
Computational Physics Lectures: Ordinary
differential equations

Morten Hjorth-Jensen1,2

Department of Physics, University of Oslo1

Department of Physics and Astronomy and National Superconducting Cyclotron
Laboratory, Michigan State University2

2018
c© 1999-2018, Morten Hjorth-Jensen. Released under CC Attribution-NonCommercial 4.0 license

Differential equations program

I Ordinary differential equations, Runge-Kutta method,chapter 8
I Ordinary differential equations with boundary conditions:

one-variable equations to be solved by shooting and Green’s
function methods, chapter 9

I We can solve such equations by a finite difference scheme as
well, turning the equation into an eigenvalue problem. Still one
variable. Done in projects 1 and 2.

I If we have more than one variable, we need to solve partial
differential equations, see Chapter 10

The material on differential equations is covered by chapters 8, 9
and 10. Two of the final projects deal with ordinary differential
equations.

Differential Equations, chapter 8

The order of the ODE refers to the order of the derivative on the
left-hand side in the equation

dy

dt
= f (t, y). (1)

This equation is of first order and f is an arbitrary function. A
second-order equation goes typically like

d2y

dt2
= f (t,

dy

dt
, y). (2)

A well-known second-order equation is Newton’s second law

m
d2x

dt2
= −kx , (3)

where k is the force constant. ODE depend only on one variable

Differential Equations

partial differential equations like the time-dependent Schrödinger
equation

i~
∂ψ(x, t)

∂t
= − ~2

2m

(
∂2ψ(r, t)

∂x2 +
∂2ψ(r, t)

∂y2 +
∂2ψ(r, t)

∂z2

)
+V (x)ψ(x, t),

(4)
may depend on several variables. In certain cases, like the above
equation, the wave function can be factorized in functions of the
separate variables, so that the Schroedinger equation can be
rewritten in terms of sets of ordinary differential equations. These
equations are discussed in chapter 10. Involve boundary conditions
in addition to initial conditions.

Differential Equations

We distinguish also between linear and non-linear differential
equation where for example

dy

dt
= g3(t)y(t), (5)

is an example of a linear equation, while

dy

dt
= g3(t)y(t)− g(t)y2(t), (6)

is a non-linear ODE.

Differential Equations
Another concept which dictates the numerical method chosen for
solving an ODE, is that of initial and boundary conditions. To give
an example, if we study white dwarf stars or neutron stars we will
need to solve two coupled first-order differential equations, one for
the total mass m and one for the pressure P as functions of ρ

dm

dr
= 4πr2ρ(r)/c2,

and
dP

dr
= −Gm(r)

r2 ρ(r)/c2.

where ρ is the mass-energy density. The initial conditions are
dictated by the mass being zero at the center of the star, i.e., when
r = 0, yielding m(r = 0) = 0. The other condition is that the
pressure vanishes at the surface of the star.
In the solution of the Schroedinger equation for a particle in a
potential, we may need to apply boundary conditions as well, such
as demanding continuity of the wave function and its derivative.

Differential Equations

In many cases it is possible to rewrite a second-order differential
equation in terms of two first-order differential equations. Consider
again the case of Newton’s second law in Eq. (3). If we define the
position x(t) = y (1)(t) and the velocity v(t) = y (2)(t) as its
derivative

dy (1)(t)

dt
=

dx(t)

dt
= y (2)(t), (7)

we can rewrite Newton’s second law as two coupled first-order
differential equations

m
dy (2)(t)

dt
= −kx(t) = −ky (1)(t), (8)

and
dy (1)(t)

dt
= y (2)(t). (9)

Differential Equations, Finite Difference

These methods fall under the general class of one-step methods.
The algoritm is rather simple. Suppose we have an initial value for
the function y(t) given by

y0 = y(t = t0). (10)

We are interested in solving a differential equation in a region in
space [a, b]. We define a step h by splitting the interval in N sub
intervals, so that we have

h =
b − a

N
. (11)

With this step and the derivative of y we can construct the next
value of the function y at

y1 = y(t1 = t0 + h), (12)

and so forth.

Differential Equations
If the function is rather well-behaved in the domain [a, b], we can
use a fixed step size. If not, adaptive steps may be needed. Here
we concentrate on fixed-step methods only. Let us try to generalize
the above procedure by writing the step yi+1 in terms of the
previous step yi

yi+1 = y(t = ti + h) = y(ti) + h∆(ti , yi (ti)) + O(hp+1), (13)

where O(hp+1) represents the truncation error. To determine ∆,
we Taylor expand our function y

yi+1 = y(t = ti+h) = y(ti)+h(y ′(ti)+· · ·+y (p)(ti)
hp−1

p!
)+O(hp+1),

(14)
where we will associate the derivatives in the parenthesis with

∆(ti , yi (ti)) = (y ′(ti) + · · ·+ y (p)(ti)
hp−1

p!
). (15)

Differential Equations

We define
y ′(ti) = f (ti , yi) (16)

and if we truncate ∆ at the first derivative, we have

yi+1 = y(ti) + hf (ti , yi) + O(h2), (17)

which when complemented with ti+1 = ti + h forms the algorithm
for the well-known Euler method. Note that at every step we make
an approximation error of the order of O(h2), however the total
error is the sum over all steps N = (b − a)/h, yielding thus a global
error which goes like NO(h2) ≈ O(h).

