
Computational Physics Lectures: Linear
Algebra methods

Morten Hjorth-Jensen1,2

1Department of Physics, University of Oslo
2Department of Physics and Astronomy and National Superconducting Cyclotron Laboratory, Michigan State University

Jan 8, 2018

Important Matrix and vector handling packages
The Numerical Recipes codes have been rewritten in Fortran 90/95 and C/C++
by us. The original source codes are taken from the widely used software package
LAPACK, which follows two other popular packages developed in the 1970s,
namely EISPACK and LINPACK.

• LINPACK: package for linear equations and least square problems.

• LAPACK:package for solving symmetric, unsymmetric and generalized
eigenvalue problems. From LAPACK’s website http://www.netlib.org
it is possible to download for free all source codes from this library. Both
C/C++ and Fortran versions are available.

• BLAS (I, II and III): (Basic Linear Algebra Subprograms) are routines that
provide standard building blocks for performing basic vector and matrix
operations. Blas I is vector operations, II vector-matrix operations and
III matrix-matrix operations. Highly parallelized and efficient codes, all
available for download from http://www.netlib.org.

Basic Matrix Features
Matrix properties reminder.

A =

a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

 I =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

c© 1999-2018, Morten Hjorth-Jensen. Released under CC Attribution-NonCommercial 4.0
license

http://www.netlib.org
http://www.netlib.org

Basic Matrix Features
The inverse of a matrix is defined by

A−1 ·A = I

Basic Matrix Features
Matrix Properties Reminder.

Relations Name matrix elements
A = AT symmetric aij = aji

A =
(
AT
)−1 real orthogonal

∑
k aikajk =

∑
k akiakj = δij

A = A∗ real matrix aij = a∗ij
A = A† hermitian aij = a∗ji

A =
(
A†
)−1 unitary

∑
k aika

∗
jk =

∑
k a
∗
kiakj = δij

Some famous Matrices
• Diagonal if aij = 0 for i 6= j

• Upper triangular if aij = 0 for i > j

• Lower triangular if aij = 0 for i < j

• Upper Hessenberg if aij = 0 for i > j + 1

• Lower Hessenberg if aij = 0 for i < j + 1

• Tridiagonal if aij = 0 for |i− j| > 1

• Lower banded with bandwidth p: aij = 0 for i > j + p

• Upper banded with bandwidth p: aij = 0 for i < j + p

• Banded, block upper triangular, block lower triangular....

Basic Matrix Features
Some Equivalent Statements. For an N ×N matrix A the following prop-
erties are all equivalent
• If the inverse of A exists, A is nonsingular.

• The equation Ax = 0 implies x = 0.

• The rows of A form a basis of RN .

• The columns of A form a basis of RN .

• A is a product of elementary matrices.

• 0 is not eigenvalue of A.

2

Important Mathematical Operations
The basic matrix operations that we will deal with are addition and subtraction

A = B±C =⇒ aij = bij ± cij , (1)
scalar-matrix multiplication

A = γB =⇒ aij = γbij , (2)
vector-matrix multiplication

Important Mathematical Operations

y = Ax =⇒ yi =
n∑

j=1
aijxj , (3)

matrix-matrix multiplication

A = BC =⇒ aij =
n∑

k=1
bikckj , (4)

and transposition

A = BT =⇒ aij = bji (5)

Important Mathematical Operations
Similarly, important vector operations that we will deal with are addition and
subtraction

x = y± z =⇒ xi = yi ± zi, (6)
scalar-vector multiplication

x = γy =⇒ xi = γyi, (7)
vector-vector multiplication (called Hadamard multiplication)

Important Mathematical Operations
x = yz =⇒ xi = yizi, (8)

the inner or so-called dot product resulting in a constant

x = yT z =⇒ x =
n∑

j=1
yjzj , (9)

and the outer product, which yields a matrix,

A = yzT =⇒ aij = yizj , (10)

3

Matrix Handling in C/C++, Static and Dynamical alloca-
tion
Static. We have an N ×N matrix A with N = 100 In C/C++ this would be
defined as

int N = 100;
double A[100][100];
// initialize all elements to zero
for(i=0 ; i < N ; i++) {

for(j=0 ; j < N ; j++) {
A[i][j] = 0.0;

Note the way the matrix is organized, row-major order.

Matrix Handling in C/C++
Row Major Order, Addition. We have N ×N matrices A, B and C and
we wish to evaluate A = B + C.

A = B±C =⇒ aij = bij ± cij ,

In C/C++ this would be coded like
for(i=0 ; i < N ; i++) {

for(j=0 ; j < N ; j++) {
a[i][j] = b[i][j]+c[i][j]

Matrix Handling in C/C++
Row Major Order, Multiplication. We have N ×N matrices A, B and C
and we wish to evaluate A = BC.

A = BC =⇒ aij =
n∑

k=1
bikckj ,

In C/C++ this would be coded like
for(i=0 ; i < N ; i++) {

for(j=0 ; j < N ; j++) {
for(k=0 ; k < N ; k++) {

a[i][j]+=b[i][k]*c[k][j];

Matrix Handling in Fortran 90/95
Column Major Order.

ALLOCATE (a(N,N), b(N,N), c(N,N))
DO j=1, N

DO i=1, N
a(i,j)=b(i,j)+c(i,j)

ENDDO
ENDDO
...
DEALLOCATE(a,b,c)

4

Fortran 90 writes the above statements in a much simpler way
a=b+c

Multiplication
a=MATMUL(b,c)

Fortran contains also the intrinsic functions TRANSPOSE and CONJUGATE.

Dynamic memory allocation in C/C++
At least three possibilities in this course

• Do it yourself

• Use the functions provided in the library package lib.cpp

• Use Armadillo http://arma.sourceforgenet (a C++ linear algebra li-
brary, discussion both here and at lab).

