
x3
x4


 =




y1

w
(2)
2

w
(2)
3

w
(2)
4


 ,

or

b11x1 + b12x2 + b13x3 + b14x4 =y1

a
(2)
22 x2 + a

(2)
23 x3 + a

(2)
24 x4 =w

(2)
2

a
(2)
32 x2 + a

(2)
33 x3 + a

(2)
34 x4 =w

(2)
3

a
(2)
42 x2 + a

(2)
43 x3 + a

(2)
44 x4 =w

(2)
4 ,

(12)

Gaussian Elimination
The new coefficients are

b1k = a
(1)
1k k = 1, . . . , n, (13)

where each a
(1)
1k is equal to the original a1k element. The other

coefficients are

a
(2)
jk = a

(1)
jk −

a
(1)
j1 a

(1)
1k

a
(1)
11

j , k = 2, . . . , n, (14)

with a new right-hand side given by

y1 = w
(1)
1 , w

(2)
j = w

(1)
j −

a
(1)
j1 w

(1)
1

a
(1)
11

j = 2, . . . , n. (15)

We have also set w (1)
1 = w1, the original vector element. We see

that the system of unknowns x1, . . . , xn is transformed into an
(n − 1)× (n − 1) problem.

Gaussian Elimination
This step is called forward substitution. Proceeding with these
substitutions, we obtain the general expressions for the new
coefficients

a
(m+1)
jk = a

(m)
jk −

a
(m)
jm a

(m)
mk

a
(m)
mm

j , k = m + 1, . . . , n, (16)

with m = 1, . . . , n − 1 and a right-hand side given by

w
(m+1)
j = w

(m)
j −

a
(m)
jm w

(m)
m

a
(m)
mm

j = m + 1, . . . , n. (17)

This set of n − 1 elimations leads us to an equations which is
solved by back substitution. If the arithmetics is exact and the
matrix A is not singular, then the computed answer will be exact.

Even though the matrix elements along the diagonal are not zero,
numerically small numbers may appear and subsequent divisions
may lead to large numbers, which, if added to a small number may
yield losses of precision. Suppose for example that our first division
in (a22− a21a12/a11) results in −10−7 and that a22 is one. one. We
are then adding 107 + 1. With single precision this results in 107.

Gaussian Elimination and Tridiagonal matrices, project 1
Suppose we want to solve the following boundary value equation

−d2u(x)

dx2 = f (x , u(x)),

with x ∈ (a, b) and with boundary conditions u(a) = u(b) = 0. We
assume that f is a continuous function in the domain x ∈ (a, b).
Since, except the few cases where it is possible to find analytic
solutions, we will seek after approximate solutions, we choose to
represent the approximation to the second derivative from the
previous chapter

f ′′ =
fh − 2f0 + f−h

h2 + O(h2).

We subdivide our interval x ∈ (a, b) into n subintervals by setting
xi = ih, with i = 0, 1, . . . , n + 1. The step size is then given by
h = (b − a)/(n + 1) with n ∈ N. For the internal grid points
i = 1, 2, . . . n we replace the differential operator with the above
formula resulting in

u′′(xi ) ≈
u(xi + h)− 2u(xi ) + u(xi − h)

h2 ,

which we rewrite as

u
′′
i ≈

ui+1 − 2ui + ui−i
h2 .

Gaussian Elimination and Tridiagonal matrices, project 1
We can rewrite our original differential equation in terms of a
discretized equation with approximations to the derivatives as

−ui+1 − 2ui + ui−i
h2 = f (xi , u(xi )),

with i = 1, 2, . . . , n. We need to add to this system the two
boundary conditions u(a) = u0 and u(b) = un+1. If we define a
matrix

A =
1
h2




2 −1
−1 2 −1

−1 2 −1
. . . . . . . . . . . . . . .

−1 2 −1
−1 2




and the corresponding vectors u = (u1, u2, . . . , un)
T and

f(u) = f (x1, x2, . . . , xn, u1, u2, . . . , un)
T we can rewrite the

differential equation including the boundary conditions as a system
of linear equations with a large number of unknowns

Au = f(u).