Differential Equations
To make Euler’s method more precise we can obviously decrease h
(increase N). However, if we are computing the derivative f
numerically by for example the two-steps formula

f ′2c(x) =
f (x + h)− f (x)

h
+ O(h),

we can enter into roundoff error problems when we subtract two
almost equal numbers f (x + h)− f (x) ≈ 0. Euler’s method is not
recommended for precision calculation, although it is handy to use
in order to get a first view on how a solution may look like. As an
example, consider Newton’s equation rewritten in Eqs. (8) and (9).
We define y0 = y (1)(t = 0) an v0 = y (2)(t = 0). The first steps in
Newton’s equations are then

y
(1)
1 = y0 + hv0 + O(h2) (18)

and
y
(2)
1 = v0 − hy0k/m + O(h2). (19)

Differential Equations

The Euler method is asymmetric in time, since it uses information
about the derivative at the beginning of the time interval. This
means that we evaluate the position at y (1)1 using the velocity at
y
(2)
0 = v0. A simple variation is to determine y

(1)
n+1 using the

velocity at y (2)n+1, that is (in a slightly more generalized form)

y
(1)
n+1 = y

(1)
n + hy

(2)
n+1 + O(h2) (20)

and
y
(2)
n+1 = y

(2)
n + han + O(h2). (21)

The acceleration an is a function of an(y
(1)
n , y

(2)
n , t) and needs to be

evaluated as well. This is the Euler-Cromer method.

Differential Equations

Let us then include the second derivative in our Taylor expansion.
We have then

∆(ti , yi (ti)) = f (ti) +
h

2
df (ti , yi)

dt
+ O(h3). (22)

The second derivative can be rewritten as

y ′′ = f ′ =
df

dt
=
∂f

∂t
+
∂f

∂y

∂y

∂t
=
∂f

∂t
+
∂f

∂y
f (23)

and we can rewrite Eq. (14) as

yi+1 = y(t = ti + h) = y(ti) + hf (ti) +
h2

2

(
∂f

∂t
+
∂f

∂y
f

)
+ O(h3),

(24)
which has a local approximation error O(h3) and a global error
O(h2).

Differential Equations

These approximations can be generalized by using the derivative f
to arbitrary order so that we have

yi+1 = y(t = ti+h) = y(ti)+h(f (ti , yi)+. . . f (p−1)(ti , yi)
hp−1

p!
)+O(hp+1).

(25)
These methods, based on higher-order derivatives, are in general
not used in numerical computation, since they rely on evaluating
derivatives several times. Unless one has analytical expressions for
these, the risk of roundoff errors is large.

Differential Equations

The most obvious improvements to Euler’s and Euler-Cromer’s
algorithms, avoiding in addition the need for computing a second
derivative, is the so-called midpoint method. We have then

y
(1)
n+1 = y

(1)
n +

h

2

(
y
(2)
n+1 + y

(2)
n

)
+ O(h2) (26)

and
y
(2)
n+1 = y

(2)
n + han + O(h2), (27)

yielding

y
(1)
n+1 = y

(1)
n + hy

(2)
n +

h2

2
an + O(h3) (28)

implying that the local truncation error in the position is now
O(h3), whereas Euler’s or Euler-Cromer’s methods have a local
error of O(h2).

Differential Equations
Thus, the midpoint method yields a global error with second-order
accuracy for the position and first-order accuracy for the velocity.
However, although these methods yield exact results for constant
accelerations, the error increases in general with each time step.
One method that avoids this is the so-called half-step method.
Here we define

y
(2)
n+1/2 = y

(2)
n−1/2 + han + O(h2), (29)

and
y
(1)
n+1 = y

(1)
n + hy

(2)
n+1/2 + O(h2). (30)

Note that this method needs the calculation of y (2)1/2. This is done
using e.g., Euler’s method

y
(2)
1/2 = y

(2)
0 + ha0 + O(h2). (31)

As this method is numerically stable, it is often used instead of
Euler’s method.

Differential Equations

Another method which one may encounter is the Euler-Richardson
method with

y
(2)
n+1 = y

(2)
n + han+1/2 + O(h2), (32)

and
y
(1)
n+1 = y

(1)
n + hy

(2)
n+1/2 + O(h2). (33)

The Verlet method

Another set of popular algorithms, which are both numerically
stable and easy to implement are the Verlet algorithms, with the
velocity Verlet method as widely used in for example Molecular
dynamics calculations. Consider again a second-order differential
equation like Newton’s second law, whose one-dimensional version
reads

m
d2x

dt2
= F (x , t),

which we rewrite in terms of two coupled differential equations

dx

dt
= v(x , t) and

dv

dt
= F (x , t)/m = a(x , t).

The Verlet method

If we now perform a Taylor expansion

x(t + h) = x(t) + hx (1)(t) +
h2

2
x (2)(t) + O(h3).

In our case the second derivative is known via Newton’s second law,
namely x (2)(t) = a(x , t). If we add to the above equation the
corresponding Taylor expansion for x(t − h), we obtain, using the
discretized expressions

x(ti ± h) = xi±1 and xi = x(ti),

we arrive at

xi+1 = 2xi − xi−1 + h2x
(2)
i + O(h4).