Matrix Handling in C/C++, Dynamic Allocation
Do it yourself.

int N;
double ** A;
A = new double*[N]
for (i = 0; i < N; i++)

A[i] = new double[N];

Always free space when you don’t need an array anymore.
for (i = 0; i < N; i++)

delete[] A[i];
delete[] A;

Armadillo, recommended!!
• Armadillo is a C++ linear algebra library (matrix maths) aiming towards

a good balance between speed and ease of use. The syntax is deliberately
similar to Matlab.

• Integer, floating point and complex numbers are supported, as well as a
subset of trigonometric and statistics functions. Various matrix decompo-
sitions are provided through optional integration with LAPACK, or one
of its high performance drop-in replacements (such as the multi-threaded
MKL or ACML libraries).

• A delayed evaluation approach is employed (at compile-time) to combine
several operations into one and reduce (or eliminate) the need for tem-
poraries. This is accomplished through recursive templates and template
meta-programming.

5

http://arma.sourceforgenet

• Useful for conversion of research code into production environments, or
if C++ has been decided as the language of choice, due to speed and/or
integration capabilities.

• The library is open-source software, and is distributed under a license that
is useful in both open-source and commercial/proprietary contexts.

Armadillo, simple examples
#include <iostream>
#include <armadillo>

using namespace std;
using namespace arma;

int main(int argc, char** argv)
{
mat A = randu<mat>(5,5);
mat B = randu<mat>(5,5);

cout << A*B << endl;

return 0;

Armadillo, how to compile and install
For people using Ubuntu, Debian, Linux Mint, simply go to the synaptic package
manager and install armadillo from there. You may have to install Lapack as
well. For Mac and Windows users, follow the instructions from the webpage
http://arma.sourceforge.net. To compile, use for example (linux/ubuntu)

c++ -O2 -o program.x program.cpp -larmadillo -llapack -lblas

where the -l option indicates the library you wish to link to.
For OS X users you may have to declare the paths to the include files and

the libraries as
c++ -O2 -o program.x program.cpp -L/usr/local/lib -I/usr/local/include -larmadillo -llapack -lblas

Armadillo, simple examples
#include <iostream>
#include "armadillo"
using namespace arma;
using namespace std;

int main(int argc, char** argv)
{
// directly specify the matrix size (elements are uninitialised)
mat A(2,3);
// .n_rows = number of rows (read only)
// .n_cols = number of columns (read only)
cout << "A.n_rows = " << A.n_rows << endl;
cout << "A.n_cols = " << A.n_cols << endl;

6

http://arma.sourceforge.net

// directly access an element (indexing starts at 0)
A(1,2) = 456.0;
A.print("A:");
// scalars are treated as a 1x1 matrix,
// hence the code below will set A to have a size of 1x1
A = 5.0;
A.print("A:");
// if you want a matrix with all elements set to a particular value
// the .fill() member function can be used
A.set_size(3,3);
A.fill(5.0); A.print("A:");

Armadillo, simple examples
mat B;

// endr indicates "end of row"
B << 0.555950 << 0.274690 << 0.540605 << 0.798938 << endr

<< 0.108929 << 0.830123 << 0.891726 << 0.895283 << endr
<< 0.948014 << 0.973234 << 0.216504 << 0.883152 << endr
<< 0.023787 << 0.675382 << 0.231751 << 0.450332 << endr;

// print to the cout stream
// with an optional string before the contents of the matrix
B.print("B:");

// the << operator can also be used to print the matrix
// to an arbitrary stream (cout in this case)
cout << "B:" << endl << B << endl;
// save to disk
B.save("B.txt", raw_ascii);
// load from disk
mat C;
C.load("B.txt");
C += 2.0 * B;
C.print("C:");

Armadillo, simple examples
// submatrix types:
//
// .submat(first_row, first_column, last_row, last_column)
// .row(row_number)
// .col(column_number)
// .cols(first_column, last_column)
// .rows(first_row, last_row)

cout << "C.submat(0,0,3,1) =" << endl;
cout << C.submat(0,0,3,1) << endl;

// generate the identity matrix
mat D = eye<mat>(4,4);

D.submat(0,0,3,1) = C.cols(1,2);
D.print("D:");

// transpose
cout << "trans(B) =" << endl;
cout << trans(B) << endl;

7

// maximum from each column (traverse along rows)
cout << "max(B) =" << endl;
cout << max(B) << endl;

Armadillo, simple examples
// maximum from each row (traverse along columns)
cout << "max(B,1) =" << endl;
cout << max(B,1) << endl;
// maximum value in B
cout << "max(max(B)) = " << max(max(B)) << endl;
// sum of each column (traverse along rows)
cout << "sum(B) =" << endl;
cout << sum(B) << endl;
// sum of each row (traverse along columns)
cout << "sum(B,1) =" << endl;
cout << sum(B,1) << endl;
// sum of all elements
cout << "sum(sum(B)) = " << sum(sum(B)) << endl;
cout << "accu(B) = " << accu(B) << endl;
// trace = sum along diagonal
cout << "trace(B) = " << trace(B) << endl;
// random matrix -- values are uniformly distributed in the [0,1] interval
mat E = randu<mat>(4,4);
E.print("E:");

Armadillo, simple examples
// row vectors are treated like a matrix with one row
rowvec r;
r << 0.59499 << 0.88807 << 0.88532 << 0.19968;
r.print("r:");

// column vectors are treated like a matrix with one column
colvec q;
q << 0.81114 << 0.06256 << 0.95989 << 0.73628;
q.print("q:");

// dot or inner product
cout << "as_scalar(r*q) = " << as_scalar(r*q) << endl;

// outer product
cout << "q*r =" << endl;
cout << q*r << endl;

// sum of three matrices (no temporary matrices are created)
mat F = B + C + D;
F.print("F:");

return 0;

Armadillo, simple examples
#include <iostream>
#include "armadillo"
using namespace arma;

8

using namespace std;

int main(int argc, char** argv)
{
cout << "Armadillo version: " << arma_version::as_string() << endl;

mat A;