Gaussian Elimination and Tridiagonal matrices, project 1

We start with the linear set of equations

Au = f,

where A is a tridiagonal matrix which we rewrite as

A =




b1 c1 0 . . . . . . . . .
a2 b2 c2 . . . . . . . . .

a3 b3 c3 . . . . . .
. . . . . . . . . . . . . . .

an−1 bn−1 cn−1
an bn




where a, b, c are one-dimensional arrays of length 1 : n. In project 1
the arrays a and c are equal, namely ai = ci = −1/h2. The matrix
is also positive definite.

Gaussian Elimination and Tridiagonal matrices, project 1

We can rewrite as

A =




b1 c1 0 . . . . . . . . .
a2 b2 c2 . . . . . . . . .

a3 b3 c3 . . . . . .
. . . . . . . . . . . . . . .

an−1 bn−1 cn−1
an bn







u1
u2
. . .
. . .
. . .
un



=




f1
f2
. . .
. . .
. . .
fn



.

Gaussian Elimination and Tridiagonal matrices, project 1

A tridiagonal matrix is a special form of banded matrix where all
the elements are zero except for those on and immediately above
and below the leading diagonal. The above tridiagonal system can
be written as

aiui−1 + biui + ciui+1 = fi ,

for i = 1, 2, . . . , n. We see that u−1 and un+1 are not required and
we can set a1 = cn = 0. In many applications the matrix is
symmetric and we have ai = ci . The algorithm for solving this set
of equations is rather simple and requires two steps only, a forward
substitution and a backward substitution. These steps are also
common to the algorithms based on Gaussian elimination that we
discussed previously. However, due to its simplicity, the number of
floating point operations is in this case proportional with O(n)
while Gaussian elimination requires 2n3/3+ O(n2) floating point
operations.

Gaussian Elimination and Tridiagonal matrices, project 1

In case your system of equations leads to a tridiagonal matrix, it is
clearly an overkill to employ Gaussian elimination or the standard
LU decomposition.

Our algorithm starts with forward substitution with a loop over of
the elements i and gives an update of the diagonal elements bi
given by the new diagonals b̃i

b̃i = bi −
aici−1

b̃i−1
,

and the new righthand side f̃i given by

f̃i = fi −
ai f̃i−1

b̃i−1
.

Recall that b̃1 = b1 and f̃1 = f1 always.

Backward substitution

The backward substitution gives then the final solution

ui−1 =
f̃i−1 − ci−1ui

b̃i−1
,

with un = f̃n/b̃n when i = n, the last point.

Gaussian Elimination and Tridiagonal matrices, project 1

The matrix A which rephrases a second derivative in a discretized
form is much simpler than the general matrix

A =




2 −1 0 0 0 0
−1 2 −1 0 0 0
0 −1 2 −1 0 0
0 . . . . . . . . . . . . . . .
0 0 0 −1 2 −1
0 0 0 0 −1 2



.

This matrix fulfills the condition of a weak dominance of the
diagonal, with |b1| > |c1|, |bn| > |an| and |bk | ≥ |ak |+ |ck | for
k = 2, 3, . . . , n − 1. This is a relevant but not sufficient condition
to guarantee that the matrix A yields a solution to a linear equation
problem. The matrix needs also to be irreducible. A tridiagonal
irreducible matrix means that all the elements ai and ci are
non-zero. If these two conditions are present, then A is nonsingular
and has a unique LU decomposition.



Project 1, hints

When setting up the algo it is useful to note that the different
operations on the matrix (here as a 4× 4 case with diagonals di
and off-diagonals ei ) give is an extremely simple algorithm, namely




d1 e1 0 0
e2 d2 e2 0
0 e3 d3 e3
0 0 e4 d4


→




d1 e1 0 0
0 d̃2 e2 0
0 e3 d3 e3
0 0 e4 d4


→




d1 e1 0 0
0 d̃2 e2 0
0 0 d̃3 e3
0 0 e4 d4




and finally




d1 e1 0 0
0 d̃2 e2 0
0 0 d̃3 e3
0 0 0 d̃4




Project 1, hints

We notice the sub-blocks which get repeated




d1 e1 0 0
0 d̃2 e2 0
0 0 d̃3 e3
0 0 0 d̃4




The matrices we often end up with in rewriting for for example
partial differential equations, have the feature that all leading
principal submatrices are non-singular.