The velocity Verlet method

We note that the truncation error goes like O(h4) since all the odd
terms cancel when we add the two Taylor expansions. We see also
that the velocity is not directly included in the equation since the
function x (2) = a(x , t) is supposed to be known. If we need the
velocity however, we can compute it using the well-known formula

x
(1)
i =

xi+1 − xi−1

2h
+ O(h2).

We note that the velocity has a truncation error which goes like
O(h2). In for example so-called Molecular dynamics calculations,
since the acceleration is normally known via Newton’s second law,
there is seldomly a need for computing the velocity.
We note also that the algorithm for the position is not self-starting
since, for i = 0 it depends on the value of x at the fictitious value
x−1.
We can amend this by introducing the velocity Verlet method.

The velocity Verlet method

We have the Taylor expansion for the position given by

xi+1 = xi + hx
(1)
i +

h2

2
x
(2)
i + O(h3).

The corresponding expansion for the velocity is

vi+1 = vi + hv
(1)
i +

h2

2
v
(2)
i + O(h3).

Via Newton’s second law we have normally an analytical expression
for the derivative of the velocity, namely

v
(1)
i =

d2x

dt2
|i =

F (xi , ti)

m
,

The velocity Verlet method

If we add to this the corresponding expansion for the derivative of
the velocity

v
(1)
i+1 = v

(1)
i + hv

(2)
i + O(h2),

and retain only terms up to the second derivative of the velocity
since our error goes as O(h3), we have

hv
(2)
i ≈ v

(1)
i+1 − v

(1)
i .

We can then rewrite the Taylor expansion for the velocity as

vi+1 = vi +
h

2

(
v
(1)
i+1 + v

(1)
i

)
+ O(h3).

The velocity Verlet method

Our final equations for the position and the velocity become then

xi+1 = xi + hvi +
h2

2
v
(1)
i + O(h3),

and
vi+1 = vi +

h

2

(
v
(1)
i+1 + v

(1)
i

)
+ O(h3).

Note well that the term v
(1)
i+1 depends on the position at xi+1. This

means that you need to calculate the position at the updated time
ti+1 before the computing the next velocity. Note also that the
derivative of the velocity at the time ti used in the updating of the
position can be reused in the calculation of the velocity update as
well.

Differential Equations, Runge-Kutta methods

Runge-Kutta (RK) methods are based on Taylor expansion
formulae, but yield in general better algorithms for solutions of an
ODE. The basic philosophy is that it provides an intermediate step
in the computation of yi+1.
To see this, consider first the following definitions

dy

dt
= f (t, y), (34)

and
y(t) =

∫
f (t, y)dt, (35)

and

yi+1 = yi +

∫ ti+1

ti

f (t, y)dt. (36)

Differential Equations, Runge-Kutta methods

To demonstrate the philosophy behind RK methods, let us consider
the second-order RK method, RK2. The first approximation
consists in Taylor expanding f (t, y) around the center of the
integration interval ti to ti+1, that is, at ti + h/2, h being the step.
Using the midpoint formula for an integral, defining
y(ti + h/2) = yi+1/2 and ti + h/2 = ti+1/2, we obtain∫ ti+1

ti

f (t, y)dt ≈ hf (ti+1/2, yi+1/2) + O(h3). (37)

This means in turn that we have

yi+1 = yi + hf (ti+1/2, yi+1/2) + O(h3). (38)

Differential Equations, Runge-Kutta methods
However, we do not know the value of yi+1/2. Here comes thus the
next approximation, namely, we use Euler’s method to approximate
yi+1/2. We have then

y(i+1/2) = yi +
h

2
dy

dt
= y(ti) +

h

2
f (ti , yi). (39)

This means that we can define the following algorithm for the
second-order Runge-Kutta method, RK2.

k1 = hf (ti , yi), (40)

k2 = hf (ti+1/2, yi + k1/2), (41)

with the final value

yi+i ≈ yi + k2 + O(h3). (42)

The difference between the previous one-step methods is that we
now need an intermediate step in our evaluation, namely
ti + h/2 = t(i+1/2) where we evaluate the derivative f . This
involves more operations, but the gain is a better stability in the
solution.

Differential Equations, Runge-Kutta methods

The fourth-order Runge-Kutta, RK4, which we will employ in the
solution of various differential equations below, has the following
algorithm

k1 = hf (ti , yi) k2 = hf (ti + h/2, yi + k1/2)

k3 = hf (ti + h/2, yi + k2/2) k4 = hf (ti + h, yi + k3)

with the final result

yi+1 = yi +
1
6

(k1 + 2k2 + 2k3 + k4) .

Thus, the algorithm consists in first calculating k1 with ti , y1 and f
as inputs. Thereafter, we increase the step size by h/2 and
calculate k2, then k3 and finally k4. The global error goes as O(h4).

Building a code for the solar system, gravitational force and
constants

We start with a simpler case first, the Earth-Sun system in two
dimensions only. The gravitational force FG is

F =
GM�ME

r2 ,

where G is the gravitational constant,

ME = 6× 1024Kg,

the mass of Earth,
M� = 2× 1030Kg,

the mass of the Sun and

r = 1.5× 1011m,

is the distance between Earth and the Sun. The latter defines what
we call an astronomical unit AU. From Newton’s second law we
have then for the x direction

d2x

dt2
=

Fx
ME

,

and
d2y

dt2
=

Fy
ME

,

for the y direction.