A << 0.165300 << 0.454037 << 0.995795 << 0.124098 << 0.047084 << endr
<< 0.688782 << 0.036549 << 0.552848 << 0.937664 << 0.866401 << endr
<< 0.348740 << 0.479388 << 0.506228 << 0.145673 << 0.491547 << endr
<< 0.148678 << 0.682258 << 0.571154 << 0.874724 << 0.444632 << endr
<< 0.245726 << 0.595218 << 0.409327 << 0.367827 << 0.385736 << endr;

A.print("A =");

// determinant
cout << "det(A) = " << det(A) << endl;

Armadillo, simple examples
// inverse
cout << "inv(A) = " << endl << inv(A) << endl;
double k = 1.23;

mat B = randu<mat>(5,5);
mat C = randu<mat>(5,5);

rowvec r = randu<rowvec>(5);
colvec q = randu<colvec>(5);

// examples of some expressions
// for which optimised implementations exist
// optimised implementation of a trinary expression
// that results in a scalar
cout << "as_scalar(r*inv(diagmat(B))*q) = ";
cout << as_scalar(r*inv(diagmat(B))*q) << endl;

// example of an expression which is optimised
// as a call to the dgemm() function in BLAS:
cout << "k*trans(B)*C = " << endl << k*trans(B)*C;

return 0;

Gaussian Elimination
We start with the linear set of equations

Ax = w.

We assume also that the matrix A is non-singular and that the matrix elements
along the diagonal satisfy aii 6= 0. Simple 4× 4 example

9

a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

x1
x2
x3
x4

 =

w1
w2
w3
w4

 .
Gaussian Elimination
or

a11x1 + a12x2 + a13x3 + a14x4 =w1

a21x1 + a22x2 + a23x3 + a24x4 =w2

a31x1 + a32x2 + a33x3 + a34x4 =w3

a41x1 + a42x2 + a43x3 + a44x4 =w4.

Gaussian Elimination
The basic idea of Gaussian elimination is to use the first equation to eliminate
the first unknown x1 from the remaining n− 1 equations. Then we use the new
second equation to eliminate the second unknown x2 from the remaining n− 2
equations. With n− 1 such eliminations we obtain a so-called upper triangular
set of equations of the form

b11x1 + b12x2 + b13x3 + b14x4 =y1

b22x2 + b23x3 + b24x4 =y2

b33x3 + b34x4 =y3

b44x4 =y4.

We can solve this system of equations recursively starting from xn (in our case
x4) and proceed with what is called a backward substitution.

Gaussian Elimination
This process can be expressed mathematically as

xm = 1
bmm

(
ym −

n∑
k=m+1

bmkxk

)
m = n− 1, n− 2, . . . , 1. (11)

To arrive at such an upper triangular system of equations, we start by eliminating
the unknown x1 for j = 2, n. We achieve this by multiplying the first equation
by aj1/a11 and then subtract the result from the jth equation. We assume
obviously that a11 6= 0 and that A is not singular.

10

Gaussian Elimination
Our actual 4× 4 example reads after the first operation

a11 a12 a13 a14
0 (a22 − a21a12

a11
) (a23 − a21a13

a11
) (a24 − a21a14

a11
)

0 (a32 − a31a12
a11

) (a33 − a31a13
a11

) (a34 − a31a14
a11

)
0 (a42 − a41a12

a11
) (a43 − a41a13

a11
) (a44 − a41a14

a11
)

x1
x2
x3
x4

 =

y1

w
(2)
2

w
(2)
3

w
(2)
4

 ,
or

b11x1 + b12x2 + b13x3 + b14x4 =y1

a
(2)
22 x2 + a

(2)
23 x3 + a

(2)
24 x4 =w(2)

2

a
(2)
32 x2 + a

(2)
33 x3 + a

(2)
34 x4 =w(2)

3

a
(2)
42 x2 + a

(2)
43 x3 + a

(2)
44 x4 =w(2)

4 ,

(12)

Gaussian Elimination
The new coefficients are

b1k = a
(1)
1k k = 1, . . . , n, (13)

where each a(1)
1k is equal to the original a1k element. The other coefficients are

a
(2)
jk = a

(1)
jk −

a
(1)
j1 a

(1)
1k

a
(1)
11

j, k = 2, . . . , n, (14)

with a new right-hand side given by

y1 = w
(1)
1 , w

(2)
j = w

(1)
j −

a
(1)
j1 w

(1)
1

a
(1)
11

j = 2, . . . , n. (15)

We have also set w(1)
1 = w1, the original vector element. We see that the system

of unknowns x1, . . . , xn is transformed into an (n− 1)× (n− 1) problem.

Gaussian Elimination
This step is called forward substitution. Proceeding with these substitutions, we
obtain the general expressions for the new coefficients

a
(m+1)
jk = a

(m)
jk −

a
(m)
jm a

(m)
mk

a
(m)
mm

j, k = m+ 1, . . . , n, (16)

11

with m = 1, . . . , n− 1 and a right-hand side given by

w
(m+1)
j = w

(m)
j −

a
(m)
jm w

(m)
m

a
(m)
mm

j = m+ 1, . . . , n. (17)

This set of n − 1 elimations leads us to an equations which is solved by back
substitution. If the arithmetics is exact and the matrix A is not singular, then
the computed answer will be exact.

Even though the matrix elements along the diagonal are not zero, numerically
small numbers may appear and subsequent divisions may lead to large numbers,
which, if added to a small number may yield losses of precision. Suppose for
example that our first division in (a22 − a21a12/a11) results in −10−7 and that
a22 is one. one. We are then adding 107 + 1. With single precision this results
in 107.

Gaussian Elimination and Tridiagonal matrices, project 1
Suppose we want to solve the following boundary value equation

−d
2u(x)
dx2 = f(x, u(x)),

with x ∈ (a, b) and with boundary conditions u(a) = u(b) = 0. We assume that
f is a continuous function in the domain x ∈ (a, b). Since, except the few cases
where it is possible to find analytic solutions, we will seek after approximate
solutions, we choose to represent the approximation to the second derivative
from the previous chapter

f ′′ = fh − 2f0 + f−h

h2 +O(h2).