Simple expressions for project 1
For the special matrix we can can actually precalculate the updated
matrix elements d̃i . The non-diagonal elements ei are unchanged.
For our particular matrix in project 1 we have

d̃i = 2− 1
d̃i−1

=
i + 1
i

,

and the new righthand side f̃i given by

f̃i = fi +
(i − 1)f̃i−1

i
.

Recall that d̃1 = 2 and f̃1 = f1. These arrays can be set up before
computing u.

The backward substitution gives then the final solution

ui−1 =
i − 1
i

(
f̃i−1 + ui

)
,

with un = f̃n/b̃n.

Program example
#include <iostream>
#include <fstream>
#include <iomanip>
#include <cmath>
#include <string>
// use namespace for output and input
using namespace std;

// object for output files
ofstream ofile;
// Functions used
inline double f(double x){return 100.0*exp(-10.0*x);
}
inline double exact(double x) {return 1.0-(1-exp(-10))*x-exp(-10*x);}

// Begin main program
int main(int argc, char *argv[]){

int exponent;
string filename;
// We read also the basic name for the output file and the highest power of 10^n we want
if( argc <= 1 ){

cout << "Bad Usage: " << argv[0] <<
" read also file name on same line and max power 10^n" << endl;

exit(1);
}

else{
filename = argv[1]; // first command line argument after name of program
exponent = atoi(argv[2]);

}
// Loop over powers of 10
for (int i = 1; i <= exponent; i++){

int n = (int) pow(10.0,i);
// Declare new file name
string fileout = filename;
// Convert the power 10^i to a string
string argument = to_string(i);
// Final filename as filename-i-
fileout.append(argument);
double h = 1.0/(n);
double hh = h*h;
// Set up arrays for the simple case
double *d = new double [n+1]; double *b = new double [n+1]; double *solution = new double [n+1];
double *x = new double[n+1];
// Quick setup of updated diagonal elements and value of
d[0] = d[n] = 2; solution[0] = solution[n] = 0.0;
for (int i = 1; i < n; i++) d[i] = (i+1.0)/( (double) i);
for (int i = 0; i <= n; i++){

x[i]= i*h;
b[i] = hh*f(i*h);

}
// Forward substitution
for (int i = 2; i < n; i++) b[i] = b[i] + b[i-1]/d[i-1];
// Backward substitution
solution[n-1] = b[n-1]/d[n-1];
for (int i = n-2; i > 0; i--) solution[i] = (b[i]+solution[i+1])/d[i];
ofile.open(fileout);
ofile << setiosflags(ios::showpoint | ios::uppercase);
// ofile << " x: approx: exact: relative error" << endl;
for (int i = 1; i < n;i++) {

double xval = x[i];
double RelativeError = fabs((exact(xval)-solution[i])/exact(xval));

ofile << setw(15) << setprecision(8) << xval;
ofile << setw(15) << setprecision(8) << solution[i];
ofile << setw(15) << setprecision(8) << exact(xval);
ofile << setw(15) << setprecision(8) << log10(RelativeError) << endl;

}
ofile.close();
delete [] x; delete [] d; delete [] b; delete [] solution;

}
return 0;

}

Linear Algebra Methods

Gaussian elimination, O(2/3n3) flops, general matrix
LU decomposition, upper triangular and lower tridiagonal
matrices, O(2/3n3) flops, general matrix. Get easily the
inverse, determinant and can solve linear equations with
back-substitution only, O(n2) flops
Cholesky decomposition. Real symmetric or hermitian positive
definite matrix, O(1/3n3) flops.
Tridiagonal linear systems, important for differential equations.
Normally positive definite and non-singular. O(8n) flops for
symmetric. Special case of banded matrices.
Singular value decomposition
the QR method will be discussed in chapter 7 in connection
with eigenvalue systems. O(4/3n3) flops.