Building a code for the solar system, force equations

Introducing x = r cos (θ), y = r sin (θ) and

r =
√

x2 + y2,

we can rewrite

Fx = −GM�ME

r2 cos (θ) = −GM�ME

r3 x ,

and
Fy = −GM�ME

r2 sin (θ) = −GM�ME

r3 y ,

for the y direction.

Building a code for the solar system, coupled equations
We can rewrite these two equations

Fx = −GM�ME

r2 cos (θ) = −GM�ME

r3 x ,

and
Fy = −GM�ME

r2 sin (θ) = −GM�ME

r3 y ,

as four first-order coupled differential equations

dvx
dt

= −GM�
r3 x ,

dx

dt
= vx ,

dvy
dt

= −GM�
r3 y ,

dy

dt
= vy .

Building a code for the solar system, final coupled equations
The four coupled differential equations

dvx
dt

= −GM�
r3 x ,

dx

dt
= vx ,

dvy
dt

= −GM�
r3 y ,

dy

dt
= vy ,

can be turned into dimensionless equations (as we did in project 2)
or we can introduce astronomical units with 1 AU = 1.5× 1011.
Using the equations from circular motion (with r = 1AU)

MEv
2

r
= F =

GM�ME

r2 ,

we have
GM� = v2r ,

and using that the velocity of Earth (assuming circular motion) is
v = 2πr/yr = 2πAU/yr, we have

GM� = v2r = 4π2 (AU)3

yr2
.

Building a code for the solar system, discretized equations

The four coupled differential equations can then be discretized
using Euler’s method as (with step length h)

vx ,i+1 = vx ,i − h
4π2

r3
i

xi ,

xi+1 = xi + hvx ,i ,

vy ,i+1 = vy ,i − h
4π2

r3
i

yi ,

yi+1 = yi + hvy ,i ,

Building a code for the solar system, adding Jupiter
It is rather straightforward to add a new planet, say Jupiter. Jupiter
has mass

MJ = 1.9× 1027kg,

and distance to the Sun of 5.2 AU. The additional gravitational
force the Earth feels from Jupiter in the x-direction is

FEJ
x = −GMJME

r3
EJ

(xE − xJ),

where E stands for Earth, J for Jupiter, rEJ is distance between
Earth and Jupiter

rEJ =
√

(xE − xJ)2 + (yE − yJ)2,

and xE and yE are the x and y coordinates of Earth, respectively,
and xJ and yJ are the x and y coordinates of Jupiter, respectively.
The x-component of the velocity of Earth changes thus to

dvEx
dt

= −GM�
r3 xE −

GMJ

r3
EJ

(xE − xJ).

Building a code for the solar system, adding Jupiter
We can rewrite

dvEx
dt

= −GM�
r3 xE −

GMJ

r3
EJ

(xE − xJ).

to
dvEx
dt

= −4π2

r3 xE −
4π2MJ/M�

r3
EJ

(xE − xJ),

where we used

GMJ = GM�

(
MJ

M�

)
= 4π2 MJ

M�
.

Similarly, for the velocity in y -direction we have

dvEy
dt

= −4π2

r3 yE −
4π2MJ/M�

r3
EJ

(yE − yJ).

Similar expressions apply for Jupiter. The equations for x and y
derivatives are unchanged. This equations are similar for all other
planets and as we will see later, it will be convenient to object
orient this part when we program the full solar system.

How can I get the initial velocities and positions of the
planets

NASA has an excellent site at
http://ssd.jpl.nasa.gov/horizons.cgi#top. From there you
can extract initial conditions in order to start your differential
equation solver. At the above website you need to change from
OBSERVER to VECTOR and then write in the planet you are
interested in. The generated data contain the x , y and z values as
well as their corresponding velocities. The velocities are in units of
AU per day. Alternatively they can be obtained in terms of km and
km/s.
For the first simple system involving the Earth and the Sun, you
could just initialize the position with say x = 1 AU and y = 0 AU.

http://www.nasa.gov/index.html
http://ssd.jpl.nasa.gov/horizons.cgi#top

How do we develop a larger numerical project
When building up a numerical project there are several elements
you should think of, amongst these we take the liberty of
mentioning the following.
1. How to structure a code in terms of functions and modules
2. How to read input data flexibly from the command line
3. Find tests and how to write unit tests (test functions). A very

good example is Catch, a modern, C++-native, header-only,
framework for unit-tests. Try to find suitable tests of the
mathematical algorithms as well as tests which reflect the
physics of the system.

4. It takes one quick command to let all your code undergo heavy
testing

5. How to refactor code in terms of classes (instead of functions
only)

6. How to conduct and automate large-scale numerical
experiments

https://github.com/philsquared/Catch

More on large numerical projects

The conventions and techniques outlined here will save you a lot of
time when you incrementally extend software over time from
simpler to more complicated problems.
1. Scale your equations in order to simplify, make for example the

equations dimensionless or scale them in convenient units
2. New code is added in a modular fashion to a library (modules)
3. Programs are run through convenient user interfaces
4. Tedious manual work with running programs is automated,
5. Your scientific investigations are reproducible, scientific reports

with top quality typesetting are produced both for paper and
electronic devices.

