
Computational Physics Lectures: Introduction to
Monte Carlo methods

Morten Hjorth-Jensen1,2

Department of Physics, University of Oslo1

Department of Physics and Astronomy and National Superconducting Cyclotron
Laboratory, Michigan State University2

Apr 25, 2018
c© 1999-2018, Morten Hjorth-Jensen. Released under CC Attribution-NonCommercial 4.0 license

Monte Carlo methods, plan for the lectures

1. Intro, MC integration and probability distribution functions
(PDFs)

2. More on integration, PDFs, MC integration and random walks.
3. Random walks and statistical physics.
4. Statistical physics and the Ising and Potts models
5. Quantum Monte Carlo

Monte Carlo: Enhances algorithmic thinking!

I Be able to generate random variables following a given
probability distribution function PDF

I Find a probability distribution function (PDF)
I Sampling rule for accepting a move
I Compute standard deviation and other expectation values
I Techniques for improving errors

Domains and probabilities

Consider the following simple example, namely the tossing of a
dice, resulting in the following possible values

{2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}.

These values are called the domain. To this domain we have the
corresponding probabilities

{1/36, 2/36/3/36, 4/36, 5/36, 6/36, 5/36, 4/36, 3/36, 2/36, 1/36}.

Monte Carlo methods, tossing a dice

The numbers in the domain are the outcomes of the physical
process tossing the dice. We cannot tell beforehand whether the
outcome is 3 or 5 or any other number in this domain. This defines
the randomness of the outcome, or unexpectedness or any other
synonimous word which encompasses the uncertitude of the final
outcome.
The only thing we can tell beforehand is that say the outcome 2
has a certain probability. If our favorite hobby is to spend an hour
every evening throwing dice and registering the sequence of
outcomes, we will note that the numbers in the above domain

{2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12},

appear in a random order. After 11 throws the results may look like

{10, 8, 6, 3, 6, 9, 11, 8, 12, 4, 5}.

Stochastic variables

Random variables are characterized by a domain which
contains all possible values that the random value may take.
This domain has a corresponding PDF.

Stochastic variables and the main concepts, the discrete case

There are two main concepts associated with a stochastic variable.
The domain is the set D = {x} of all accessible values the variable
can assume, so that X ∈ D. An example of a discrete domain is the
set of six different numbers that we may get by throwing of a dice,
x ∈ {1, 2, 3, 4, 5, 6}.
The probability distribution function (PDF) is a function p(x) on
the domain which, in the discrete case, gives us the probability or
relative frequency with which these values of X occur

p(x) = Prob(X = x).

Stochastic variables and the main concepts, the continuous
case

In the continuous case, the PDF does not directly depict the actual
probability. Instead we define the probability for the stochastic
variable to assume any value on an infinitesimal interval around x
to be p(x)dx . The continuous function p(x) then gives us the
density of the probability rather than the probability itself. The
probability for a stochastic variable to assume any value on a
non-infinitesimal interval [a, b] is then just the integral

Prob(a ≤ X ≤ b) =

∫ b

a
p(x)dx .

Qualitatively speaking, a stochastic variable represents the values of
numbers chosen as if by chance from some specified PDF so that
the selection of a large set of these numbers reproduces this PDF.

The cumulative probability

Of interest to us is the cumulative probability distribution function
(CDF), P(x), which is just the probability for a stochastic variable
X to assume any value less than x

P(x) = Prob(X ≤ x) =

∫ x

−∞
p(x ′)dx ′.

The relation between a CDF and its corresponding PDF is then

p(x) =
d

dx
P(x).

Properties of PDFs

There are two properties that all PDFs must satisfy. The first one
is positivity (assuming that the PDF is normalized)

0 ≤ p(x) ≤ 1.

Naturally, it would be nonsensical for any of the values of the
domain to occur with a probability greater than 1 or less than 0.
Also, the PDF must be normalized. That is, all the probabilities
must add up to unity. The probability of “anything” to happen is
always unity. For both discrete and continuous PDFs, this condition
is ∑

xi∈D
p(xi) = 1,∫

x∈D
p(x) dx = 1.

Important distributions, the uniform distribution

The first one is the most basic PDF; namely the uniform
distribution

p(x) =
1

b − a
θ(x − a)θ(b − x), (1)

with
θ(x) = 0 x < 0
θ(x) = 1

b−a ∈ [a, b].

The normal distribution with b = 1 and a = 0 is used to generate
random numbers.

Gaussian distribution
The second one is the Gaussian Distribution

p(x) =
1

σ
√
2π

exp (−(x − µ)2

2σ2),

with mean value µ and standard deviation σ. If µ = 0 and σ = 1, it
is normally called the standard normal distribution

p(x) =
1√
2π

exp (−x2

2
),

The following simple Python code plots the above distribution for
different values of µ and σ.
import numpy as np
from math import acos, exp, sqrt
from matplotlib import pyplot as plt
from matplotlib import rc, rcParams
import matplotlib.units as units
import matplotlib.ticker as ticker
rc(’text’,usetex=True)
rc(’font’,**{’family’:’serif’,’serif’:[’Gaussian distribution’]})
font = {’family’ : ’serif’,

’color’ : ’darkred’,
’weight’ : ’normal’,
’size’ : 16,
}

pi = acos(-1.0)
mu0 = 0.0
sigma0 = 1.0
mu1= 1.0
sigma1 = 2.0
mu2 = 2.0
sigma2 = 4.0

x = np.linspace(-20.0, 20.0)
v0 = np.exp(-(x*x-2*x*mu0+mu0*mu0)/(2*sigma0*sigma0))/sqrt(2*pi*sigma0*sigma0)
v1 = np.exp(-(x*x-2*x*mu1+mu1*mu1)/(2*sigma1*sigma1))/sqrt(2*pi*sigma1*sigma1)
v2 = np.exp(-(x*x-2*x*mu2+mu2*mu2)/(2*sigma2*sigma2))/sqrt(2*pi*sigma2*sigma2)
plt.plot(x, v0, ’b-’, x, v1, ’r-’, x, v2, ’g-’)
plt.title(r’{\bf Gaussian distributions}’, fontsize=20)
plt.text(-19, 0.3, r’Parameters: $\mu = 0$, $\sigma = 1$’, fontdict=font)
plt.text(-19, 0.18, r’Parameters: $\mu = 1$, $\sigma = 2$’, fontdict=font)
plt.text(-19, 0.08, r’Parameters: $\mu = 2$, $\sigma = 4$’, fontdict=font)
plt.xlabel(r’x’,fontsize=20)
plt.ylabel(r’$p(x)$ [MeV]’,fontsize=20)

Tweak spacing to prevent clipping of ylabel
plt.subplots_adjust(left=0.15)
plt.savefig(’gaussian.pdf’, format=’pdf’)
plt.show()

Exponential distribution

Another important distribution in science is the exponential
distribution

p(x) = α exp−(αx).

Expectation values

Let h(x) be an arbitrary continuous function on the domain of the
stochastic variable X whose PDF is p(x). We define the
expectation value of h with respect to p as follows

〈h〉X ≡
∫
h(x)p(x) dx (2)

Whenever the PDF is known implicitly, like in this case, we will
drop the index X for clarity. A particularly useful class of special
expectation values are the moments. The n-th moment of the PDF
p is defined as follows

〈xn〉 ≡
∫
xnp(x) dx

Stochastic variables and the main concepts, mean values

The zero-th moment 〈1〉 is just the normalization condition of p.
The first moment, 〈x〉, is called the mean of p and often denoted
by the letter µ

〈x〉 = µ ≡
∫

xp(x)dx ,

for a continuous distribution and

〈x〉 = µ ≡ 1
N

N∑
i=1

xip(xi),

for a discrete distribution. Qualitatively it represents the centroid or
the average value of the PDF and is therefore simply called the
expectation value of p(x).

Stochastic variables and the main concepts, central
moments, the variance

A special version of the moments is the set of central moments, the
n-th central moment defined as

〈(x − 〈x〉)n〉 ≡
∫

(x − 〈x〉)np(x) dx

The zero-th and first central moments are both trivial, equal 1 and
0, respectively. But the second central moment, known as the
variance of p, is of particular interest. For the stochastic variable
X , the variance is denoted as σ2

X or Var(X)

σ2
X = Var(X) = 〈(x − 〈x〉)2〉 =

∫
(x − 〈x〉)2p(x)dx

=

∫ (
x2 − 2x〈x〉2 + 〈x〉2

)
p(x)dx

= 〈x2〉〉 − 2〈x〉〈x〉+ 〈x〉2

= 〈x2〉 − 〈x〉2

The square root of the variance, σ =
√
〈(x − 〈x〉)2〉 is called the

standard deviation of p. It is the RMS (root-mean-square) value
of the deviation of the PDF from its mean value, interpreted
qualitatively as the “spread” of p around its mean.

First Illustration of the Use of Monte-Carlo Methods,
integration

With this definition of a random variable and its associated PDF,
we attempt now a clarification of the Monte-Carlo strategy by using
the evaluation of an integral as our example.
In discussion on numerical integration we went through standard
methods for evaluating an integral like

I =

∫ 1

0
f (x)dx ≈

N∑
i=1

ωi f (xi),

where ωi are the weights determined by the specific integration
method (like Simpson’s method) with xi the given mesh points. To
give you a feeling of how we are to evaluate the above integral
using Monte-Carlo, we employ here the crudest possible approach.
Later on we will present slightly more refined approaches. This
crude approach consists in setting all weights equal 1, ωi = 1. That
corresponds to the rectangle method

I =

∫ b

a
f (x)dx ≈ h

N∑
i=1

f (xi−1/2),

where f (xi−1/2) is the midpoint value of f for a given value xi−1/2.

First Illustration of the Use of Monte-Carlo Methods,
integration

Setting h = (b− a)/N where b = 1, a = 0, we can then rewrite the
above integral as

I =

∫ 1

0
f (x)dx ≈ 1

N

N∑
i=1

f (xi−1/2),

where xi−1/2 are the midpoint values of x . Introducing the concept
of the average of the function f for a given PDF p(x) as

〈f 〉 =
1
N

N∑
i=1

f (xi)p(xi),

and identify p(x) with the uniform distribution, viz p(x) = 1 when
x ∈ [0, 1] and zero for all other values of x . The integral is is then
the average of f over the interval x ∈ [0, 1]

I =

∫ 1

0
f (x)dx ≈ 〈f 〉.