LU Decomposition

The LU decomposition method means that we can rewrite this
matrix as the product of two matrices L and U where




a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44


 =




1 0 0 0
l21 1 0 0
l31 l32 1 0
l41 l42 l43 1







u11 u12 u13 u14
0 u22 u23 u24
0 0 u33 u34
0 0 0 u44


 .



LU Decomposition
LU decomposition forms the backbone of other algorithms in linear
algebra, such as the solution of linear equations given by

a11x1 + a12x2 + a13x3 + a14x4 =w1

a21x1 + a22x2 + a23x3 + a24x4 =w2

a31x1 + a32x2 + a33x3 + a34x4 =w3

a41x1 + a42x2 + a43x3 + a44x4 =w4.

The above set of equations is conveniently solved by using LU
decomposition as an intermediate step.

The matrix A ∈ Rn×n has an LU factorization if the determinant is
different from zero. If the LU factorization exists and A is
non-singular, then the LU factorization is unique and the
determinant is given by

det{A} = det{LU} = det{L}det{U} = u11u22 . . . unn.

LU Decomposition, why?

There are at least three main advantages with LU decomposition
compared with standard Gaussian elimination:

It is straightforward to compute the determinant of a matrix
If we have to solve sets of linear equations with the same
matrix but with different vectors y, the number of FLOPS is of
the order n3.
The inverse is such an operation

LU Decomposition, linear equations
With the LU decomposition it is rather simple to solve a system of
linear equations

a11x1 + a12x2 + a13x3 + a14x4 =w1

a21x1 + a22x2 + a23x3 + a24x4 =w2

a31x1 + a32x2 + a33x3 + a34x4 =w3

a41x1 + a42x2 + a43x3 + a44x4 =w4.

This can be written in matrix form as

Ax = w.

where A and w are known and we have to solve for x. Using the
LU dcomposition we write

Ax ≡ LUx = w.

LU Decomposition, linear equations
The previous equation can be calculated in two steps

Ly = w; Ux = y.

To show that this is correct we use to the LU decomposition to
rewrite our system of linear equations as

LUx = w,

and since the determinat of L is equal to 1 (by construction since
the diagonals of L equal 1) we can use the inverse of L to obtain

Ux = L−1w = y,

which yields the intermediate step

L−1w = y

and as soon as we have y we can obtain x through Ux = y.

LU Decomposition, why?
For our four-dimentional example this takes the form

y1 =w1

l21y1 + y2 =w2

l31y1 + l32y2 + y3 =w3

l41y1 + l42y2 + l43y3 + y4 =w4.

and

u11x1 + u12x2 + u13x3 + u14x4 =y1

u22x2 + u23x3 + u24x4 =y2

u33x3 + u34x4 =y3

u44x4 =y4

This example shows the basis for the algorithm needed to solve the
set of n linear equations.

LU Decomposition, linear equations
The algorithm goes as follows

Set up the matrix A and the vector w with their correct
dimensions. This determines the dimensionality of the
unknown vector x.
Then LU decompose the matrix A through a call to the
function
ludcmp(double a, int n, int indx, double &d). This
functions returns the LU decomposed matrix A, its
determinant and the vector indx which keeps track of the
number of interchanges of rows. If the determinant is zero, the
solution is malconditioned.
Thereafter you call the function lubksb(double a, int n,
int indx, double w) which uses the LU decomposed matrix
A and the vector w and returns x in the same place as w.
Upon exit the original content in w is destroyed. If you wish to
keep this information, you should make a backup of it in your
calling function.



LU Decomposition, the inverse of a matrix

If the inverse exists then

A−1A = I,

the identity matrix. With an LU decomposed matrix we can rewrite
the last equation as

LUA−1 = I.