A few words on unit testing

A very good and simple framework for unit testing is Catch. Unit
Testing is the practice of testing the smallest testable parts, called
units, of an application individually and independently to determine
if they behave exactly as expected. Unit tests (short code
fragments) are usually written such that they can be performed at
any time during the development to continually verify the behavior
of the code. In this way, possible bugs will be identified early in the
development cycle, making the debugging at later stage much
easier.

https://github.com/philsquared/Catch

Unit tests with Catch

There are many benefits associated with Unit Testing since it
increases confidence in changing and maintaining code. Big
changes can be made to the code quickly, since the tests will ensure
that everything still is working properly.

I Since the code needs to be modular to make Unit Testing
possible, the code will be easier to reuse. This improves the
code design.

I Debugging is easier, since when a test fails, only the latest
changes need to be debugged.

I Different parts of a project can be tested without the need to
wait for the other parts to be available.

I A unit test can serve as a documentation on the functionality
of a unit of the code.

https://github.com/philsquared/Catch

How to start our solar system project

The simplest possible step is to code the Earth-Sun system using
Euler’s method in two dimensions. The four coupled differential
equations can then be discretized using Euler’s method as (with
step length h) are

vx ,i+1 = vx ,i − h
4π2

r3
i

xi ,

xi+1 = xi + hvx ,i ,

vy ,i+1 = vy ,i − h
4π2

r3
i

yi ,

yi+1 = yi + hvy ,i ,

How to start our solar system project, the simple Euler
equations

/*
Euler’s method for the Earth-Sun system, simplest possible code

*/
#include <cmath>
#include <iostream>
#include <fstream>
#include <iomanip>
using namespace std;
// output file as global variable
ofstream ofile;
// function declarations
void output(double, double, double, double, double);

int main(int argc, char* argv[])
{
// declarations of variables

char *outfilename;
// Read in output file, abort if there are too few command-line arguments
if(argc <= 1){

cout << "Bad Usage: " << argv[0] <<
" read also output file on same line" << endl;

// exit(1);
}
else{

outfilename=argv[1];
}
ofile.open(outfilename);

int NumberofSteps = 1000;
double FinalTime = 1.0;
double Step = FinalTime/((double) NumberofSteps);
double time = 0.0;
// Initial values x = 1.0 AU and vy = 2*pi
double pi = acos(-1.0);
double FourPi2 = 4*pi*pi;
double x = 1.0; double y = 0.0; double vx = 0.0; double vy = 2.0*pi;
double r = sqrt(x*x+y*y);

// now we start solving the differential equations using Euler’s method
while (time <= FinalTime){

x += Step*vx;
y += Step*vy;
vx -= Step*FourPi2*x/(r*r*r);
vy -= Step*FourPi2*y/(r*r*r);
r = sqrt(x*x+y*y);
time += Step;
output(time, x, y, vx, vy); // write to file

}
ofile.close(); // close output file
return 0;

} // End of main function

// function to write out the final results
void output(double time, double x, double y, double vx, double vy)
{

ofile << setiosflags(ios::showpoint | ios::uppercase);
ofile << setw(15) << setprecision(8) << time;
ofile << setw(15) << setprecision(8) << x;
ofile << setw(15) << setprecision(8) << y;
ofile << setw(15) << setprecision(8) << vx;
ofile << setw(15) << setprecision(8) << vy << endl;

} // end of function output

https://github.com/CompPhysics/ComputationalPhysicsMSU/tree/master/doc/Projects/2018/Project3/CodeExample
https://github.com/CompPhysics/ComputationalPhysicsMSU/tree/master/doc/Projects/2018/Project3/CodeExample

Where do we go from here?

I Our next step could be to simply replace the brute force coding
of the positions and velocities using the vector class discussed
in the solar system class example. That is, we continue with
the above Euler code and simply replace the variables x , y , vx
and vy with vectors defined in the vec3 class.

I It is important to have a simple working code that is well
tested and understood before we move on to new additions. In
this part it is useful to introduce possible unit tests.

I The next step is to add a class about for example celestial
bodies, as discussed in the simple extension of the Euler
method for the Earth-Sun system. This will discussed during
the lab sessions.

https://github.com/mortele/solar-system-fys3150
https://github.com/andeplane/solar-system

Using the Runge Family of methods, Block tied to a Wall
Our first example is the classical case of simple harmonic
oscillations, namely a block sliding on a horizontal frictionless
surface. The block is tied to a wall with a spring. If the spring is
not compressed or stretched too far, the force on the block at a
given position x is

F = −kx .

The negative sign means that the force acts to restore the object to
an equilibrium position. Newton’s equation of motion for this
idealized system is then

m
d2x

dt2
= −kx ,

or we could rephrase it as

d2x

dt2
= − k

m
x = −ω2

0x ,

with the angular frequency ω2
0 = k/m.

The above differential equation has the advantage that it can be
solved analytically with solutions on the form

x(t) = Acos(ω0t + ν),

where A is the amplitude and ν the phase constant. This provides
in turn an important test for the numerical solution and the
development of a program for more complicated cases which cannot
be solved analytically.

Simple Example, Block tied to a Wall

With the position x(t) and the velocity v(t) = dx/dt we can
reformulate Newton’s equation in the following way

dx(t)

dt
= v(t),

and
dv(t)

dt
= −ω2

0x(t).

We are now going to solve these equations using the Runge-Kutta
method to fourth order discussed previously.