First Illustration of the Use of Monte-Carlo Methods,
variance in integration

In addition to the average value 〈f 〉 the other important quantity in
a Monte-Carlo calculation is the variance σ2 and the standard
deviation σ. We define first the variance of the integral with f for a
uniform distribution in the interval x ∈ [0, 1] to be

σ2
f =

1
N

N∑
i=1

(f (xi)− 〈f 〉)2p(xi),

and inserting the uniform distribution this yields

σ2
f =

1
N

N∑
i=1

f (xi)
2 −

(
1
N

N∑
i=1

f (xi)

)2

,

or
σ2
f =

(
〈f 2〉 − 〈f 〉2

)
.

Monte-Carlo integration, meaning of variance

The variance is nothing but a measure of the extent to which f
deviates from its average over the region of integration. The
standard deviation is defined as the square root of the variance. If
we consider the above results for a fixed value of N as a
measurement, we could recalculate the above average and variance
for a series of different measurements. If each such measumerent
produces a set of averages for the integral I denoted 〈f 〉l , we have
for M measurements that the integral is given by

〈I 〉M =
1
M

M∑
l=1

〈f 〉l .

First Illustration of the Use of Monte-Carlo Methods,
integration

If we can consider the probability of correlated events to be zero,
we can rewrite the variance of these series of measurements as
(equating M = N)

σ2
N ≈

1
N

(
〈f 2〉 − 〈f 〉2

)
=
σ2
f

N
. (3)

We note that the standard deviation is proportional to the inverse
square root of the number of measurements

σN ∼
1√
N
.

Important aspects of Monte-Carlo Methods

The aim of Monte Carlo calculations is to have σN as small as
possible after N samples. The results from one sample represents,
since we are using concepts from statistics, a ’measurement’.

Why Monte Carlo integration?

The scaling in the previous equation is clearly unfavorable
compared even with the trapezoidal rule. We saw that the
trapezoidal rule carries a truncation error

error ∼ O(h2),

with h the step length. In general, methods based on a Taylor
expansion such as the trapezoidal rule or Simpson’s rule have a
truncation error which goes like ∼ O(hk), with k ≥ 1. Recalling
that the step size is defined as h = (b − a)/N, we have an error
which goes like

error ∼ N−k .

Why Monte Carlo integration?

Monte Carlo integration is more efficient in higher dimensions. To
see this, let us assume that our integration volume is a hypercube
with side L and dimension d . This cube contains hence
N = (L/h)d points and therefore the error in the result scales as
N−k/d for the traditional methods.
The error in the Monte carlo integration is however independent of
d and scales as

error ∼ 1/
√
N.

Always!
Comparing this error with that of the traditional methods, shows
that Monte Carlo integration is more efficient than an algorithm
with error in powers of k when

d > 2k .

Why Monte Carlo integration? Example
In order to expose this, consider the definition of the quantum
mechanical energy of a system consisting of 10 particles in three
dimensions. The energy is the expectation value of the Hamiltonian
H and reads

E =

∫
dR1dR2 . . . dRNΨ∗(R1,R2, . . . ,RN)H(R1,R2, . . . ,RN)Ψ(R1,R2, . . . ,RN)∫

dR1dR2 . . . dRNΨ∗(R1,R2, . . . ,RN)Ψ(R1,R2, . . . ,RN)
,

where Ψ is the wave function of the system and Ri are the
coordinates of each particle. If we want to compute the above
integral using for example Gaussian quadrature and use for example
ten mesh points for the ten particles, we need to compute a
ten-dimensional integral with a total of 1030 mesh points. As an
amusing exercise, assume that you have access to today’s fastest
computer with a theoretical peak capacity of more than one
Petaflops, that is 1015 floating point operations per second.
Assume also that every mesh point corresponds to one floating
operation per second. Estimate then the time needed to compute
this integral with a traditional method like Gaussian quadrature and
compare this number with the estimated lifetime of the universe,
T ≈ 4.7× 1017s. Do you have the patience to wait?

Monte Carlo integration, simple example

We end this first part with a discussion of a brute force Monte
Carlo program which integrates∫ 1

0
dx

4
1 + x2 = π,

where the input is the desired number of Monte Carlo samples.

Monte Carlo integration, simple example

What we are doing is to employ a random number generator to
obtain numbers xi in the interval [0, 1] through a call to one of the
library functions ran0, ran1, ran2 or ran3 which generate random
numbers in the interval x ∈ [0, 1]. These functions will be discussed
in the next section. Here we simply employ these functions in order
to generate a random variable. All random number generators
produce pseudo-random numbers in the interval [0, 1] using the
so-called uniform probability distribution p(x) defined as

p(x) =
1

b − a
Θ(x − a)Θ(b − x),

with a = 0 og b = 1 and where Θ is the standard Heaviside
function or simply the step function.

Monte Carlo integration, simple example

If we have a general interval [a, b], we can still use these random
number generators through a change of variables

z = a + (b − a)x ,

with x in the interval x ∈ [0, 1].

Monte Carlo integration, simple example

The present approach to the above integral is often called ’crude’
or ’Brute-Force’ Monte-Carlo. Later on in this chapter we will study
refinements to this simple approach. The reason is that a random
generator produces points that are distributed in a homogenous way
in the interval [0, 1]. If our function is peaked around certain values
of x , we may end up sampling function values where f (x) is small
or near zero. Better schemes which reflect the properties of the
function to be integrated are thence needed.

Monte Carlo integration, algorithm

The algorithm is as follows

I Choose the number of Monte Carlo samples N.
I Perform a loop over N and for each step generate a random

number xi in the interval [0, 1] through a call to a random
number generator.

I Use this number to evaluate f (xi).
I Evaluate the contributions to the mean value and the standard

deviation for each loop.
I After N samples calculate the final mean value and the

standard deviation.

Monte Carlo integration, simple example, the program
#include <iostream>
#include <cmath>
using namespace std;

// Here we define various functions called by the main program
// this function defines the function to integrate

double func(double x);

// Main function begins here
int main()
{

int n;
double MCint, MCintsqr2, fx, Variance;
cout << "Read in the number of Monte-Carlo samples" << endl;
cin >> n;
MCint = MCintsqr2=0.;
double invers_period = 1./RAND_MAX; // initialise the random number generator
srand(time(NULL)); // This produces the so-called seed in MC jargon

// evaluate the integral with the a crude Monte-Carlo method
for (int i = 1; i <= n; i++){

// obtain a floating number x in [0,1]
double x = double(rand())*invers_period;
fx = func(x);
MCint += fx;
MCintsqr2 += fx*fx;

}
MCint = MCint/((double) n);
MCintsqr2 = MCintsqr2/((double) n);
double variance=MCintsqr2-MCint*MCint;

// final output
cout << " variance= " << variance << " Integral = " << MCint << " Exact= " << M_PI << endl;

} // end of main program
// this function defines the function to integrate
double func(double x)
{

double value;
value = 4/(1.+x*x);
return value;

} // end of function to evaluate

Monte Carlo integration, simple example and the results

N I σN

10 3.10263E+00 3.98802E-01
100 3.02933E+00 4.04822E-01

1000 3.13395E+00 4.22881E-01
10000 3.14195E+00 4.11195E-01

100000 3.14003E+00 4.14114E-01
1000000 3.14213E+00 4.13838E-01

10000000 3.14177E+00 4.13523E-01
109 3.14162E+00 4.13581E-01

We note that as N increases, the integral itself never reaches more
than an agreement to the fourth or fifth digit. The variance also
oscillates around its exact value 4.13581E − 01.

Testing against the trapezoidal rule for a one-dimensional
integral

The following simple Python code, with pertaining plot shows the
relative error for the above integral using a brute force Monte Carlo
approach and the trapezoidal rule. Running the python code shows
that the trapezoidal rule is clearly superior in this case. With
importance sampling and multi-dimensional integrals, the Monte
Carl method takes over again.
from matplotlib import pyplot as plt
from math import exp, acos, log10
import numpy as np
import random

function for the trapezoidal rule
def TrapezoidalRule(a,b,f,n):

h = (b-a)/float(n)
s = 0
x = a
for i in range(1,n,1):

x = x+h
s = s+ f(x)

s = 0.5*(f(a)+f(b))+s
return h*s

function to perform the Monte Carlo calculations
def MonteCarloIntegration(f,n):

sum = 0
Define the seed for the rng

random.seed()
for i in range (1, n, 1):

x = random.random()
sum = sum +f(x)

return sum/n

function to compute
def function(x):

return 4/(1+x*x)

Integration limits for the Trapezoidal rule
a = 0.0; b = 1.0
exact = acos(-1.0)
set up the arrays for plotting the relative error
log10n = np.zeros(6); Trapez = np.zeros(6); MCint = np.zeros(6);
find the relative error as function of integration points
for i in range(1, 6):

npts = 10**(i+1)
log10n[i] = log10(npts)
Trapez[i] = log10(abs((TrapezoidalRule(a,b,function,npts)-exact)/exact))
MCint[i] = log10(abs((MonteCarloIntegration(function,npts)-exact)/exact))

plt.plot(log10n, Trapez ,’b-’,log10n, MCint,’g-’)
plt.axis([1,6,-14.0, 0.0])
plt.xlabel(’$\log_{10}(n)$’)
plt.ylabel(’Relative error’)
plt.title(’Relative errors for Monte Carlo integration and Trapezoidal rule’)
plt.legend([’Trapezoidal rule’, ’Brute force Monte Carlo integration’], loc=’best’)
plt.savefig(’mcintegration.pdf’)
plt.show()

Second example, particles in a box

We give here an example of how a system evolves towards a well
defined equilibrium state.
Consider a box divided into two equal halves separated by a wall.
At the beginning, time t = 0, there are N particles on the left side.
A small hole in the wall is then opened and one particle can pass
through the hole per unit time.
After some time the system reaches its equilibrium state with
equally many particles in both halves, N/2. Instead of determining
complicated initial conditions for a system of N particles, we model
the system by a simple statistical model. In order to simulate this
system, which may consist of N � 1 particles, we assume that all
particles in the left half have equal probabilities of going to the
right half. We introduce the label nl to denote the number of
particles at every time on the left side, and nr = N − nl for those
on the right side.