LU Decomposition, the inverse of a matrix

If we assume that the first column (that is column 1) of the inverse
matrix can be written as a vector with unknown entries

A−1
1 =




a−1
11
a−1
21
. . .

a−1
n1


 ,

then we have a linear set of equations

LU




a−1
11
a−1
21
. . .

a−1
n1


 =




1
0
. . .
0


 .

LU Decomposition, the inverse

In a similar way we can compute the unknow entries of the second
column,

LU




a−1
12
a−1
22
. . .

a−1
n2


 =




0
1
. . .
0


 ,

and continue till we have solved all n sets of linear equations.

How to use the Library functions

Standard C/C++: fetch the files lib.cpp and lib.h. You can
make a directory where you store these files, and eventually its
compiled version lib.o. The example here is program1.cpp from
chapter 6 and performs the matrix inversion.

// Simple matrix inversion example
#include <iostream>
#include <new>
#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <cstring>
#include "lib.h"

using namespace std;

/* function declarations */

void inverse(double **, int);

How to use the Library functions

void inverse(double **a, int n)
{

int i,j, *indx;
double d, *col, **y;
// allocate space in memory
indx = new int[n];
col = new double[n];
y = (double **) matrix(n, n, sizeof(double));
ludcmp(a, n, indx, &d); // LU decompose a[][]
printf("\n\nLU form of matrix of a[][]:\n");
for(i = 0; i < n; i++) {

printf("\n");
for(j = 0; j < n; j++) {

printf(" a[%2d][%2d] = %12.4E",i, j, a[i][j]);

How to use the Library functions

// find inverse of a[][] by columns
for(j = 0; j < n; j++) {

// initialize right-side of linear equations
for(i = 0; i < n; i++) col[i] = 0.0;
col[j] = 1.0;
lubksb(a, n, indx, col);
// save result in y[][]
for(i = 0; i < n; i++) y[i][j] = col[i];

} //j-loop over columns
// return the inverse matrix in a[][]
for(i = 0; i < n; i++) {

for(j = 0; j < n; j++) a[i][j] = y[i][j];

free_matrix((void **) y); // release local memory
delete [] col;
delete []indx;

} // End: function inverse()



How to use the Library functions

For Fortran users:

PROGRAM matrix
USE constants
USE F90library
IMPLICIT NONE
! The definition of the matrix, using dynamic allocation
REAL(DP), ALLOCATABLE, DIMENSION(:,:) :: a, ainv, unity
! the determinant
REAL(DP) :: d
! The size of the matrix
INTEGER :: n
....
! Allocate now place in heap for a
ALLOCATE ( a(n,n), ainv(n,n), unity(n,n) )

How to use the Library functions

For Fortran users:

WRITE(6,*) ’ The matrix before inversion’
WRITE(6,’(3F12.6)’) a
ainv=a
CALL matinv (ainv, n, d)
....
! get the unity matrix
unity=MATMUL(ainv,a)
WRITE(6,*) ’ The unity matrix’
WRITE(6,’(3F12.6)’) unity
! deallocate all arrays
DEALLOCATE (a, ainv, unity)

END PROGRAM matrix

Using Armadillo to perform an LU decomposition
#include <iostream>
#include "armadillo"
using namespace arma;
using namespace std;

int main()
{
mat A = randu<mat>(5,5);
vec b = randu<vec>(5);

A.print("A =");
b.print("b=");
// solve Ax = b
vec x = solve(A,b);
// print x
x.print("x=");
// find LU decomp of A, if needed, P is the permutation matrix
mat L, U;
lu(L,U,A);
// print l
L.print(" L= ");
// print U
U.print(" U= ");
//Check that A = LU
(A-L*U).print("Test of LU decomposition");

return 0;
}

Iterative methods, Chapter 6

Direct solvers such as Gauss elimination and LU decomposition
discussed in connection with project 1.
Iterative solvers such as Basic iterative solvers, Jacobi,
Gauss-Seidel, Successive over-relaxation. These methods are
easy to parallelize, as we will se later. Much used in solutions
of partial differential equations.
Other iterative methods such as Krylov subspace methods with
Generalized minimum residual (GMRES) and Conjugate
gradient etc will not be discussed.