Simple Example, Block tied to a Wall

Before proceeding however, it is important to note that in addition
to the exact solution, we have at least two further tests which can
be used to check our solution.
Since functions like cos are periodic with a period 2π, then the
solution x(t) has also to be periodic. This means that

x(t + T) = x(t),

with T the period defined as

T =
2π
ω0

=
2π√
k/m

.

Observe that T depends only on k/m and not on the amplitude of
the solution.

Simple Example, Block tied to a Wall

In addition to the periodicity test, the total energy has also to be
conserved.
Suppose we choose the initial conditions

x(t = 0) = 1 m v(t = 0) = 0 m/s,

meaning that block is at rest at t = 0 but with a potential energy

E0 =
1
2
kx(t = 0)2 =

1
2
k .

The total energy at any time t has however to be conserved,
meaning that our solution has to fulfil the condition

E0 =
1
2
kx(t)2 +

1
2
mv(t)2.

Simple Example, Block tied to a Wall
An algorithm which implements these equations is included below.

I Choose the initial position and speed, with the most common
choice v(t = 0) = 0 and some fixed value for the position.

I Choose the method you wish to employ in solving the problem.
I Subdivide the time interval [ti , tf] into a grid with step size

h =
tf − ti
N

,

where N is the number of mesh points.
I Calculate now the total energy given by

E0 =
1
2
kx(t = 0)2 =

1
2
k .

I The Runge-Kutta method is used to obtain xi+1 and vi+1
starting from the previous values xi and vi .

I When we have computed x(v)i+1 we upgrade ti+1 = ti + h.
I This iterative process continues till we reach the maximum

time tf .
I The results are checked against the exact solution.

Furthermore, one has to check the stability of the numerical
solution against the chosen number of mesh points N.

Simple Example, Block tied to a Wall
/* This program solves Newton’s equation for a block

sliding on a horizontal frictionless surface. The block
is tied to a wall with a spring, and Newton’s equation
takes the form

m d^2x/dt^2 =-kx
with k the spring tension and m the mass of the block.
The angular frequency is omega^2 = k/m and we set it equal
1 in this example program.

Newton’s equation is rewritten as two coupled differential
equations, one for the position x and one for the velocity v

dx/dt = v and
dv/dt = -x when we set k/m=1

We use therefore a two-dimensional array to represent x and v
as functions of t
y[0] == x
y[1] == v
dy[0]/dt = v
dy[1]/dt = -x

The derivatives are calculated by the user defined function
derivatives.

The user has to specify the initial velocity (usually v_0=0)
the number of steps and the initial position. In the programme
below we fix the time interval [a,b] to [0,2*pi].

*/
#include <cmath>
#include <iostream>
#include <fstream>
#include <iomanip>
//#include "lib.h"
using namespace std;
// output file as global variable
ofstream ofile;
// function declarations
void derivatives(double, double *, double *);
void initialise (double&, double&, int&);
void output(double, double *, double);
void runge_kutta_4(double *, double *, int, double, double,

double *, void (*)(double, double *, double *));

int main(int argc, char* argv[])
{
// declarations of variables

double *y, *dydt, *yout, t, h, tmax, E0;
double initial_x, initial_v;
int i, number_of_steps, n;
char *outfilename;
// Read in output file, abort if there are too few command-line arguments
if(argc <= 1){

cout << "Bad Usage: " << argv[0] <<
" read also output file on same line" << endl;

// exit(1);
}
else{

outfilename=argv[1];
}
ofile.open(outfilename);
// this is the number of differential equations
n = 2;
// allocate space in memory for the arrays containing the derivatives
dydt = new double[n];
y = new double[n];
yout = new double[n];
// read in the initial position, velocity and number of steps
initialise (initial_x, initial_v, number_of_steps);
// setting initial values, step size and max time tmax
h = 4.*acos(-1.)/((double) number_of_steps); // the step size
tmax = h*number_of_steps; // the final time
y[0] = initial_x; // initial position
y[1] = initial_v; // initial velocity
t=0.; // initial time
E0 = 0.5*y[0]*y[0]+0.5*y[1]*y[1]; // the initial total energy
// now we start solving the differential equations using the RK4 method
while (t <= tmax){

derivatives(t, y, dydt); // initial derivatives
runge_kutta_4(y, dydt, n, t, h, yout, derivatives);
for (i = 0; i < n; i++) {

y[i] = yout[i];
}
t += h;
output(t, y, E0); // write to file

}
delete [] y; delete [] dydt; delete [] yout;
ofile.close(); // close output file
return 0;

} // End of main function

// Read in from screen the number of steps,
// initial position and initial speed
void initialise (double& initial_x, double& initial_v, int& number_of_steps)
{
cout << "Initial position = ";
cin >> initial_x;
cout << "Initial speed = ";
cin >> initial_v;
cout << "Number of steps = ";
cin >> number_of_steps;

} // end of function initialise

// this function sets up the derivatives for this special case
void derivatives(double t, double *y, double *dydt)
{

dydt[0]=y[1]; // derivative of x
dydt[1]=-y[0]; // derivative of v

} // end of function derivatives

// function to write out the final results
void output(double t, double *y, double E0)
{

ofile << setiosflags(ios::showpoint | ios::uppercase);
Ofile << setw(15) << setprecision(8) << t;
ofile << setw(15) << setprecision(8) << y[0];
ofile << setw(15) << setprecision(8) << y[1];
ofile << setw(15) << setprecision(8) << cos(t);
ofile << setw(15) << setprecision(8) <<