Second example, particles in a box

The probability for a move to the right during a time step ∆t is
nl/N. The algorithm for simulating this problem may then look like
this

I Choose the number of particles N.

b* Make a loop over time, where the maximum time (or maximum
number of steps) should be larger than the number of particles N.

I For every time step ∆t there is a probability nl/N for a move
to the right. Compare this probability with a random number
x .

I If x ≤ nl/N, decrease the number of particles in the left half
by one, i.e., nl = nl − 1. Else, move a particle from the right
half to the left, i.e., nl = nl + 1.

I Increase the time by one unit (the external loop).

Second example, particles in a box
In this case, a Monte Carlo sample corresponds to one time unit ∆t.
The following simple C/C++-program illustrates this model.
// Particles in a box
#include <iostream>
#include <fstream>
#include <iomanip>
#include "lib.h"
using namespace std;

ofstream ofile;
int main(int argc, char* argv[])
{

char *outfilename;
int initial_n_particles, max_time, time, random_n, nleft;
long idum;
// Read in output file, abort if there are too few command-line arguments
if(argc <= 1){

cout << "Bad Usage: " << argv[0] <<
" read also output file on same line" << endl;

exit(1);
}
else{

outfilename=argv[1];
}
ofile.open(outfilename);
// Read in data
cout << "Initial number of particles = " << endl ;
cin >> initial_n_particles;
// setup of initial conditions
nleft = initial_n_particles;
max_time = 10*initial_n_particles;
idum = -1;
// sampling over number of particles
for(time=0; time <= max_time; time++){

random_n = ((int) initial_n_particles*ran0(&idum));
if (random_n <= nleft){

nleft -= 1;
}
else{

nleft += 1;
}
ofile << setiosflags(ios::showpoint | ios::uppercase);
ofile << setw(15) << time;
ofile << setw(15) << nleft << endl;

}
return 0;

} // end main function

Second example, particles in a box, discussion

If we denote 〈nl〉 as the number of particles in the left half as a
time average after equilibrium is reached, we can define the
standard deviation as

σ =
√
〈n2

l 〉 − 〈nl〉2. (4)

This problem has also an analytic solution to which we can
compare our numerical simulation.

Second example, particles in a box, discussion

If nl(t) is the number of particles in the left half after t moves, the
change in nl(t) in the time interval ∆t is

∆n =

(
N − nl(t)

N
− nl(t)

N

)
∆t,

and assuming that nl and t are continuous variables we arrive at

dnl(t)

dt
= 1− 2nl(t)

N
,

whose solution is

nl(t) =
N

2

(
1 + e−2t/N

)
,

with the initial condition nl(t = 0) = N. Note that we have
assumed n to be a continuous variable. Obviously, particles are
discrete objects.

Simple demonstration using python
The following simple Python code implements the above algorithm
for particles in a box and plots the final number of particles in each
part of the box.
#!/usr/bin/env python
from matplotlib import pyplot as plt
from math import exp
import numpy as np
import random

initial number of particles
N0 = 1000
MaxTime = 10*N0
values = np.zeros(MaxTime)
time = np.zeros(MaxTime)
random.seed()
initial number of particles in left half
nleft = N0
for t in range (0, MaxTime, 1):

if N0*random.random() <= nleft:
nleft -= 1

else:
nleft += 1

time[t] = t
values[t] = nleft

Finally we plot the results
plt.plot(time, values,’b-’)
plt.axis([0,MaxTime, N0/4, N0])
plt.xlabel(’t’)
plt.ylabel(’N’)
plt.title(’Number of particles in left half’)
plt.savefig(’box.pdf’)
plt.show()

The produced figure shows the development of this system as
function of time steps. We note that for N = 1000 after roughly
2000 time steps, the system has reached the equilibrium state.
There are however noteworthy fluctuations around equilibrium.

Brief Summary

In essence the Monte Carlo method contains the following
ingredients

I A PDF which characterizes the system
I Random numbers which are generated so as to cover in an as

uniform as possible way on the unity interval [0,1].
I A sampling rule
I An error estimation
I Techniques for improving the errors

Probability Distribution Functions

The following table collects properties of probability distribution
functions. In our notation we reserve the label p(x) for the
probability of a certain event, while P(x) is the cumulative
probability.

Discrete PDF Continuous PDF
Domain {x1, x2, x3, . . . , xN} [a, b]
Probability p(xi) p(x)dx

Cumulative Pi =
∑i

l=1 p(xl) P(x) =
∫ x

a
p(t)dt

Positivity 0 ≤ p(xi) ≤ 1 p(x) ≥ 0
Positivity 0 ≤ Pi ≤ 1 0 ≤ P(x) ≤ 1
Monotonic Pi ≥ Pj if xi ≥ xj P(xi) ≥ P(xj) if xi ≥ xj
Normalization PN = 1 P(b) = 1

Probability Distribution Functions

With a PDF we can compute expectation values of selected
quantities such as

〈xk〉 =
1
N

N∑
i=1

xki p(xi),

if we have a discrete PDF or

〈xk〉 =

∫ b

a
xkp(x)dx ,

in the case of a continuous PDF. We have already defined the
mean value µ and the variance σ2.

The three famous Probability Distribution Functions
There are at least three PDFs which one may encounter. These are
the
Uniform distribution

p(x) =
1

b − a
Θ(x − a)Θ(b − x),

yielding probabilities different from zero in the interval [a, b].
The exponential distribution

p(x) = α exp (−αx),

yielding probabilities different from zero in the interval [0,∞) and
with mean value

µ =

∫ ∞
0

xp(x)dx =

∫ ∞
0

xα exp (−αx)dx =
1
α
,

with variance

σ2 =

∫ ∞
0

x2p(x)dx − µ2 =
1
α2 .

Probability Distribution Functions, the normal distribution

Finally, we have the so-called univariate normal distribution, or just
the normal distribution

p(x) =
1

b
√
2π

exp
(
−(x − a)2

2b2

)
with probabilities different from zero in the interval (−∞,∞). The
integral

∫∞
−∞ exp

(
−(x2)dx appears in many calculations, its value

is
√
π, a result we will need when we compute the mean value and

the variance. The mean value is

µ =

∫ ∞
0

xp(x)dx =
1

b
√
2π

∫ ∞
−∞

x exp
(
−(x − a)2

2b2

)
dx ,

which becomes with a suitable change of variables

µ =
1

b
√
2π

∫ ∞
−∞

b
√
2(a + b

√
2y) exp−y2dy = a.

Probability Distribution Functions, the normal distribution
Similarly, the variance becomes

σ2 =
1

b
√
2π

∫ ∞
−∞

(x − µ)2 exp
(
−(x − a)2

2b2

)
dx ,

and inserting the mean value and performing a variable change we
obtain

σ2 =
1

b
√
2π

∫ ∞
−∞

b
√
2(b
√
2y)2 exp

(
−y2)dy =

2b2
√
π

∫ ∞
−∞

y2 exp
(
−y2)dy ,

and performing a final integration by parts we obtain the
well-known result σ2 = b2. It is useful to introduce the standard
normal distribution as well, defined by µ = a = 0, viz. a distribution
centered around zero and with a variance σ2 = 1, leading to

p(x) =
1√
2π

exp
(
−x2

2

)
. (5)

Probability Distribution Functions, the cumulative
distribution

The exponential and uniform distributions have simple cumulative
functions, whereas the normal distribution does not, being
proportional to the so-called error function erf (x), given by

P(x) =
1√
2π

∫ x

−∞
exp
(
− t2

2

)
dt,

which is difficult to evaluate in a quick way.

Probability Distribution Functions, other important
distribution

Some other PDFs which one encounters often in the natural
sciences are the binomial distribution

p(x) =

(
n
x

)
y x(1− y)n−x x = 0, 1, . . . , n,

where y is the probability for a specific event, such as the tossing of
a coin or moving left or right in case of a random walker. Note that
x is a discrete stochastic variable.
The sequence of binomial trials is characterized by the following
definitions

I Every experiment is thought to consist of N independent trials.
I In every independent trial one registers if a specific situation

happens or not, such as the jump to the left or right of a
random walker.

I The probability for every outcome in a single trial has the
same value, for example the outcome of tossing (either heads
or tails) a coin is always 1/2.

Probability Distribution Functions, the binomial distribution
In order to compute the mean and variance we need to recall
Newton’s binomial formula

(a + b)m =
m∑

n=0

(
m
n

)
anbm−n,

which can be used to show that

n∑
x=0

(
n
x

)
y x(1− y)n−x = (y + 1− y)n = 1,

the PDF is normalized to one. The mean value is

µ =
n∑

x=0

x

(
n
x

)
y x(1− y)n−x =

n∑
x=0

x
n!

x!(n − x)!
y x(1− y)n−x ,

resulting in

µ =
n∑

x=0

x
(n − 1)!

(x − 1)!(n − 1− (x − 1))!
y x−1(1− y)n−1−(x−1),

which we rewrite as

µ = ny
n∑
ν=0

(
n − 1
ν

)
yν(1− y)n−1−ν = ny(y + 1− y)n−1 = ny .

The variance is slightly trickier to get. It reads σ2 = ny(1− y).

Probability Distribution Functions, Poisson’s distribution

Another important distribution with discrete stochastic variables x
is the Poisson model, which resembles the exponential distribution
and reads

p(x) =
λx

x!
e−λ x = 0, 1, . . . , ;λ > 0.

In this case both the mean value and the variance are easier to
calculate,

µ =
∞∑
x=0

x
λx

x!
e−λ = λe−λ

∞∑
x=1

λx−1

(x − 1)!
= λ,

and the variance is σ2 = λ.