Iterative methods, Jacobi’s method

It is a simple method for solving

Ax = b,

where A is a matrix and x and b are vectors. The vector x is the
unknown.
It is an iterative scheme where we start with a guess for the
unknown, and after k + 1 iterations we have

x(k+1) = D−1(b− (L + U)x(k)),

with A = D + U + L and D being a diagonal matrix, U an upper
triangular matrix and L a lower triangular matrix.
If the matrix A is positive definite or diagonally dominant, one can
show that this method will always converge to the exact solution.

Iterative methods, Jacobi’s method
We can demonstrate Jacobi’s method by this 4× 4 matrix problem.
We assume a guess for the vector elements x (0)i , a guess which
represents our first iteration. The new values are obtained by
substitution

x
(1)
1 =(b1 − a12x

(0)
2 − a13x

(0)
3 − a14x

(0)
4 )/a11

x
(1)
2 =(b2 − a21x

(0)
1 − a23x

(0)
3 − a24x

(0)
4 )/a22

x
(1)
3 =(b3 − a31x

(0)
1 − a32x

(0)
2 − a34x

(0)
4 )/a33

x
(1)
4 =(b4 − a41x

(0)
1 − a42x

(0)
2 − a43x

(0)
3 )/a44,

which after k + 1 iterations reads

x
(k+1)
1 =(b1 − a12x

(k)
2 − a13x

(k)
3 − a14x

(k)
4 )/a11

x
(k+1)
2 =(b2 − a21x

(k)
1 − a23x

(k)
3 − a24x

(k)
4 )/a22

x
(k+1)
3 =(b3 − a31x

(k)
1 − a32x

(k)
2 − a34x

(k)
4 )/a33

x
(k+1)
4 =(b4 − a41x

(k)
1 − a42x

(k)
2 − a43x

(k)
3 )/a44,



Iterative methods, Jacobi’s method

We can generalize the above equations to

x
(k+1)
i = (bi −

n∑

j=1,j 6=i

aijx
(k)
j )/aii

or in an even more compact form as

x(k+1) = D−1(b− (L + U)x(k)),

with A = D + U + L and D being a diagonal matrix, U an upper
triangular matrix and L a lower triangular matrix.

Iterative methods, Gauss-Seidel’s method
Our 4× 4 matrix problem

x
(k+1)
1 =(b1 − a12x

(k)
2 − a13x

(k)
3 − a14x

(k)
4 )/a11

x
(k+1)
2 =(b2 − a21x

(k)
1 − a23x

(k)
3 − a24x

(k)
4 )/a22

x
(k+1)
3 =(b3 − a31x

(k)
1 − a32x

(k)
2 − a34x

(k)
4 )/a33

x
(k+1)
4 =(b4 − a41x

(k)
1 − a42x

(k)
2 − a43x

(k)
3 )/a44,

can be rewritten as

x
(k+1)
1 =(b1 − a12x

(k)
2 − a13x

(k)
3 − a14x

(k)
4 )/a11

x
(k+1)
2 =(b2 − a21x

(k+1)
1 − a23x

(k)
3 − a24x

(k)
4 )/a22

x
(k+1)
3 =(b3 − a31x

(k+1)
1 − a32x

(k+1)
2 − a34x

(k)
4 )/a33

x
(k+1)
4 =(b4 − a41x

(k+1)
1 − a42x

(k+1)
2 − a43x

(k+1)
3 )/a44,

which allows us to utilize the preceding solution (forward
substitution). This improves normally the convergence behavior and
leads to the Gauss-Seidel method!

Iterative methods, Gauss-Seidel’s method
We can generalize

x
(k+1)
1 =(b1 − a12x

(k)
2 − a13x

(k)
3 − a14x

(k)
4 )/a11

x
(k+1)
2 =(b2 − a21x

(k+1)
1 − a23x

(k)
3 − a24x

(k)
4 )/a22

x
(k+1)
3 =(b3 − a31x

(k+1)
1 − a32x

(k+1)
2 − a34x

(k)
4 )/a33

x
(k+1)
4 =(b4 − a41x

(k+1)
1 − a42x

(k+1)
2 − a43x

(k+1)
3 )/a44,

to the following form

x
(k+1)
i =

1
aii


bi −

∑

j>i

aijx
(k)
j −

∑

j<i

aijx
(k+1)
j


 , i = 1, 2, . . . , n.