0.5*y[0]*y[0]+0.5*y[1]*y[1]-E0 << endl;
} // end of function output

/* This function upgrades a function y (input as a pointer)
and returns the result yout, also as a pointer. Note that
these variables are declared as arrays. It also receives as
input the starting value for the derivatives in the pointer
dydx. It receives also the variable n which represents the
number of differential equations, the step size h and
the initial value of x. It receives also the name of the
function *derivs where the given derivative is computed

*/
void runge_kutta_4(double *y, double *dydx, int n, double x, double h,

double *yout, void (*derivs)(double, double *, double *))
{

int i;
double xh,hh,h6;
double *dym, *dyt, *yt;
// allocate space for local vectors
dym = new double [n];
dyt = new double [n];
yt = new double [n];
hh = h*0.5;
h6 = h/6.;
xh = x+hh;
for (i = 0; i < n; i++) {

yt[i] = y[i]+hh*dydx[i];
}
(*derivs)(xh,yt,dyt); // computation of k2, eq. 3.60
for (i = 0; i < n; i++) {

yt[i] = y[i]+hh*dyt[i];
}
(*derivs)(xh,yt,dym); // computation of k3, eq. 3.61
for (i=0; i < n; i++) {

yt[i] = y[i]+h*dym[i];
dym[i] += dyt[i];

}
(*derivs)(x+h,yt,dyt); // computation of k4, eq. 3.62
// now we upgrade y in the array yout
for (i = 0; i < n; i++){

yout[i] = y[i]+h6*(dydx[i]+dyt[i]+2.0*dym[i]);
}
delete []dym;
delete [] dyt;
delete [] yt;

} // end of function Runge-kutta 4

Simple Example, Block tied to a Wall, python code
The following python program performs essentially the same
calculations as the previous c++ code.
#
This program solves Newtons equation for a block sliding on
an horizontal frictionless surface.
The block is tied to the wall with a spring, so N’s eq takes the form:
#
m d^2x/dt^2 = - kx
#
In order to make the solution dimless, we set k/m = 1.
This results in two coupled diff. eq’s that may be written as:
#
dx/dt = v
dv/dt = -x
#
The user has to specify the initial velocity and position,
and the number of steps. The time interval is fixed to
t \in [0, 4\pi) (two periods)
#
Note that this is a highly simplifyed rk4 code, intended
for conceptual understanding and experimentation.

import sys
import numpy, math

#Global variables
ofile = None;
E0 = 0.0

def sim(x_0, v_0, N):
ts = 0.0
te = 4*math.pi
h = (te-ts)/float(N)

t = ts;
x = x_0
v = v_0
while (t < te):

kv1 = -h*x
kx1 = h*v

kv2 = -h*(x+kx1/2)
kx2 = h*(v+kv1/2)

kv3 = -h*(x+kx2/2)
kx3 = h*(v+kv2/2)

kv4 = -h*(x+kx3/2)
kx4 = h*(v+kv3/2)

#Write the old values to file
output(t,x,v)

#Update
x = x + (kx1 + 2*(kx2+kx3) + kx4)/6
v = v + (kv1 + 2*(kv2+kv3) + kv4)/6
t = t+h

def output(t,x,v):
de = 0.5*x**2+0.5*v**2 - E0;
ofile.write("%15.8E %15.8E %15.8E %15.8E %15.8E\n"\

%(t, x, v, math.cos(t),de));

#MAIN PROGRAM:

#Get input
if len(sys.argv) == 5:

ofilename = sys.argv[1];
x_0 = float(sys.argv[2])
v_0 = float(sys.argv[3])
N = int(sys.argv[4])

else:
print "Usage:", sys.argv[0], "ofilename x0 v0 N"
sys.exit(0)

#Setup
ofile = open(ofilename, ’w’)
E0 = 0.5*x_0**2+0.5*v_0**2

#Run simulation
sim(x_0,v_0,N)

#Cleanup
ofile.close()

The second example: The classical pendulum and scaling
the equations

The angular equation of motion of the pendulum is given by
Newton’s equation and with no external force it reads

ml
d2θ

dt2
+ mgsin(θ) = 0, (43)

with an angular velocity and acceleration given by

v = l
dθ

dt
, (44)

and

a = l
d2θ

dt2
. (45)

More on the Pendulum

We do however expect that the motion will gradually come to an
end due a viscous drag torque acting on the pendulum. In the
presence of the drag, the above equation becomes

ml
d2θ

dt2
+ ν

dθ

dt
+ mgsin(θ) = 0, (46)

where ν is now a positive constant parameterizing the viscosity of
the medium in question. In order to maintain the motion against
viscosity, it is necessary to add some external driving force. We
choose here a periodic driving force. The last equation becomes
then

ml
d2θ

dt2
+ ν

dθ

dt
+ mgsin(θ) = Asin(ωt), (47)

with A and ω two constants representing the amplitude and the
angular frequency respectively. The latter is called the driving
frequency.