Probability Distribution Functions, Poisson’s distribution

An example of applications of the Poisson distribution could be the
counting of the number of α-particles emitted from a radioactive
source in a given time interval. In the limit of n→∞ and for small
probabilities y , the binomial distribution approaches the Poisson
distribution. Setting λ = ny , with y the probability for an event in
the binomial distribution we can show that

lim
n→∞

(
n
x

)
y x(1− y)n−xe−λ =

∞∑
x=1

λx

x!
e−λ.

Meet the covariance!

An important quantity in a statistical analysis is the so-called
covariance.
Consider the set {Xi} of n stochastic variables (not necessarily
uncorrelated) with the multivariate PDF P(x1, . . . , xn). The
covariance of two of the stochastic variables, Xi and Xj , is defined
as follows

Cov(Xi , Xj) = 〈(xi − 〈xi 〉)(xj − 〈xj〉)〉 (6)

=

∫
· · ·
∫

(xi − 〈xi 〉)(xj − 〈xj〉)P(x1, . . . , xn) dx1 . . . dxn,

(7)

with
〈xi 〉 =

∫
· · ·
∫

xiP(x1, . . . , xn) dx1 . . . dxn.

Meet the covariance in matrix disguise

If we consider the above covariance as a matrix

Cij = Cov(Xi , Xj),

then the diagonal elements are just the familiar variances,
Cii = Cov(Xi , Xi) = Var(Xi). It turns out that all the off-diagonal
elements are zero if the stochastic variables are uncorrelated.

Meet the covariance, uncorrelated events

This is easy to show, keeping in mind the linearity of the
expectation value. Consider the stochastic variables Xi and Xj ,
(i 6= j)

Cov(Xi , Xj) = 〈(xi − 〈xi 〉)(xj − 〈xj〉)〉
= 〈xixj − xi 〈xj〉 − 〈xi 〉xj + 〈xi 〉〈xj〉〉
= 〈xixj〉 − 〈xi 〈xj〉〉 − 〈〈xi 〉xj〉+ 〈〈xi 〉〈xj〉〉
= 〈xixj〉 − 〈xi 〉〈xj〉 − 〈xi 〉〈xj〉+ 〈xi 〉〈xj〉
= 〈xixj〉 − 〈xi 〉〈xj〉

If Xi and Xj are independent, we get

〈xixj〉 = 〈xi 〉〈xj〉 = Cov(Xi ,Xj) = 0 (i 6= j).

Numerical experiments and the covariance

Now that we have constructed an idealized mathematical
framework, let us try to apply it to empirical observations.
Examples of relevant physical phenomena may be spontaneous
decays of nuclei, or a purely mathematical set of numbers produced
by some deterministic mechanism. It is the latter we will deal with,
using so-called pseudo-random number generators. In general our
observations will contain only a limited set of observables. We
remind the reader that a stochastic process is a process that
produces sequentially a chain of values

{x1, x2, . . . xk , . . . }.

Numerical experiments and the covariance

We will call these values our measurements and the entire set as
our measured sample. The action of measuring all the elements of
a sample we will call a stochastic experiment (since, operationally,
they are often associated with results of empirical observation of
some physical or mathematical phenomena; precisely an
experiment). We assume that these values are distributed according
to some PDF pX (x), where X is just the formal symbol for the
stochastic variable whose PDF is pX (x). Instead of trying to
determine the full distribution p we are often only interested in
finding the few lowest moments, like the mean µX and the variance
σX .

Numerical experiments and the covariance, actual situations

In practical situations however, a sample is always of finite size. Let
that size be n. The expectation value of a sample α, the sample
mean, is then defined as follows

〈xα〉 ≡
1
n

n∑
k=1

xα,k .

The sample variance is:

Var(x) ≡ 1
n

n∑
k=1

(xα,k − 〈xα〉)2,

with its square root being the standard deviation of the sample.

Numerical experiments and the covariance, our observables

You can think of the above observables as a set of quantities which
define a given experiment. This experiment is then repeated several
times, say m times. The total average is then

〈Xm〉 =
1
m

m∑
α=1

xα =
1
mn

∑
α,k

xα,k , (8)

where the last sums end at m and n. The total variance is

σ2
m =

1
mn2

m∑
α=1

(〈xα〉 − 〈Xm〉)2,

which we rewrite as

σ2
m =

1
m

m∑
α=1

n∑
kl=1

(xα,k − 〈Xm〉)(xα,l − 〈Xm〉). (9)

Numerical experiments and the covariance, the sample
variance

We define also the sample variance σ2 of all mn individual
experiments as

σ2 =
1
mn

m∑
α=1

n∑
k=1

(xα,k − 〈Xm〉)2. (10)

These quantities, being known experimental values or the results
from our calculations, may differ, in some cases significantly, from
the similarly named exact values for the mean value µX , the
variance Var(X) and the covariance Cov(X ,Y).

Numerical experiments and the covariance, central limit
theorem

The central limit theorem states that the PDF p̃(z) of the average
of m random values corresponding to a PDF p(x) is a normal
distribution whose mean is the mean value of the PDF p(x) and
whose variance is the variance of the PDF p(x) divided by m, the
number of values used to compute z .
The central limit theorem leads then to the well-known expression
for the standard deviation, given by

σm =
σ√
m
.

In many cases the above estimate for the standard deviation, in
particular if correlations are strong, may be too simplistic. We need
therefore a more precise defintion of the error and the variance in
our results.

Definition of Correlation Functions and Standard Deviation

Our estimate of the true average µX is the sample mean 〈Xm〉

µX ≈ Xm =
1
mn

m∑
α=1

n∑
k=1

xα,k .

We can then use Eq. (9)

σ2
m =

1
mn2

m∑
α=1

n∑
kl=1

(xα,k − 〈Xm〉)(xα,l − 〈Xm〉),

and rewrite it as

σ2
m =

σ2

n
+

2
mn2

m∑
α=1

n∑
k<l

(xα,k − 〈Xm〉)(xα,l − 〈Xm〉),

where the first term is the sample variance of all mn experiments
divided by n and the last term is nothing but the covariance which
arises when k 6= l .

Definition of Correlation Functions and Standard Deviation

Our estimate of the true average µX is the sample mean 〈Xm〉
If the observables are uncorrelated, then the covariance is zero and
we obtain a total variance which agrees with the central limit
theorem. Correlations may often be present in our data set,
resulting in a non-zero covariance. The first term is normally called
the uncorrelated contribution. Computationally the uncorrelated
first term is much easier to treat efficiently than the second. We
just accumulate separately the values x2 and x for every
measurement x we receive. The correlation term, though, has to be
calculated at the end of the experiment since we need all the
measurements to calculate the cross terms. Therefore, all
measurements have to be stored throughout the experiment.

Definition of Correlation Functions and Standard Deviation

Let us analyze the problem by splitting up the correlation term into
partial sums of the form

fd =
1
nm

m∑
α=1

n−d∑
k=1

(xα,k − 〈Xm〉)(xα,k+d − 〈Xm〉),

The correlation term of the total variance can now be rewritten in
terms of fd

2
mn2

m∑
α=1

n∑
k<l

(xα,k − 〈Xm〉)(xα,l − 〈Xm〉) =
2
n

n−1∑
d=1

fd

Definition of Correlation Functions and Standard Deviation

The value of fd reflects the correlation between measurements
separated by the distance d in the samples. Notice that for d = 0,
f is just the sample variance, σ2. If we divide fd by σ2, we arrive at
the so called autocorrelation function

κd =
fd
σ2 (11)

which gives us a useful measure of the correlation pair correlation
starting always at 1 for d = 0.

Definition of Correlation Functions and Standard Deviation,
sample variance

The sample variance of the mn experiments can now be written in
terms of the autocorrelation function

σ2
m =

σ2

n
+

2
n
· σ2

n−1∑
d=1

fd
σ2 =

(
1 + 2

n−1∑
d=1

κd

)
1
n
σ2 =

τ

n
· σ2 (12)

and we see that σm can be expressed in terms of the uncorrelated
sample variance times a correction factor τ which accounts for the
correlation between measurements. We call this correction factor
the autocorrelation time

τ = 1 + 2
n−1∑
d=1

κd (13)

For a correlation free experiment, τ equals 1.

Definition of Correlation Functions and Standard Deviation

From the point of view of Eq. (12) we can interpret a sequential
correlation as an effective reduction of the number of measurements
by a factor τ . The effective number of measurements becomes

neff =
n

τ

To neglect the autocorrelation time τ will always cause our simple
uncorrelated estimate of σ2

m ≈ σ2/n to be less than the true sample
error. The estimate of the error will be too “good”. On the other
hand, the calculation of the full autocorrelation time poses an
efficiency problem if the set of measurements is very large. The
solution to this problem is given by more practically oriented
methods like the blocking technique.

Random Numbers

Random Numbers, better name: pseudo random numbers

Random number generator RNG

Random number generator RNG and periodic outputs

Random number generator RNG and its period

Random number generator RNG, other examples

Random number generator RNG, other examples

Random number generator RNG, RAN0

Random number generator RNG, RAN0

Random number generator RNG, RAN0

Random number generator RNG, RAN0

Random number generator RNG, RAN0 code

Which RNG should I use?

Improved Monte Carlo Integration

Random Numbers
Uniform deviates are just random numbers that lie within a
specified range (typically 0 to 1), with any one number in the range
just as likely as any other. They are, in other words, what you
probably think random numbers are. However, we want to
distinguish uniform deviates from other sorts of random numbers,
for example numbers drawn from a normal (Gaussian) distribution
of specified mean and standard deviation. These other sorts of
deviates are almost always generated by performing appropriate
operations on one or more uniform deviates, as we will see in
subsequent sections. So, a reliable source of random uniform
deviates, the subject of this section, is an essential building block
for any sort of stochastic modeling or Monte Carlo computer work.