The procedure is generally continued until the changes made by an
iteration are below some tolerance.
The convergence properties of the Jacobi method and the
Gauss-Seidel method are dependent on the matrix A. These
methods converge when the matrix is symmetric positive-definite,
or is strictly or irreducibly diagonally dominant. Both methods
sometimes converge even if these conditions are not satisfied.

Iterative methods, Successive over-relaxation

Given a square system of n linear equations with unknown x:

Ax = b

where

A =




a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
an1 an2 · · · ann


 , x =




x1
x2
...
xn


 , b =




b1
b2
...
bn


 .

Iterative methods, Successive over-relaxation

Then A can be decomposed into a diagonal component D, and
strictly lower and upper triangular components L and U:

A = D + L + U,

where

D =




a11 0 · · · 0
0 a22 · · · 0
...

...
. . .

...
0 0 · · · ann


 , L =




0 0 · · · 0
a21 0 · · · 0
...

...
. . .

...
an1 an2 · · · 0


 , U =




0 a12 · · · a1n
0 0 · · · a2n
...

...
. . .

...
0 0 · · · 0


 .

The system of linear equations may be rewritten as:

(D + ωL)x = ωb− [ωU + (ω − 1)D]x

for a constant ω > 1.

Iterative methods, Successive over-relaxation

The method of successive over-relaxation is an iterative technique
that solves the left hand side of this expression for x , using previous
value for x on the right hand side. Analytically, this may be written
as:

x(k+1) = (D + ωL)−1(ωb− [ωU + (ω − 1)D]x(k)
)
.

However, by taking advantage of the triangular form of (D + ωL),
the elements of x (k+1) can be computed sequentially using forward
substitution:

x
(k+1)
i = (1−ω)x (k)i +

ω

aii


bi −

∑

j>i

aijx
(k)
j −

∑

j<i

aijx
(k+1)
j


 , i = 1, 2, . . . , n.

The choice of relaxation factor is not necessarily easy, and depends
upon the properties of the coefficient matrix. For symmetric,
positive-definite matrices it can be proven that 0 < ω < 2 will lead
to convergence, but we are generally interested in faster
convergence rather than just convergence.



Cubic Splines, Chapter 6

Cubic spline interpolation is among one of the most used methods
for interpolating between data points where the arguments are
organized as ascending series. In the library program we supply
such a function, based on the so-called cubic spline method to be
described below.
A spline function consists of polynomial pieces defined on
subintervals. The different subintervals are connected via various
continuity relations.
Assume we have at our disposal n + 1 points x0, x1, . . . xn arranged
so that x0 < x1 < x2 < . . . xn−1 < xn (such points are called
knots). A spline function s of degree k with n + 1 knots is defined
as follows

On every subinterval [xi−1, xi ) s is a polynomial of degree ≤ k .
s has k − 1 continuous derivatives in the whole interval [x0, xn].

Splines

As an example, consider a spline function of degree k = 1 defined
as follows

s(x) =




s0(x) = a0x + b0 x ∈ [x0, x1)
s1(x) = a1x + b1 x ∈ [x1, x2)

. . . . . .
sn−1(x) = an−1x + bn−1 x ∈ [xn−1, xn]


 .

In this case the polynomial consists of series of straight lines
connected to each other at every endpoint. The number of
continuous derivatives is then k − 1 = 0, as expected when we deal
with straight lines. Such a polynomial is quite easy to construct
given n + 1 points x0, x1, . . . xn and their corresponding function
values.