We subdivide our interval x ∈ (a, b) into n subintervals by setting xi = ih, with
i = 0, 1, . . . , n+ 1. The step size is then given by h = (b− a)/(n+ 1) with n ∈ N.
For the internal grid points i = 1, 2, . . . n we replace the differential operator
with the above formula resulting in

u′′(xi) ≈
u(xi + h)− 2u(xi) + u(xi − h)

h2 ,

which we rewrite as

u
′′

i ≈
ui+1 − 2ui + ui−i

h2 .

Gaussian Elimination and Tridiagonal matrices, project 1
We can rewrite our original differential equation in terms of a discretized equation
with approximations to the derivatives as

−ui+1 − 2ui + ui−i

h2 = f(xi, u(xi)),

12

with i = 1, 2, . . . , n. We need to add to this system the two boundary conditions
u(a) = u0 and u(b) = un+1. If we define a matrix

A = 1
h2

2 −1
−1 2 −1

−1 2 −1
.

−1 2 −1
−1 2

and the corresponding vectors u = (u1, u2, . . . , un)T and f(u) = f(x1, x2, . . . , xn, u1, u2, . . . , un)T

we can rewrite the differential equation including the boundary conditions as a
system of linear equations with a large number of unknowns

Au = f(u).

Gaussian Elimination and Tridiagonal matrices, project 1
We start with the linear set of equations

Au = f ,

where A is a tridiagonal matrix which we rewrite as

A =

b1 c1 0
a2 b2 c2

a3 b3 c3
.

an−1 bn−1 cn−1
an bn

where a, b, c are one-dimensional arrays of length 1 : n. In project 1 the arrays a
and c are equal, namely ai = ci = −1/h2. The matrix is also positive definite.

Gaussian Elimination and Tridiagonal matrices, project 1
We can rewrite as

A =

b1 c1 0
a2 b2 c2

a3 b3 c3
.

an−1 bn−1 cn−1
an bn

u1
u2
. . .
. . .
. . .
un

 =

f1
f2
. . .
. . .
. . .
fn

 .

13

Gaussian Elimination and Tridiagonal matrices, project 1
A tridiagonal matrix is a special form of banded matrix where all the elements are
zero except for those on and immediately above and below the leading diagonal.
The above tridiagonal system can be written as

aiui−1 + biui + ciui+1 = fi,

for i = 1, 2, . . . , n. We see that u−1 and un+1 are not required and we can
set a1 = cn = 0. In many applications the matrix is symmetric and we have
ai = ci. The algorithm for solving this set of equations is rather simple and
requires two steps only, a forward substitution and a backward substitution.
These steps are also common to the algorithms based on Gaussian elimination
that we discussed previously. However, due to its simplicity, the number of
floating point operations is in this case proportional with O(n) while Gaussian
elimination requires 2n3/3 +O(n2) floating point operations.

Gaussian Elimination and Tridiagonal matrices, project 1
In case your system of equations leads to a tridiagonal matrix, it is clearly an
overkill to employ Gaussian elimination or the standard LU decomposition.

Our algorithm starts with forward substitution with a loop over of the
elements i and gives an update of the diagonal elements bi given by the new
diagonals b̃i

b̃i = bi −
aici−1

b̃i−1
,

and the new righthand side f̃i given by

f̃i = fi −
aif̃i−1

b̃i−1
.

Recall that b̃1 = b1 and f̃1 = f1 always.

Backward substitution
The backward substitution gives then the final solution

ui−1 = f̃i−1 − ci−1ui

b̃i−1
,

with un = f̃n/b̃n when i = n, the last point.

14

Gaussian Elimination and Tridiagonal matrices, project 1
The matrix A which rephrases a second derivative in a discretized form is much
simpler than the general matrix

A =

2 −1 0 0 0 0
−1 2 −1 0 0 0
0 −1 2 −1 0 0
0
0 0 0 −1 2 −1
0 0 0 0 −1 2

 .

This matrix fulfills the condition of a weak dominance of the diagonal, with
|b1| > |c1|, |bn| > |an| and |bk| ≥ |ak| + |ck| for k = 2, 3, . . . , n − 1. This is a
relevant but not sufficient condition to guarantee that the matrix A yields a
solution to a linear equation problem. The matrix needs also to be irreducible. A
tridiagonal irreducible matrix means that all the elements ai and ci are non-zero.
If these two conditions are present, then A is nonsingular and has a unique LU
decomposition.

Project 1, hints
When setting up the algo it is useful to note that the different operations on the
matrix (here as a 4× 4 case with diagonals di and off-diagonals ei) give is an
extremely simple algorithm, namely

d1 e1 0 0
e2 d2 e2 0
0 e3 d3 e3
0 0 e4 d4

→

d1 e1 0 0
0 d̃2 e2 0
0 e3 d3 e3
0 0 e4 d4

→

d1 e1 0 0
0 d̃2 e2 0
0 0 d̃3 e3
0 0 e4 d4

and finally

d1 e1 0 0
0 d̃2 e2 0
0 0 d̃3 e3
0 0 0 d̃4

Project 1, hints
We notice the sub-blocks which get repeated

d1 e1 0 0
0 d̃2 e2 0
0 0 d̃3 e3
0 0 0 d̃4

The matrices we often end up with in rewriting for for example partial differential
equations, have the feature that all leading principal submatrices are non-singular.

15

Simple expressions for project 1
For the special matrix we can can actually precalculate the updated matrix
elements d̃i. The non-diagonal elements ei are unchanged. For our particular
matrix in project 1 we have

d̃i = 2− 1
d̃i−1

= i+ 1
i

,

and the new righthand side f̃i given by

f̃i = fi + (i− 1)f̃i−1

i
.

Recall that d̃1 = 2 and f̃1 = f1. These arrays can be set up before computing u.
The backward substitution gives then the final solution

ui−1 = i− 1
i

(
f̃i−1 + ui

)
,

with un = f̃n/b̃n.