Random Numbers

Random Numbers, better name: pseudo random numbers

Random number generator RNG

Random number generator RNG and periodic outputs

Random number generator RNG and its period

Random number generator RNG, other examples

Random number generator RNG, other examples

Random number generator RNG, RAN0

Random number generator RNG, RAN0

Random number generator RNG, RAN0

Random number generator RNG, RAN0

Random number generator RNG, RAN0 code

Which RNG should I use?

Improved Monte Carlo Integration

Random Numbers, better name: pseudo random numbers

A disclaimer is however appropriate. It should be fairly obvious that
something as deterministic as a computer cannot generate purely
random numbers.
Numbers generated by any of the standard algorithms are in reality
pseudo random numbers, hopefully abiding to the following criteria:

I they produce a uniform distribution in the interval [0,1].
I correlations between random numbers are negligible
I the period before the same sequence of random numbers is

repeated is as large as possible and finally
I the algorithm should be fast.

Random Numbers

Random Numbers, better name: pseudo random numbers

Random number generator RNG

Random number generator RNG and periodic outputs

Random number generator RNG and its period

Random number generator RNG, other examples

Random number generator RNG, other examples

Random number generator RNG, RAN0

Random number generator RNG, RAN0

Random number generator RNG, RAN0

Random number generator RNG, RAN0

Random number generator RNG, RAN0 code

Which RNG should I use?

Improved Monte Carlo Integration

Random number generator RNG

The most common random number generators are based on
so-called Linear congruential relations of the type

Ni = (aNi−1 + c)MOD(M),

which yield a number in the interval [0,1] through

xi = Ni/M

The number M is called the period and it should be as large as
possible and N0 is the starting value, or seed. The function MOD
means the remainder, that is if we were to evaluate (13)MOD(9),
the outcome is the remainder of the division 13/9, namely 4.

Random Numbers

Random Numbers, better name: pseudo random numbers

Random number generator RNG

Random number generator RNG and periodic outputs

Random number generator RNG and its period

Random number generator RNG, other examples

Random number generator RNG, other examples

Random number generator RNG, RAN0

Random number generator RNG, RAN0

Random number generator RNG, RAN0

Random number generator RNG, RAN0

Random number generator RNG, RAN0 code

Which RNG should I use?

Improved Monte Carlo Integration

Random number generator RNG and periodic outputs

The problem with such generators is that their outputs are periodic;
they will start to repeat themselves with a period that is at most
M. If however the parameters a and c are badly chosen, the period
may be even shorter.
Consider the following example

Ni = (6Ni−1 + 7)MOD(5),

with a seed N0 = 2. This generator produces the sequence
4, 1, 3, 0, 2, 4, 1, 3, 0, 2, , i.e., a sequence with period 5.
However, increasing M may not guarantee a larger period as the
following example shows

Ni = (27Ni−1 + 11)MOD(54),

which still, with N0 = 2, results in 11, 38, 11, 38, 11, 38, . . . , a
period of just 2.

Random Numbers

Random Numbers, better name: pseudo random numbers

Random number generator RNG

Random number generator RNG and periodic outputs

Random number generator RNG and its period

Random number generator RNG, other examples

Random number generator RNG, other examples

Random number generator RNG, RAN0

Random number generator RNG, RAN0

Random number generator RNG, RAN0

Random number generator RNG, RAN0

Random number generator RNG, RAN0 code

Which RNG should I use?

Improved Monte Carlo Integration

Random number generator RNG and its period

Typical periods for the random generators provided in the program
library are of the order of ∼ 109 or larger. Other random number
generators which have become increasingly popular are so-called
shift-register generators. In these generators each successive
number depends on many preceding values (rather than the last
values as in the linear congruential generator). For example, you
could make a shift register generator whose lth number is the sum
of the l − ith and l − jth values with modulo M,

Nl = (aNl−i + cNl−j)MOD(M).

Random Numbers

Random Numbers, better name: pseudo random numbers

Random number generator RNG

Random number generator RNG and periodic outputs

Random number generator RNG and its period

Random number generator RNG, other examples

Random number generator RNG, other examples

Random number generator RNG, RAN0

Random number generator RNG, RAN0

Random number generator RNG, RAN0

Random number generator RNG, RAN0

Random number generator RNG, RAN0 code

Which RNG should I use?

Improved Monte Carlo Integration

Random number generator RNG, other examples

Such a generator again produces a sequence of pseudorandom
numbers but this time with a period much larger than M. It is also
possible to construct more elaborate algorithms by including more
than two past terms in the sum of each iteration. One example is
the generator of Marsaglia and Zaman which consists of two
congruential relations

Nl = (Nl−3 − Nl−1)MOD(231 − 69), (14)

followed by

Nl = (69069Nl−1 + 1013904243)MOD(232), (15)

which according to the authors has a period larger than 294.

http://dl.acm.org/citation.cfm?id=187154

Random Numbers

Random Numbers, better name: pseudo random numbers

Random number generator RNG

Random number generator RNG and periodic outputs

Random number generator RNG and its period

Random number generator RNG, other examples

Random number generator RNG, other examples

Random number generator RNG, RAN0

Random number generator RNG, RAN0

Random number generator RNG, RAN0

Random number generator RNG, RAN0

Random number generator RNG, RAN0 code

Which RNG should I use?

Improved Monte Carlo Integration

Random number generator RNG, other examples

Instead of using modular addition, we could use the bitwise
exclusive-OR (⊕) operation so that

Nl = (Nl−i)⊕ (Nl−j)

where the bitwise action of ⊕ means that if Nl−i = Nl−j the result
is 0 whereas if Nl−i 6= Nl−j the result is 1. As an example, consider
the case where Nl−i = 6 and Nl−j = 11. The first one has a bit
representation (using 4 bits only) which reads 0110 whereas the
second number is 1011. Employing the ⊕ operator yields 1101, or
23 + 22 + 20 = 13.
In Fortran90, the bitwise ⊕ operation is coded through the intrinsic
function IEOR(m, n) where m and n are the input numbers, while
in C it is given by m ∧ n.

Random Numbers

Random Numbers, better name: pseudo random numbers

Random number generator RNG

Random number generator RNG and periodic outputs

Random number generator RNG and its period

Random number generator RNG, other examples

Random number generator RNG, other examples

Random number generator RNG, RAN0

Random number generator RNG, RAN0

Random number generator RNG, RAN0

Random number generator RNG, RAN0

Random number generator RNG, RAN0 code

Which RNG should I use?

Improved Monte Carlo Integration

Random number generator RNG, RAN0
We show here how the linear congruential algorithm can be
implemented, namely

Ni = (aNi−1)MOD(M).

However, since a and Ni−1 are integers and their multiplication
could become greater than the standard 32 bit integer, there is a
trick via Schrage’s algorithm which approximates the multiplication
of large integers through the factorization

M = aq + r ,

where we have defined

q = [M/a],

and
r = M MOD a.

where the brackets denote integer division. In the code below the
numbers q and r are chosen so that r < q.

Random Numbers

Random Numbers, better name: pseudo random numbers

Random number generator RNG

Random number generator RNG and periodic outputs

Random number generator RNG and its period

Random number generator RNG, other examples

Random number generator RNG, other examples

Random number generator RNG, RAN0

Random number generator RNG, RAN0

Random number generator RNG, RAN0

Random number generator RNG, RAN0

Random number generator RNG, RAN0 code

Which RNG should I use?

Improved Monte Carlo Integration

Random number generator RNG, RAN0

To see how this works we note first that

(aNi−1)MOD(M) = (aNi−1 − [Ni−1/q]M)MOD(M), (16)

since we can add or subtract any integer multiple of M from aNi−1.
The last term [Ni−1/q]MMOD(M) is zero since the integer
division [Ni−1/q] just yields a constant which is multiplied with M.

Random Numbers

Random Numbers, better name: pseudo random numbers

Random number generator RNG

Random number generator RNG and periodic outputs

Random number generator RNG and its period

Random number generator RNG, other examples

Random number generator RNG, other examples

Random number generator RNG, RAN0

Random number generator RNG, RAN0

Random number generator RNG, RAN0

Random number generator RNG, RAN0

Random number generator RNG, RAN0 code

Which RNG should I use?

Improved Monte Carlo Integration

Random number generator RNG, RAN0

We can now rewrite Eq. (16) as

(aNi−1)MOD(M) = (aNi−1 − [Ni−1/q](aq + r))MOD(M), (17)

which results in

(aNi−1)MOD(M) = (a(Ni−1 − [Ni−1/q]q)− [Ni−1/q]r)) MOD(M),
(18)

yielding

(aNi−1)MOD(M) = (a(Ni−1MOD(q))− [Ni−1/q]r)) MOD(M).
(19)

Random Numbers

Random Numbers, better name: pseudo random numbers

Random number generator RNG

Random number generator RNG and periodic outputs

Random number generator RNG and its period

Random number generator RNG, other examples

Random number generator RNG, other examples

Random number generator RNG, RAN0

Random number generator RNG, RAN0

Random number generator RNG, RAN0

Random number generator RNG, RAN0

Random number generator RNG, RAN0 code

Which RNG should I use?

Improved Monte Carlo Integration

Random number generator RNG, RAN0

The term [Ni−1/q]r is always smaller or equal Ni−1(r/q) and with
r < q we obtain always a number smaller than Ni−1, which is
smaller than M. And since the number Ni−1MOD(q) is between
zero and q − 1 then a(Ni−1MOD(q)) < aq. Combined with our
definition of q = [M/a] ensures that this term is also smaller than
M meaning that both terms fit into a 32-bit signed integer. None
of these two terms can be negative, but their difference could. The
algorithm below adds M if their difference is negative. Note that
the program uses the bitwise ⊕ operator to generate the starting
point for each generation of a random number. The period of ran0
is ∼ 2.1× 109. A special feature of this algorithm is that is should
never be called with the initial seed set to 0.

Random Numbers

Random Numbers, better name: pseudo random numbers

Random number generator RNG

Random number generator RNG and periodic outputs

Random number generator RNG and its period

Random number generator RNG, other examples

Random number generator RNG, other examples

Random number generator RNG, RAN0

Random number generator RNG, RAN0

Random number generator RNG, RAN0

Random number generator RNG, RAN0

Random number generator RNG, RAN0 code

Which RNG should I use?