Splines

The most commonly used spline function is the one with k = 3, the
so-called cubic spline function. Assume that we have in adddition
to the n + 1 knots a series of functions values
y0 = f (x0), y1 = f (x1), . . . yn = f (xn). By definition, the
polynomials si−1 and si are thence supposed to interpolate the
same point i , that is

si−1(xi ) = yi = si (xi ),

with 1 ≤ i ≤ n − 1. In total we have n polynomials of the type

si (x) = ai0 + ai1x + ai2x
2 + ai2x

3,

yielding 4n coefficients to determine.

Splines

Every subinterval provides in addition the 2n conditions

yi = s(xi ),

and
s(xi+1) = yi+1,

to be fulfilled. If we also assume that s ′ and s ′′ are continuous, then

s ′i−1(xi ) = s ′i (xi ),

yields n − 1 conditions. Similarly,

s ′′i−1(xi ) = s ′′i (xi ),

results in additional n − 1 conditions. In total we have 4n
coefficients and 4n − 2 equations to determine them, leaving us
with 2 degrees of freedom to be determined.

Splines

Using the last equation we define two values for the second
derivative, namely

s ′′i (xi ) = fi ,

and
s ′′i (xi+1) = fi+1,

and setting up a straight line between fi and fi+1 we have

s ′′i (x) =
fi

xi+1 − xi
(xi+1 − x) +

fi+1

xi+1 − xi
(x − xi ),

and integrating twice one obtains

si (x) =
fi

6(xi+1 − xi )
(xi+1−x)3+

fi+1

6(xi+1 − xi )
(x−xi )3+c(x−xi )+d(xi+1−x).

Splines

Using the conditions si (xi ) = yi and si (xi+1) = yi+1 we can in turn
determine the constants c and d resulting in

si (x) =
fi

6(xi+1 − xi )
(xi+1 − x)3 +

fi+1

6(xi+1 − xi )
(x − xi )

3

+(
yi+1

xi+1 − xi
− fi+1(xi+1 − xi )

6
)(x − xi ) + (

yi
xi+1 − xi

− fi (xi+1 − xi )

6
)(xi+1 − x).

(18)



Splines

How to determine the values of the second derivatives fi and fi+1?
We use the continuity assumption of the first derivatives

s ′i−1(xi ) = s ′i (xi ),

and set x = xi . Defining hi = xi+1 − xi we obtain finally the
following expression

hi−1fi−1 +2(hi +hi−1)fi +hi fi+1 =
6
hi
(yi+1− yi )−

6
hi−1

(yi − yi−1),

and introducing the shorthands ui = 2(hi + hi−1),
vi =

6
hi
(yi+1 − yi )− 6

hi−1
(yi − yi−1), we can reformulate the

problem as a set of linear equations to be solved through e.g.,
Gaussian elemination

Splines

Gaussian elimination



u1 h1 0 . . .
h1 u2 h2 0 . . .
0 h2 u3 h3 0 . . .
. . . . . . . . . . . . . . . . . .

. . . 0 hn−3 un−2 hn−2
0 hn−2 un−1







f1
f2
f3
. . .
fn−2
fn−1



=




v1
v2
v3
. . .
vn−2
vn−1



.

Note that this is a set of tridiagonal equations and can be solved
through only O(n) operations.

Splines

The functions supplied in the program library are spline and splint.
In order to use cubic spline interpolation you need first to call
spline(double x[], double y[], int n, double yp1, double yp2, double y2[])

This function takes as input x [0, .., n − 1] and y [0, .., n − 1]
containing a tabulation yi = f (xi ) with x0 < x1 < .. < xn−1
together with the first derivatives of f (x) at x0 and xn−1,
respectively. Then the function returns y2[0, .., n − 1] which
contains the second derivatives of f (xi ) at each point xi . n is the
number of points. This function provides the cubic spline
interpolation for all subintervals and is called only once.

Splines

Thereafter, if you wish to make various interpolations, you need to
call the function
splint(double x[], double y[], double y2a[], int n, double x, double *y)

which takes as input the tabulated values x [0, .., n − 1] and
y [0, .., n − 1] and the output y2a[0,..,n - 1] from spline. It returns
the value y corresponding to the point x .