Program example
#include <iostream>
#include <fstream>
#include <iomanip>
#include <cmath>
#include <string>
// use namespace for output and input
using namespace std;

// object for output files
ofstream ofile;
// Functions used
inline double f(double x){return 100.0*exp(-10.0*x);
}
inline double exact(double x) {return 1.0-(1-exp(-10))*x-exp(-10*x);}

// Begin main program
int main(int argc, char *argv[]){

int exponent;
string filename;
// We read also the basic name for the output file and the highest power of 10^n we want
if(argc <= 1){

cout << "Bad Usage: " << argv[0] <<
" read also file name on same line and max power 10^n" << endl;

exit(1);
}

else{
filename = argv[1]; // first command line argument after name of program
exponent = atoi(argv[2]);

}
// Loop over powers of 10
for (int i = 1; i <= exponent; i++){

int n = (int) pow(10.0,i);

16

https://github.com/CompPhysics/ComputationalPhysicsMSU/blob/master/doc/Projects/2016/Project1/Examples/TridiagonalSimple.cpp

// Declare new file name
string fileout = filename;
// Convert the power 10^i to a string
string argument = to_string(i);
// Final filename as filename-i-
fileout.append(argument);
double h = 1.0/(n);
double hh = h*h;
// Set up arrays for the simple case
double *d = new double [n+1]; double *b = new double [n+1]; double *solution = new double [n+1];
double *x = new double[n+1];
// Quick setup of updated diagonal elements and value of
d[0] = d[n] = 2; solution[0] = solution[n] = 0.0;
for (int i = 1; i < n; i++) d[i] = (i+1.0)/((double) i);
for (int i = 0; i <= n; i++){

x[i]= i*h;
b[i] = hh*f(i*h);

}
// Forward substitution
for (int i = 2; i < n; i++) b[i] = b[i] + b[i-1]/d[i-1];
// Backward substitution
solution[n-1] = b[n-1]/d[n-1];
for (int i = n-2; i > 0; i--) solution[i] = (b[i]+solution[i+1])/d[i];
ofile.open(fileout);
ofile << setiosflags(ios::showpoint | ios::uppercase);
// ofile << " x: approx: exact: relative error" << endl;
for (int i = 1; i < n;i++) {

double xval = x[i];
double RelativeError = fabs((exact(xval)-solution[i])/exact(xval));

ofile << setw(15) << setprecision(8) << xval;
ofile << setw(15) << setprecision(8) << solution[i];
ofile << setw(15) << setprecision(8) << exact(xval);
ofile << setw(15) << setprecision(8) << log10(RelativeError) << endl;

}
ofile.close();
delete [] x; delete [] d; delete [] b; delete [] solution;

}
return 0;

}

Linear Algebra Methods
• Gaussian elimination, O(2/3n3) flops, general matrix

• LU decomposition, upper triangular and lower tridiagonal matrices, O(2/3n3)
flops, general matrix. Get easily the inverse, determinant and can solve
linear equations with back-substitution only, O(n2) flops

• Cholesky decomposition. Real symmetric or hermitian positive definite
matrix, O(1/3n3) flops.

• Tridiagonal linear systems, important for differential equations. Normally
positive definite and non-singular. O(8n) flops for symmetric. Special case
of banded matrices.

• Singular value decomposition

17

• the QR method will be discussed in chapter 7 in connection with eigenvalue
systems. O(4/3n3) flops.

LU Decomposition
The LU decomposition method means that we can rewrite this matrix as the
product of two matrices L and U where

a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

 =

1 0 0 0
l21 1 0 0
l31 l32 1 0
l41 l42 l43 1

u11 u12 u13 u14
0 u22 u23 u24
0 0 u33 u34
0 0 0 u44

 .
LU Decomposition
LU decomposition forms the backbone of other algorithms in linear algebra, such
as the solution of linear equations given by

a11x1 + a12x2 + a13x3 + a14x4 =w1

a21x1 + a22x2 + a23x3 + a24x4 =w2

a31x1 + a32x2 + a33x3 + a34x4 =w3

a41x1 + a42x2 + a43x3 + a44x4 =w4.

The above set of equations is conveniently solved by using LU decomposition as
an intermediate step.

The matrix A ∈ Rn×n has an LU factorization if the determinant is different
from zero. If the LU factorization exists and A is non-singular, then the LU
factorization is unique and the determinant is given by

det{A} = det{LU} = det{L}det{U} = u11u22 . . . unn.

LU Decomposition, why?
There are at least three main advantages with LU decomposition compared with
standard Gaussian elimination:

• It is straightforward to compute the determinant of a matrix

• If we have to solve sets of linear equations with the same matrix but with
different vectors y, the number of FLOPS is of the order n3.

• The inverse is such an operation

18

LU Decomposition, linear equations
With the LU decomposition it is rather simple to solve a system of linear
equations

a11x1 + a12x2 + a13x3 + a14x4 =w1

a21x1 + a22x2 + a23x3 + a24x4 =w2

a31x1 + a32x2 + a33x3 + a34x4 =w3

a41x1 + a42x2 + a43x3 + a44x4 =w4.

This can be written in matrix form as

Ax = w.

where A and w are known and we have to solve for x. Using the LU
dcomposition we write

Ax ≡ LUx = w.

LU Decomposition, linear equations
The previous equation can be calculated in two steps

Ly = w; Ux = y.

To show that this is correct we use to the LU decomposition to rewrite our
system of linear equations as

LUx = w,

and since the determinat of L is equal to 1 (by construction since the diagonals
of L equal 1) we can use the inverse of L to obtain

Ux = L−1w = y,

which yields the intermediate step

L−1w = y

and as soon as we have y we can obtain x through Ux = y.

LU Decomposition, why?
For our four-dimentional example this takes the form

19

y1 =w1

l21y1 + y2 =w2

l31y1 + l32y2 + y3 =w3

l41y1 + l42y2 + l43y3 + y4 =w4.

and

u11x1 + u12x2 + u13x3 + u14x4 =y1

u22x2 + u23x3 + u24x4 =y2

u33x3 + u34x4 =y3

u44x4 =y4

This example shows the basis for the algorithm needed to solve the set of n
linear equations.