Improved Monte Carlo Integration

Random number generator RNG, RAN0 code
/*
** The function
** ran0()
** is an "Minimal" random number generator of Park and Miller
** Set or reset the input value
** idum to any integer value (except the unlikely value MASK)
** to initialize the sequence; idum must not be altered between
** calls for sucessive deviates in a sequence.
** The function returns a uniform deviate between 0.0 and 1.0.
*/

double ran0(long &idum)
{

const int a = 16807, m = 2147483647, q = 127773;
const int r = 2836, MASK = 123459876;
const double am = 1./m;
long k;
double ans;
idum ^= MASK;
k = (*idum)/q;
idum = a*(idum - k*q) - r*k;
// add m if negative difference
if(idum < 0) idum += m;
ans=am*(idum);
idum ^= MASK;
return ans;

} // End: function ran0()

Properties of Selected Random Number Generators

As mentioned previously, the underlying PDF for the generation of
random numbers is the uniform distribution, meaning that the
probability for finding a number x in the interval [0,1] is p(x) = 1.
A random number generator should produce numbers which are
uniformly distributed in this interval. The table shows the
distribution of N = 10000 random numbers generated by the
functions in the program library. We note in this table that the
number of points in the various intervals 0.0− 0.1, 0.1− 0.2 etc are
fairly close to 1000, with some minor deviations.
Two additional measures are the standard deviation σ and the
mean µ = 〈x〉.

Properties of Selected Random Number Generators

For the uniform distribution, the mean value µ is then

µ = 〈x〉 =
1
2

while the standard deviation is

σ =
√
〈x2〉 − µ2 =

1√
12

= 0.2886.

Properties of Selected Random Number Generators

The various random number generators produce results which agree
rather well with these limiting values.

x-bin ran0 ran1 ran2 ran3
0.0-0.1 1013 991 938 1047
0.1-0.2 1002 1009 1040 1030
0.2-0.3 989 999 1030 993
0.3-0.4 939 960 1023 937
0.4-0.5 1038 1001 1002 992
0.5-0.6 1037 1047 1009 1009
0.6-0.7 1005 989 1003 989
0.7-0.8 986 962 985 954
0.8-0.9 1000 1027 1009 1023
0.9-1.0 991 1015 961 1026
µ 0.4997 0.5018 0.4992 0.4990
σ 0.2882 0.2892 0.2861 0.2915

Simple demonstration of RNGs using python
The following simple Python code plots the distribution of the
produced random numbers using the linear congruential RNG
employed by Python. The trend displayed in the previous table is
seen rather clearly.
#!/usr/bin/env python
import numpy as np
import matplotlib.mlab as mlab
import matplotlib.pyplot as plt
import random

initialize the rng with a seed
random.seed()
counts = 10000
values = np.zeros(counts)
for i in range (1, counts, 1):

values[i] = random.random()

the histogram of the data
n, bins, patches = plt.hist(values, 10, facecolor=’green’)

plt.xlabel(’x’)
plt.ylabel(’Number of counts’)
plt.title(r’Test of uniform distribution’)
plt.axis([0, 1, 0, 1100])
plt.grid(True)
plt.show()

Properties of Selected Random Number Generators
Since our random numbers, which are typically generated via a
linear congruential algorithm, are never fully independent, we can
then define an important test which measures the degree of
correlation, namely the so-called auto-correlation function defined
previously, see again Eq. (11). We rewrite it here as

Ck =
fd
σ2 ,

with C0 = 1. Recall that σ2 = 〈x2
i 〉 − 〈xi 〉2 and that

fd =
1
nm

m∑
α=1

n−d∑
k=1

(xα,k − 〈Xm〉)(xα,k+d − 〈Xm〉),

The non-vanishing of Ck for k 6= 0 means that the random
numbers are not independent. The independence of the random
numbers is crucial in the evaluation of other expectation values. If
they are not independent, our assumption for approximating σN in
Eq. (3) is no longer valid.

Correlation function and which random number generators
should I use

The program here computes the correlation function for one of the
standard functions included with the c++ compiler.
// This function computes the autocorrelation function for
// the standard c++ random number generator

#include <fstream>
#include <iomanip>
#include <iostream>
#include <cmath>
using namespace std;
// output file as global variable
ofstream ofile;

// Main function begins here
int main(int argc, char* argv[])
{

int n;
char *outfilename;

cin >> n;
double MCint = 0.; double MCintsqr2=0.;
double invers_period = 1./RAND_MAX; // initialise the random number generator
srand(time(NULL)); // This produces the so-called seed in MC jargon
// Compute the variance and the mean value of the uniform distribution
// Compute also the specific values x for each cycle in order to be able to
// the covariance and the correlation function
// Read in output file, abort if there are too few command-line arguments
if(argc <= 2){

cout << "Bad Usage: " << argv[0] <<
" read also output file and number of cycles on same line" << endl;

exit(1);
}
else{

outfilename=argv[1];
}
ofile.open(outfilename);
// Get the number of Monte-Carlo samples
n = atoi(argv[2]);
double *X;
X = new double[n];
for (int i = 0; i < n; i++){

double x = double(rand())*invers_period;
X[i] = x;
MCint += x;
MCintsqr2 += x*x;

}
double Mean = MCint/((double) n);
MCintsqr2 = MCintsqr2/((double) n);
double STDev = sqrt(MCintsqr2-Mean*Mean);
double Variance = MCintsqr2-Mean*Mean;

// Write mean value and standard deviation
cout << " Standard deviation= " << STDev << " Integral = " << Mean << endl;

// Now we compute the autocorrelation function
double *autocor; autocor = new double[n];
for (int j = 0; j < n; j++){

double sum = 0.0;
for (int k = 0; k < (n-j); k++){

sum += (X[k]-Mean)*(X[k+j]-Mean);
}
autocor[j] = sum/Variance/((double) n);
ofile << setiosflags(ios::showpoint | ios::uppercase);
ofile << setw(15) << setprecision(8) << j;
ofile << setw(15) << setprecision(8) << autocor[j] << endl;

}
ofile.close(); // close output file
return 0;

} // end of main program

Correlation function and which random number generators
should I use

The following Python code plots the results for the correlation
function from the above program.
import numpy as np
from matplotlib import pyplot as plt
Load in data file
data = np.loadtxt("datafiles/autocor.dat")
Make arrays containing x-axis and binding energies as function of A
x = data[:,0]
corr = data[:,1]
plt.plot(x, corr ,’ro’)
plt.axis([0,1000,-0.2, 1.1])
plt.xlabel(r’d’)
plt.ylabel(r’C_d’)
plt.title(r’autocorrelation function for RNG’)
plt.savefig(’autocorr.pdf’)
plt.show()

Random Numbers

Random Numbers, better name: pseudo random numbers

Random number generator RNG

Random number generator RNG and periodic outputs

Random number generator RNG and its period

Random number generator RNG, other examples

Random number generator RNG, other examples

Random number generator RNG, RAN0

Random number generator RNG, RAN0

Random number generator RNG, RAN0

Random number generator RNG, RAN0

Random number generator RNG, RAN0 code

Which RNG should I use?

Improved Monte Carlo Integration

Which RNG should I use?

I In the library files lib.cpp and lib.h we have included four
popular RNGs taken from the widely used textbook Numerical
Recipes. These are called ran0, ran1, ran2 and ran3.

I C++ has a class called random. The random class contains a
large selection of RNGs and is highly recommended. Some of
these RNGs have very large periods making it thereby very safe
to use these RNGs in case one is performing large calculations.
In particular, the Mersenne twister random number engine has
a period of 219937.

http://numerical.recipes/
http://numerical.recipes/
http://www.cplusplus.com/reference/random/
http://www.cplusplus.com/reference/random/mersenne_twister_engine/

How to use the Mersenne generator

The following part of a c++ code (from project 4) sets up the
uniform distribution for x ∈ [0, 1].
/*

// You need this
#include <random>

// Initialize the seed and call the Mersienne algo
std::random_device rd;
std::mt19937_64 gen(rd());
// Set up the uniform distribution for x \in [[0, 1]
std::uniform_real_distribution<double> RandomNumberGenerator(0.0,1.0);

// Now use the RNG
int ix = (int) (RandomNumberGenerator(gen)*NSpins);

Random Numbers

Random Numbers, better name: pseudo random numbers

Random number generator RNG

Random number generator RNG and periodic outputs

Random number generator RNG and its period

Random number generator RNG, other examples

Random number generator RNG, other examples

Random number generator RNG, RAN0

Random number generator RNG, RAN0

Random number generator RNG, RAN0

Random number generator RNG, RAN0

Random number generator RNG, RAN0 code

Which RNG should I use?

Improved Monte Carlo Integration

Improved Monte Carlo Integration

We have presented a simple brute force approach to integration
with the Monte Carlo method. There we sampled over a given
number of points distributed uniformly in the interval [0, 1]

I =

∫ 1

0
f (x)dx = 〈f 〉.

Here we introduce two important steps which in most cases
improve upon the above simple brute force approach with the
uniform distribution, namely

I change of variables and
I importance sampling

Change of Variables

The starting point is always the uniform distribution

p(x)dx =

{
dx 0 ≤ x ≤ 1
0 else

with p(x) = 1 and satisfying∫ ∞
−∞

p(x)dx = 1.

All random number generators use the uniform distribution to
generate numbers x ∈ [0, 1].

Change of Variables
When we attempt a transformation to a new variable x → y we
have to conserve the probability

p(y)dy = p(x)dx ,

which for the uniform distribution implies

p(y)dy = dx .

Let us assume that p(y) is a PDF different from the uniform PDF
p(x) = 1 with x ∈ [0, 1]. If we integrate the last expression we
arrive at

x(y) =

∫ y

0
p(y ′)dy ′,

which is nothing but the cumulative distribution of p(y), i.e.,

x(y) = P(y) =

∫ y

0
p(y ′)dy ′.

Transformed Uniform Distribution
Suppose we have the general uniform distribution

p(y)dy =

{ dy
b−a a ≤ y ≤ b

0 else

If we wish to relate this distribution to the one in the interval
x ∈ [0, 1] we have

p(y)dy =
dy

b − a
= dx ,

and integrating we obtain the cumulative function

x(y) =

∫ y

a

dy ′

b − a
,

yielding

y = a + (b − a)x ,

a well-known result!

Exponential Distribution

Assume that

p(y) = exp (−y),

which is the exponential distribution, important for the analysis of
e.g., radioactive decay. Again, p(x) is given by the uniform
distribution with x ∈ [0, 1], and with the assumption that the
probability is conserved we have

p(y)dy = exp (−y)dy = dx ,

which yields after integration

x(y) = P(y) =

∫ y

0
exp (−y ′)dy ′ = 1− exp (−y),

or

y(x) = − ln (1− x).

Exponential Distribution

This gives us the new random variable y in the domain y ∈ [0,∞)
determined through the random variable x ∈ [0, 1] generated by
functions like ran0.
This means that if we can factor out exp (−y) from an integrand
we may have

I =

∫ ∞
0

F (y)dy =

∫ ∞
0

exp (−y)G (y)dy

which we rewrite as

∫ ∞
0

exp (−y)G (y)dy =

∫ 1

0
G (y(x))dx ≈ 1

N

N∑
i=1

G (y(xi)),

where xi is a random number in the interval [0, 1].

Exponential Distribution

We have changed the integration limits in the second integral, since
we have performed a change of variables. Since we have used the
uniform distribution defined for x ∈ [0, 1], the integration limits
change to 0 and 1. The variable y is now a function of x . Note
also that in practical implementations, our random number
generators for the uniform distribution never return exactly 0 or 1,
but we may come very close.
The algorithm for the last example is rather simple. In the function
which sets up the integral, we simply need to call one of the
random number generators like ran0, ran1, ran2 or ran3 in order to
obtain numbers in the interval [0,1]. We obtain y by the taking the
logarithm of (1− x). Our calling function which sets up the new
random variable y may then include statements like
.....
idum=-1;
x=ran0(&idum);
y=-log(1.-x);
.....

Normal Distribution

For the normal distribution, expressed here as

g(x , y) = exp (−(x2 + y2)/2)dxdy .

it is rather difficult to find an inverse since the cumulative
distribution is given by the error function erf (x)

erf(x) =
2√
π

∫ x

0
e−t

2
dt.

Both c++ and Fortran have this function as intrinsic ones.

http://www.cplusplus.com/reference/cmath/erfc/
https://gcc.gnu.org/onlinedocs/gfortran/ERFC.html

Normal Distribution

We obviously would like to avoid computing an integral everytime
we need a random variable. If we however switch to polar
coordinates, we have for x and y

r =
(
x2 + y2)1/2 θ = tan−1 x

y
,

resulting in

g(r , θ) = r exp (−r2/2)drdθ,

where the angle θ could be given by a uniform distribution in the
region [0, 2π]. Following example 1 above, this implies simply
multiplying random numbers x ∈ [0, 1] by 2π.

Normal Distribution

The variable r , defined for r ∈ [0,∞) needs to be related to to
random numbers x ′ ∈ [0, 1]. To achieve that, we introduce a new
variable

u =
1
2
r2,

and define a PDF
exp (−u)du,

with u ∈ [0,∞). Using the results from example 2 for the
exponential distribution, we have

u = − ln (1− x ′),

where x ′ is a random number generated for x ′ ∈ [0, 1].

Normal Distribution

With
x = r cos (θ) =

√
2u cos (θ),

and

y = r sin (θ) =
√
2u sin (θ),

we can obtain new random numbers x , y through

x =
√
−2 ln (1− x ′) cos (θ),

and
y =

√
−2 ln (1− x ′) sin (θ),

with x ′ ∈ [0, 1] and θ ∈ 2π[0, 1].

Normal Distribution

A function which yields such random numbers for the normal
distribution would include statements like
.....
idum=-1;
radius=sqrt(-2*ln(1.-ran0(idum)));
theta=2*pi*ran0(idum);
x=radius*cos(theta);
y=radius*sin(theta);
.....

Importance Sampling

With the aid of the above variable transformations we address now
one of the most widely used approaches to Monte Carlo
integration, namely importance sampling.
Let us assume that p(y) is a PDF whose behavior resembles that of
a function F defined in a certain interval [a, b]. The normalization
condition is ∫ b

a
p(y)dy = 1.

We can rewrite our integral as

I =

∫ b

a
F (y)dy =

∫ b

a
p(y)

F (y)

p(y)
dy .

Importance Sampling

Since random numbers are generated for the uniform distribution
p(x) with x ∈ [0, 1], we need to perform a change of variables
x → y through

x(y) =

∫ y

a
p(y ′)dy ′,

where we used
p(x)dx = dx = p(y)dy .

If we can invert x(y), we find y(x) as well.

Importance Sampling

With this change of variables we can express the integral of Eq.
(113) as

I =

∫ b

a
p(y)

F (y)

p(y)
dy =

∫ b̃

ã

F (y(x))

p(y(x))
dx ,

meaning that a Monte Carlo evaluation of the above integral gives∫ b̃

ã

F (y(x))

p(y(x))
dx =

1
N

N∑
i=1

F (y(xi))

p(y(xi))
.

Importance Sampling

Note the change in integration limits from a and b to ã and b̃. The
advantage of such a change of variables in case p(y) follows closely
F is that the integrand becomes smooth and we can sample over
relevant values for the integrand. It is however not trivial to find
such a function p. The conditions on p which allow us to perform
these transformations are

I p is normalizable and positive definite,
I it is analytically integrable and
I the integral is invertible, allowing us thereby to express a new

variable in terms of the old one.

Importance Sampling

The variance is now with the definition

F̃ =
F (y(x))

p(y(x))
,

given by

σ2 =
1
N

N∑
i=1

(
F̃
)2
−

(
1
N

N∑
i=1

F̃

)2

.

Importance Sampling
The algorithm for this procedure is

I Use the uniform distribution to find the random variable y in
the interval [0,1]. The function p(x) is a user provided PDF.

I Evaluate thereafter

I =

∫ b

a
F (x)dx =

∫ b

a
p(x)

F (x)

p(x)
dx ,

by rewriting ∫ b

a
p(x)

F (x)

p(x)
dx =

∫ b̃

ã

F (x(y))

p(x(y))
dy ,

since

dy

dx
= p(x).

I Perform then a Monte Carlo sampling for∫ b̃

ã

F (x(y))

p(x(y))
dy ≈ 1

N

N∑
i=1

F (x(yi))

p(x(yi))
,

with yi ∈ [0, 1],
I and evaluate the variance as well.

Importance Sampling, a simple example
Let us look again at the integral

I =

∫ 1

0
F (x)dx =

∫ 1

0

1
1 + x2 dx =

π

4
.

We choose the following PDF (which follows closely the function to
integrate)

p(x) =
1
3

(4− 2x)

∫ 1

0
p(x)dx = 1,

resulting in
F (0)

p(0)
=

F (1)

p(1)
=

3
4
.

Check that it fullfils the requirements of a PDF! We perform then
the change of variables (via the Cumulative function)

y(x) =

∫ x

0
p(x ′)dx ′ =

1
3
x (4− x) ,

or
x = 2− (4− 3y)1/2

We have that when y = 0 then x = 0 and when y = 1 we have
x = 1.

Importance Sampling, a simple example, a simple plot
from matplotlib import pyplot as plt
from math import exp, acos, log10
import numpy as np

function to integrate
def function(x):

return 1.0/(1+x*x)

new probability
def newfunction(x):

return 0.3333333*(4.0-2*x)

Dim = 100
x = np.linspace(0.0,1.0,Dim)
f = np.zeros(Dim)
g = np.zeros(Dim)
for i in xrange(Dim):

f[i] = function(x[i])
g[i] = newfunction(x[i])

plt.plot(x, f ,’b-’,x, g,’g-’)
plt.axis([0,1,0.5, 1.5])
plt.xlabel(’x’)
plt.ylabel(’Functions’)
plt.title(’Similarities between functions’)
plt.legend([’Integrand’, ’New integrand’], loc=’best’)
plt.savefig(’newprobability.pdf’)
plt.show()

Importance Sampling, a simple example, the code part

// evaluate the integral with importance sampling
for (int i = 1; i <= n; i++){

x = ran0(&idum); // random numbers in [0,1]
y = 2 - sqrt(4-3*x); // new random numbers
fy=3*func(y)/(4-2*y); // weighted function
int_mc += fy;
sum_sigma += fy*fy;

}
int_mc = int_mc/((double) n);
sum_sigma = sum_sigma/((double) n);
variance=(sum_sigma-int_mc*int_mc);

Importance Sampling, a simple example, and the results

The suffix cr stands for the brute force approach while is stands for
the use of importance sampling. All calculations use ran0 as
function to generate the uniform distribution.

N Icr σcr Iis σis

10000 3.13395E+00 4.22881E-01 3.14163E+00 6.49921E-03
100000 3.14195E+00 4.11195E-01 3.14163E+00 6.36837E-03
1000000 3.14003E+00 4.14114E-01 3.14128E+00 6.39217E-03
10000000 3.14213E+00 4.13838E-01 3.14160E+00 6.40784E-03

However, it is unfair to study one-dimensional integrals with MC
methods!

Acceptance-Rejection Method

This is a rather simple and appealing method after von Neumann.
Assume that we are looking at an interval x ∈ [a, b], this being the
domain of the PDF p(x). Suppose also that the largest value our
distribution function takes in this interval is M, that is

p(x) ≤ M x ∈ [a, b].

Then we generate a random number x from the uniform
distribution for x ∈ [a, b] and a corresponding number s for the
uniform distribution between [0,M]. If

p(x) ≥ s,

we accept the new value of x , else we generate again two new
random numbers x and s and perform the test in the latter
equation again.

Acceptance-Rejection Method

As an example, consider the evaluation of the integral

I =

∫ 3

0
exp (x)dx .