LU Decomposition, linear equations
The algorithm goes as follows

• Set up the matrix A and the vector w with their correct dimensions. This
determines the dimensionality of the unknown vector x.

• Then LU decompose the matrix A through a call to the function ludcmp(double a, int n, int indx, double &d).
This functions returns the LU decomposed matrix A, its determinant and
the vector indx which keeps track of the number of interchanges of rows.
If the determinant is zero, the solution is malconditioned.

• Thereafter you call the function lubksb(double a, int n, int indx,
double w) which uses the LU decomposed matrix A and the vector w
and returns x in the same place as w. Upon exit the original content in
w is destroyed. If you wish to keep this information, you should make a
backup of it in your calling function.

LU Decomposition, the inverse of a matrix
If the inverse exists then

A−1A = I,

the identity matrix. With an LU decomposed matrix we can rewrite the last
equation as

LUA−1 = I.

20

LU Decomposition, the inverse of a matrix
If we assume that the first column (that is column 1) of the inverse matrix can
be written as a vector with unknown entries

A−1
1 =

a−1

11
a−1

21
. . .
a−1

n1

 ,
then we have a linear set of equations

LU

a−1

11
a−1

21
. . .
a−1

n1

 =

1
0
. . .
0

 .
LU Decomposition, the inverse
In a similar way we can compute the unknow entries of the second column,

LU

a−1

12
a−1

22
. . .
a−1

n2

 =

0
1
. . .
0

 ,
and continue till we have solved all n sets of linear equations.

How to use the Library functions
Standard C/C++: fetch the files lib.cpp and lib.h. You can make a directory
where you store these files, and eventually its compiled version lib.o. The example
here is program1.cpp from chapter 6 and performs the matrix inversion.

// Simple matrix inversion example
#include <iostream>
#include <new>
#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <cstring>
#include "lib.h"

using namespace std;

/* function declarations */

void inverse(double **, int);

21

https://github.com/CompPhysics/ComputationalPhysicsMSU/tree/master/doc/Programs/LecturePrograms/programs/cppLibrary
https://github.com/CompPhysics/ComputationalPhysicsMSU/blob/master/doc/Programs/LecturePrograms/programs/LinAlgebra/cpp/program1.cpp

How to use the Library functions
void inverse(double **a, int n)
{

int i,j, *indx;
double d, *col, **y;
// allocate space in memory
indx = new int[n];
col = new double[n];
y = (double **) matrix(n, n, sizeof(double));
ludcmp(a, n, indx, &d); // LU decompose a[][]
printf("\n\nLU form of matrix of a[][]:\n");
for(i = 0; i < n; i++) {

printf("\n");
for(j = 0; j < n; j++) {

printf(" a[%2d][%2d] = %12.4E",i, j, a[i][j]);

How to use the Library functions
// find inverse of a[][] by columns
for(j = 0; j < n; j++) {

// initialize right-side of linear equations
for(i = 0; i < n; i++) col[i] = 0.0;
col[j] = 1.0;
lubksb(a, n, indx, col);
// save result in y[][]
for(i = 0; i < n; i++) y[i][j] = col[i];

} //j-loop over columns
// return the inverse matrix in a[][]
for(i = 0; i < n; i++) {

for(j = 0; j < n; j++) a[i][j] = y[i][j];

free_matrix((void **) y); // release local memory
delete [] col;
delete []indx;

} // End: function inverse()

How to use the Library functions
For Fortran users:

PROGRAM matrix
USE constants
USE F90library
IMPLICIT NONE
! The definition of the matrix, using dynamic allocation
REAL(DP), ALLOCATABLE, DIMENSION(:,:) :: a, ainv, unity
! the determinant
REAL(DP) :: d
! The size of the matrix
INTEGER :: n
....
! Allocate now place in heap for a
ALLOCATE (a(n,n), ainv(n,n), unity(n,n))

How to use the Library functions
For Fortran users:

22

https://github.com/CompPhysics/ComputationalPhysicsMSU/tree/master/doc/Programs/LecturePrograms/programs/cppLibrary
https://github.com/CompPhysics/ComputationalPhysicsMSU/tree/master/doc/Programs/LecturePrograms/programs/cppLibrary
https://github.com/CompPhysics/ComputationalPhysicsMSU/tree/master/doc/Programs/LecturePrograms/programs/FortranLibrary
https://github.com/CompPhysics/ComputationalPhysicsMSU/tree/master/doc/Programs/LecturePrograms/programs/FortranLibrary

WRITE(6,*) ’ The matrix before inversion’
WRITE(6,’(3F12.6)’) a
ainv=a
CALL matinv (ainv, n, d)
....
! get the unity matrix
unity=MATMUL(ainv,a)
WRITE(6,*) ’ The unity matrix’
WRITE(6,’(3F12.6)’) unity
! deallocate all arrays
DEALLOCATE (a, ainv, unity)

END PROGRAM matrix

Using Armadillo to perform an LU decomposition
#include <iostream>
#include "armadillo"
using namespace arma;
using namespace std;

int main()
{
mat A = randu<mat>(5,5);
vec b = randu<vec>(5);

A.print("A =");
b.print("b=");
// solve Ax = b
vec x = solve(A,b);
// print x
x.print("x=");
// find LU decomp of A, if needed, P is the permutation matrix
mat L, U;
lu(L,U,A);
// print l
L.print(" L= ");
// print U
U.print(" U= ");
//Check that A = LU
(A-L*U).print("Test of LU decomposition");

return 0;
}

Iterative methods, Chapter 6

• Direct solvers such as Gauss elimination and LU decomposition discussed
in connection with project 1.

• Iterative solvers such as Basic iterative solvers, Jacobi, Gauss-Seidel, Suc-
cessive over-relaxation. These methods are easy to parallelize, as we will
se later. Much used in solutions of partial differential equations.

• Other iterative methods such as Krylov subspace methods with Generalized
minimum residual (GMRES) and Conjugate gradient etc will not be
discussed.