Obviously to derive a closed-form expression is much easier,
however the integrand could pose some more difficult challenges.
The aim here is simply to show how to implent the
acceptance-rejection algorithm. The integral is the area below the
curve f (x) = exp (x). If we uniformly fill the rectangle spanned by
x ∈ [0, 3] and y ∈ [0, exp (3)], the fraction below the curve
obtained from a uniform distribution, and multiplied by the area of
the rectangle, should approximate the chosen integral.

Acceptance-Rejection Method

It is rather easy to implement this numerically, as shown in the
following code.
// Loop over Monte Carlo trials n

integral =0.;
for (int i = 1; i <= n; i++){

// Finds a random value for x in the interval [0,3]
x = 3*ran0(&idum);

// Finds y-value between [0,exp(3)]
y = exp(3.0)*ran0(&idum);

// if the value of y at exp(x) is below the curve, we accept
if (y < exp(x)) s = s+ 1.0;

// The integral is area enclosed below the line f(x)=exp(x)
}

// Then we multiply with the area of the rectangle and divide by the number of cycles
Integral = 3.*exp(3.)*s/n

Monte Carlo Integration of Multidimensional Integrals

When we deal with multidimensional integrals of the form

I =

∫ b1

a1

dx1

∫ b2

a2

dx2 . . .

∫ bd

ad

dxdg(x1, . . . , xd),

with xi defined in the interval [ai , bi] we would typically need a
transformation of variables of the form

xi = ai + (bi − ai)ti ,

if we were to use the uniform distribution on the interval [0, 1].

Monte Carlo Integration of Multidimensional Integrals

In this case, we need a Jacobi determinant

d∏
i=1

(bi − ai),

and to convert the function g(x1, . . . , xd) to

g(x1, . . . , xd)→ g(a1 + (b1 − a1)t1, . . . , ad + (bd − ad)td).

Monte Carlo Integration of Multidimensional Integrals

As an example, consider the following six-dimensional integral∫ ∞
−∞

dxdyg(x, y),

where

g(x, y) = exp (−x2 − y2)(x− y)2

with d = 6.

Monte Carlo Integration of Multidimensional Integrals

We can solve this integral by employing our brute force scheme, or
using importance sampling and random variables distributed
according to a gaussian PDF. For the latter, if we set the mean
value µ = 0 and the standard deviation σ = 1/

√
2, we have

1√
π
exp (−x2),

and using this normal distribution we rewrite our integral as

π3
∫ 6∏

i=1

(
1√
π
exp (−x2

i)

)
(x− y)2dx1. . . . dx6.

Monte Carlo Integration of Multidimensional Integrals

We rewrite it in a more compact form as∫
f (x1, . . . , xd)F (x1, . . . , xd)

6∏
i=1

dxi ,

where f is the above normal distribution and

F (x1, . . . , x6) = F (x, y) = (x− y)2,

Brute Force Integration
Below we list two codes, one for the brute force integration and the
other employing importance sampling with a gaussian distribution.
#include <iostream>
#include <fstream>
#include <iomanip>
#include "lib.h"
using namespace std;

double brute_force_MC(double *);
// Main function begins here
int main()
{

int n;
double x[6], y, fx;
double int_mc = 0.; double variance = 0.;
double sum_sigma= 0. ; long idum=-1 ;
double length = 5.; // we fix the max size of the box to L=5
double jacobidet = pow((2*length),6);
cout << "Read in the number of Monte-Carlo samples" << endl;
cin >> n;

// evaluate the integral with importance sampling
for (int i = 1; i <= n; i++){

// x[] contains the random numbers for all dimensions
for (int j = 0; j< 6; j++) {

x[j]=-length+2*length*ran0(&idum);
}
fx=brute_force_MC(x);
int_mc += fx;
sum_sigma += fx*fx;

}
int_mc = int_mc/((double) n);
sum_sigma = sum_sigma/((double) n);
variance=sum_sigma-int_mc*int_mc;

// final output
cout << setiosflags(ios::showpoint | ios::uppercase);
cout << " Monte carlo result= " << setw(10) << setprecision(8) << jacobidet*int_mc;
cout << " Sigma= " << setw(10) << setprecision(8) << volume*sqrt(variance/((double) n)) << endl;

return 0;
} // end of main program

// this function defines the integrand to integrate

double brute_force_MC(double *x)
{
// evaluate the different terms of the exponential

double xx=x[0]*x[0]+x[1]*x[1]+x[2]*x[2];
double yy=x[3]*x[3]+x[4]*x[4]+x[5]*x[5];
double xy=pow((x[0]-x[3]),2)+pow((x[1]-x[4]),2)+pow((x[2]-x[5]),2);
return exp(-xx-yy)*xy;

} // end function for the integrand

Importance Sampling
This code includes a call to the function normalrandom, which
produces random numbers from a gaussian distribution.
// importance sampling with gaussian deviates
#include <iostream>
#include <fstream>
#include <iomanip>
#include "lib.h"
using namespace std;

double gaussian_MC(double *);
double gaussian_deviate(long *);
// Main function begins here
int main()
{

int n;
double x[6], y, fx;
cout << "Read in the number of Monte-Carlo samples" << endl;
cin >> n;
double int_mc = 0.; double variance = 0.;
double sum_sigma= 0. ; long idum=-1 ;
double jacobidet = pow(acos(-1.),3.);
double sqrt2 = 1./sqrt(2.);

// evaluate the integral with importance sampling
for (int i = 1; i <= n; i++){

// x[] contains the random numbers for all dimensions
for (int j = 0; j < 6; j++) {

x[j] = gaussian_deviate(&idum)*sqrt2;
}
fx=gaussian_MC(x);
int_mc += fx;
sum_sigma += fx*fx;

}
int_mc = int_mc/((double) n);
sum_sigma = sum_sigma/((double) n);
variance=sum_sigma-int_mc*int_mc;

// final output
cout << setiosflags(ios::showpoint | ios::uppercase);
cout << " Monte carlo result= " << setw(10) << setprecision(8) << jacobidet*int_mc;
cout << " Sigma= " << setw(10) << setprecision(8) << volume*sqrt(variance/((double) n)) << endl;

return 0;
} // end of main program

// this function defines the integrand to integrate

double gaussian_MC(double *x)
{
// evaluate the different terms of the exponential

double xy=pow((x[0]-x[3]),2)+pow((x[1]-x[4]),2)+pow((x[2]-x[5]),2);
return xy;

} // end function for the integrand

// random numbers with gaussian distribution
double gaussian_deviate(long * idum)
{

static int iset = 0;
static double gset;
double fac, rsq, v1, v2;

if (idum < 0) iset =0;
if (iset == 0) {

do {
v1 = 2.*ran0(idum) -1.0;
v2 = 2.*ran0(idum) -1.0;
rsq = v1*v1+v2*v2;

} while (rsq >= 1.0 || rsq == 0.);
fac = sqrt(-2.*log(rsq)/rsq);
gset = v1*fac;
iset = 1;
return v2*fac;

} else {
iset =0;
return gset;

}
} // end function for gaussian deviates

Python codes
The first code here is an example of a python which computes the
above integral using the brute force approach
#Monte Carlo integration in 6 dimensions

import numpy,math
import sys

def integrand(x):
"""Calculates the integrand
exp(-a*(x1^2+x2^2+...+x6^2)-b*[(x1-x4)^2+...+(x3-x6)^2])
from the values in the 6-dimensional array x."""
a = 1.0
b = 0.5

x2 = numpy.sum(x**2)
xy = (x[0]-x[3])**2 + (x[1]-x[4])**2 + (x[2]-x[5])**2

return numpy.exp(-a*x2-b*xy)

#Main program

#Integration limits: x[i] in (-5, 5)
L = 5.0
jacobi = (2*L)**6

N = 100000

#Evaluate the integral
sum = 0.0
sum2 = 0.0
for i in xrange(N):

#Generate random coordinates to sample at
x = numpy.array([-L+2*L*numpy.random.random() for j in xrange(6)])

fx = integrand(x)
sum += fx
sum2 += fx**2

#Calculate expt. values for fx and fx^2
sum /=float(N)
sum2/=float(N)

#Result
int_mc = jacobi*sum;
#Gaussian standard deviation
sigma = jacobi*math.sqrt((sum2-sum**2)/float(N))

#Output
print "Montecarlo result = %10.8E" % int_mc
print "Sigma = %10.8E" % sigma

Python codes, importance sampling
The second code, displayed here, uses importance sampling and
random numbers that follow the normal distribution the brute force
approach
#Monte Carlo integration with importance sampling

import numpy,math
import sys

def integrand(x):
"""Calculates the integrand
exp(-b*[(x1-x4)^2+...+(x3-x6)^2])
from the values in the 6-dimensional array x."""
b = 0.5

xy = (x[0]-x[3])**2 + (x[1]-x[4])**2 + (x[2]-x[5])**2
return numpy.exp(-b*xy)

#Main program

#Jacobi determinant
jacobi = math.acos(-1.0)**3
sqrt2 = 1.0/math.sqrt(2)

N = 100000

#Evaluate the integral
sum = 0.0
sum2 = 0.0
for i in xrange(N):

#Generate random, gaussian distributed coordinates to sample at
x = numpy.array([numpy.random.normal()*sqrt2 for j in xrange(6)])

fx = integrand(x)
sum += fx
sum2 += fx**2

#Calculate expt. values for fx and fx^2
sum /=float(N)
sum2/=float(N)

#Result
int_mc = jacobi*sum;
#Gaussian standard deviation
sigma = jacobi*math.sqrt((sum2-sum**2)/float(N))

#Output
print "Montecarlo result = %10.8E" % int_mc
print "Sigma = %10.8E" % sigma

	Random Numbers
	Random Numbers, better name: pseudo random numbers
	Random number generator RNG
	Random number generator RNG and periodic outputs
	Random number generator RNG and its period
	Random number generator RNG, other examples
	Random number generator RNG, other examples
	Random number generator RNG, RAN0
	Random number generator RNG, RAN0
	Random number generator RNG, RAN0
	Random number generator RNG, RAN0
	Random number generator RNG, RAN0 code
	Which RNG should I use?
	Improved Monte Carlo Integration