23

https://github.com/CompPhysics/ComputationalPhysicsMSU/blob/master/doc/Programs/CppQtCodesLectures/MatrixTest/main.cpp

Iterative methods, Jacobi’s method
It is a simple method for solving

Ax = b,

where A is a matrix and x and b are vectors. The vector x is the unknown.
It is an iterative scheme where we start with a guess for the unknown, and

after k + 1 iterations we have

x(k+1) = D−1(b− (L + U)x(k)),

with A = D + U + L and D being a diagonal matrix, U an upper triangular
matrix and L a lower triangular matrix.

If the matrix A is positive definite or diagonally dominant, one can show
that this method will always converge to the exact solution.

Iterative methods, Jacobi’s method
We can demonstrate Jacobi’s method by this 4×4 matrix problem. We assume

a guess for the vector elements x(0)
i , a guess which represents our first iteration.

The new values are obtained by substitution

x
(1)
1 =(b1 − a12x

(0)
2 − a13x

(0)
3 − a14x

(0)
4)/a11

x
(1)
2 =(b2 − a21x

(0)
1 − a23x

(0)
3 − a24x

(0)
4)/a22

x
(1)
3 =(b3 − a31x

(0)
1 − a32x

(0)
2 − a34x

(0)
4)/a33

x
(1)
4 =(b4 − a41x

(0)
1 − a42x

(0)
2 − a43x

(0)
3)/a44,

which after k + 1 iterations reads

x
(k+1)
1 =(b1 − a12x

(k)
2 − a13x

(k)
3 − a14x

(k)
4)/a11

x
(k+1)
2 =(b2 − a21x

(k)
1 − a23x

(k)
3 − a24x

(k)
4)/a22

x
(k+1)
3 =(b3 − a31x

(k)
1 − a32x

(k)
2 − a34x

(k)
4)/a33

x
(k+1)
4 =(b4 − a41x

(k)
1 − a42x

(k)
2 − a43x

(k)
3)/a44,

Iterative methods, Jacobi’s method
We can generalize the above equations to

x
(k+1)
i = (bi −

n∑
j=1,j 6=i

aijx
(k)
j)/aii

or in an even more compact form as

x(k+1) = D−1(b− (L + U)x(k)),

with A = D + U + L and D being a diagonal matrix, U an upper triangular
matrix and L a lower triangular matrix.

24

Iterative methods, Gauss-Seidel’s method
Our 4× 4 matrix problem

x
(k+1)
1 =(b1 − a12x

(k)
2 − a13x

(k)
3 − a14x

(k)
4)/a11

x
(k+1)
2 =(b2 − a21x

(k)
1 − a23x

(k)
3 − a24x

(k)
4)/a22

x
(k+1)
3 =(b3 − a31x

(k)
1 − a32x

(k)
2 − a34x

(k)
4)/a33

x
(k+1)
4 =(b4 − a41x

(k)
1 − a42x

(k)
2 − a43x

(k)
3)/a44,

can be rewritten as

x
(k+1)
1 =(b1 − a12x

(k)
2 − a13x

(k)
3 − a14x

(k)
4)/a11

x
(k+1)
2 =(b2 − a21x

(k+1)
1 − a23x

(k)
3 − a24x

(k)
4)/a22

x
(k+1)
3 =(b3 − a31x

(k+1)
1 − a32x

(k+1)
2 − a34x

(k)
4)/a33

x
(k+1)
4 =(b4 − a41x

(k+1)
1 − a42x

(k+1)
2 − a43x

(k+1)
3)/a44,

which allows us to utilize the preceding solution (forward substitution). This
improves normally the convergence behavior and leads to the Gauss-Seidel
method!

Iterative methods, Gauss-Seidel’s method
We can generalize

x
(k+1)
1 =(b1 − a12x

(k)
2 − a13x

(k)
3 − a14x

(k)
4)/a11

x
(k+1)
2 =(b2 − a21x

(k+1)
1 − a23x

(k)
3 − a24x

(k)
4)/a22

x
(k+1)
3 =(b3 − a31x

(k+1)
1 − a32x

(k+1)
2 − a34x

(k)
4)/a33

x
(k+1)
4 =(b4 − a41x

(k+1)
1 − a42x

(k+1)
2 − a43x

(k+1)
3)/a44,

to the following form

x
(k+1)
i = 1

aii

bi −
∑
j>i

aijx
(k)
j −

∑
j<i

aijx
(k+1)
j

 , i = 1, 2, . . . , n.

The procedure is generally continued until the changes made by an iteration are
below some tolerance.

The convergence properties of the Jacobi method and the Gauss-Seidel
method are dependent on the matrix A. These methods converge when the
matrix is symmetric positive-definite, or is strictly or irreducibly diagonally
dominant. Both methods sometimes converge even if these conditions are not
satisfied.

25

Iterative methods, Successive over-relaxation
Given a square system of n linear equations with unknown x:

Ax = b

where

A =

a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

an1 an2 · · · ann

 , x =

x1
x2
...
xn

 , b =

b1
b2
...
bn

 .

Iterative methods, Successive over-relaxation
Then A can be decomposed into a diagonal component D, and strictly lower

and upper triangular components L and U:

A = D + L + U,

where

D =

a11 0 · · · 0
0 a22 · · · 0
...

...
. . .

...
0 0 · · · ann

 , L =

0 0 · · · 0
a21 0 · · · 0
...

...
. . .

...
an1 an2 · · · 0

 , U =

0 a12 · · · a1n

0 0 · · · a2n

...
...

. . .
...

0 0 · · · 0

 .
The system of linear equations may be rewritten as:

(D + ωL)x = ωb− [ωU + (ω − 1)D]x

for a constant ω > 1.

Iterative methods, Successive over-relaxation
The method of successive over-relaxation is an iterative technique that solves

the left hand side of this expression for x, using previous value for x on the right
hand side. Analytically, this may be written as:

x(k+1) = (D + ωL)−1(ωb− [ωU + (ω − 1)D]x(k)).
However, by taking advantage of the triangular form of (D + ωL), the elements
of x(k+1) can be computed sequentially using forward substitution:

x
(k+1)
i = (1− ω)x(k)

i + ω

aii

bi −
∑
j>i

aijx
(k)
j −

∑
j<i

aijx
(k+1)
j

 , i = 1, 2, . . . , n.

The choice of relaxation factor is not necessarily easy, and depends upon the
properties of the coefficient matrix. For symmetric, positive-definite matrices
it can be proven that 0 < ω < 2 will lead to convergence, but we are generally
interested in faster convergence rather than just convergence.

26

Cubic Splines, Chapter 6
Cubic spline interpolation is among one of the most used methods for inter-

polating between data points where the arguments are organized as ascending
series. In the library program we supply such a function, based on the so-called
cubic spline method to be described below.

A spline function consists of polynomial pieces defined on subintervals. The
different subintervals are connected via various continuity relations.

Assume we have at our disposal n+ 1 points x0, x1, . . . xn arranged so that
x0 < x1 < x2 < . . . xn−1 < xn (such points are called knots). A spline function
s of degree k with n+ 1 knots is defined as follows

• On every subinterval [xi−1, xi) s is a polynomial of degree ≤ k.

• s has k − 1 continuous derivatives in the whole interval [x0, xn].

Splines
As an example, consider a spline function of degree k = 1 defined as follows

s(x) =

s0(x) = a0x+ b0 x ∈ [x0, x1)
s1(x) = a1x+ b1 x ∈ [x1, x2)

.
sn−1(x) = an−1x+ bn−1 x ∈ [xn−1, xn]

 .
In this case the polynomial consists of series of straight lines connected to each
other at every endpoint. The number of continuous derivatives is then k− 1 = 0,
as expected when we deal with straight lines. Such a polynomial is quite easy
to construct given n+ 1 points x0, x1, . . . xn and their corresponding function
values.

Splines
The most commonly used spline function is the one with k = 3, the so-called

cubic spline function. Assume that we have in adddition to the n+ 1 knots a
series of functions values y0 = f(x0), y1 = f(x1), . . . yn = f(xn). By definition,
the polynomials si−1 and si are thence supposed to interpolate the same point i,
that is

si−1(xi) = yi = si(xi),

with 1 ≤ i ≤ n− 1. In total we have n polynomials of the type

si(x) = ai0 + ai1x+ ai2x
2 + ai2x

3,

yielding 4n coefficients to determine.

27

Splines
Every subinterval provides in addition the 2n conditions

yi = s(xi),

and
s(xi+1) = yi+1,

to be fulfilled. If we also assume that s′ and s′′ are continuous, then

s′i−1(xi) = s′i(xi),

yields n− 1 conditions. Similarly,

s′′i−1(xi) = s′′i (xi),

results in additional n − 1 conditions. In total we have 4n coefficients and
4n− 2 equations to determine them, leaving us with 2 degrees of freedom to be
determined.

Splines
Using the last equation we define two values for the second derivative, namely

s′′i (xi) = fi,

and
s′′i (xi+1) = fi+1,

and setting up a straight line between fi and fi+1 we have

s′′i (x) = fi

xi+1 − xi
(xi+1 − x) + fi+1

xi+1 − xi
(x− xi),

and integrating twice one obtains

si(x) = fi

6(xi+1 − xi)
(xi+1−x)3 + fi+1

6(xi+1 − xi)
(x−xi)3 +c(x−xi)+d(xi+1−x).

Splines
Using the conditions si(xi) = yi and si(xi+1) = yi+1 we can in turn determine

the constants c and d resulting in

si(x) = fi

6(xi+1 − xi)
(xi+1 − x)3 + fi+1

6(xi+1 − xi)
(x− xi)3

+(yi+1

xi+1 − xi
− fi+1(xi+1 − xi)

6)(x− xi) + (yi

xi+1 − xi
− fi(xi+1 − xi)

6)(xi+1 − x).

(18)

28

Splines
How to determine the values of the second derivatives fi and fi+1? We use

the continuity assumption of the first derivatives

s′i−1(xi) = s′i(xi),

and set x = xi. Defining hi = xi+1−xi we obtain finally the following expression

hi−1fi−1 + 2(hi + hi−1)fi + hifi+1 = 6
hi

(yi+1 − yi)−
6

hi−1
(yi − yi−1),

and introducing the shorthands ui = 2(hi +hi−1), vi = 6
hi

(yi+1− yi)− 6
hi−1

(yi−
yi−1), we can reformulate the problem as a set of linear equations to be solved
through e.g., Gaussian elemination

Splines
Gaussian elimination

u1 h1 0 . . .
h1 u2 h2 0 . . .
0 h2 u3 h3 0 . . .
.

. . . 0 hn−3 un−2 hn−2
0 hn−2 un−1

f1
f2
f3
. . .
fn−2
fn−1

 =

v1
v2
v3
. . .
vn−2
vn−1

 .

Note that this is a set of tridiagonal equations and can be solved through only
O(n) operations.

Splines
The functions supplied in the program library are spline and splint. In order

to use cubic spline interpolation you need first to call
spline(double x[], double y[], int n, double yp1, double yp2, double y2[])

This function takes as input x[0, .., n−1] and y[0, .., n−1] containing a tabulation
yi = f(xi) with x0 < x1 < .. < xn−1 together with the first derivatives of f(x)
at x0 and xn−1, respectively. Then the function returns y2[0, .., n − 1] which
contains the second derivatives of f(xi) at each point xi. n is the number of
points. This function provides the cubic spline interpolation for all subintervals
and is called only once.

Splines
Thereafter, if you wish to make various interpolations, you need to call the

function
splint(double x[], double y[], double y2a[], int n, double x, double *y)

29

which takes as input the tabulated values x[0, .., n− 1] and y[0, .., n− 1] and the
output y2a[0,..,n - 1] from spline. It returns the value y corresponding to the
point x.

30