More on the Pendulum
We define

ω0 =
√
g/l ,

the so-called natural frequency and the new dimensionless quantities

t̂ = ω0t,

with the dimensionless driving frequency

ω̂ =
ω

ω0
,

and introducing the quantity Q, called the quality factor,

Q =
mg

ω0ν
,

and the dimensionless amplitude

Â =
A

mg

More on the Pendulum

We have
d2θ

dt̂2
+

1
Q

dθ

dt̂
+ sin(θ) = Âcos(ω̂t̂).

This equation can in turn be recast in terms of two coupled
first-order differential equations as follows

dθ

dt̂
= v̂ ,

and
dv̂

d t̂
= − v̂

Q
− sin(θ) + Âcos(ω̂t̂).

These are the equations to be solved. The factor Q represents the
number of oscillations of the undriven system that must occur
before its energy is significantly reduced due to the viscous drag.
The amplitude Â is measured in units of the maximum possible
gravitational torque while ω̂ is the angular frequency of the external
torque measured in units of the pendulum’s natural frequency.

Adaptive methods

In case the function to integrate varies slowly or fast in different
integration domains, adaptive methods are normally used. One
strategy is always to decrease the step size. As we have seen earlier,
this leads to more CPU cycles and may lead to loss or numerical
precision. An alternative is to use higher-order RK methods for
example. However, this leads again to more cycles, furthermore,
there is no guarantee that higher-order leads to an improved error.

Adaptive methods
Assume the exact result is x̃ and that we are using an RKM
method. Suppose we run two calculations, one with h (called x1)
and one with h/2 (called x2). Then

x̃ = x1 + ChM+1 + O(hM+2),

and
x̃ = x2 + 2C (h/2)M+1 + O(hM+2),

with C a constant. Note that we calculate two halves in the last
equation. We get then

|x1 − x2| = ChM+1(1− 1
2M

).

yielding

C =
|x1 − x2|

(1− 2−M)hM+1 .

We rewrite
x̃ = x2 + ε+ O((h)M+2),

with
ε =
|x1 − x2|
2M − 1

.

Adaptive methods
With RK4 the expressions become

x̃ = x2 + ε+ O((h)6),

with
ε =
|x1 − x2|

15
.

The estimate is one order higher than the original RK4. But this
method is normally rather inefficient since it requires a lot of
computations. We solve typically the equation three times at each
time step. However, we can compare the estimate ε with some by
us given accuracy ξ. We can then ask the question: what is, with a
given xj and tj , the largest possible step size h̃ that leads to a
truncation error below ξ? We want

Ch̃ ≤ ξ,

which leads to (
h̃

h

)M+1
|x1 − x2|

(1− 2−M)
≤ ξ,

meaning that

h̃ = h

(
ξ

ε

)1+1/M

.

Adaptive methods

With

h̃ = h

(
ξ

ε

)1+1/M

.

we can design the following algorithm:
I If the two answers are close, keep the approximation to h.
I If ε > ξ we need to decrease the step size in the next time step.
I If ε < ξ we need to increase the step size in the next time step.

Richardson’s extrapolation

An elegant and much used method is based on what generically is
called Richardson’s extrapolation. Let us define ỹ as the exact
solution of a differential equation. Note that what we write here
can also be applied to the evaluation of an integral.
We then label y(h) as the numerical solution with a given step size.
With these two definitions we assume now that the difference
between our computed result with a step size h and the exact
results is given by some higher order powers in h, that is, we are
basing our selves on a Taylor expansion approach

y(h) = ỹ + a1h
p + a2h

p+1 + a3h
p+2 + O(hp+3).

Here the power p reflects the error in a given method. For RK4 this
has p = 4 and the coefficients ai represent typically some constants
multiplied with some higher derivatives.

http://www.math.ubc.ca/~feldman/m256/richard.pdf

Richardson’s extrapolation, next step
With

y(h) = ỹ + a1h
p + a2h

p+1 + a3h
p+2 + O(hp+3),

we can calculate the y(h/2), that is halving the step size,

y(h/2) = ỹ + a1

(
h

2

)p

+ a2

(
h

2

)p+1

+ a3

(
h

2

)p+2

+ O(hp+3).

Computing

y(h/2) +
y(h/2)− y(h)

2p − 1
,

we get rid of the terms with a1, resulting in

y(h/2) +
y(h/2)− y(h)

2p − 1
= ỹ − a2

1
2(2p − 1)

(
h

2

)p+1

+ O(hp+2).

We have now improved the error to hp+1, getting hopefully better
results.

Richardson’s extrapolation, generalizing
We started with (pay attention to the redefinition)

y0(h) = y(h) = ỹ + a1h
p + O(hp+1),

and

y0(h/2) = y(h/2) = ỹ + a1

(
h

2

)p

+ O(hp+1).

Computing

y0(h/2) +
y0(h/2)− y0(h)

2p − 1
,

we get rid of the terms with a1. Define now

y1(h) = y0(h/2) +
y0(h/2)− y0(h)

2p − 1
,

meaning that we now have

y1(h) = ỹ + b1h
p+1 + O(hp+2).

We repeat the same exercise and compute now

y1(h/2) +
y1(h/2)− y1(h)

2p − 1
,

and we get rid of the terms involving b1 and obtain an error
proportional to hp+2.

Richardson’s extrapolation, generalizing and final step

With
y2(h) = y1(h/2) +

y1(h/2)− y1(h)

2p − 1
,

we have now
y2(h) = ỹ + c1h

p+2 + O(hp+3).

We can repeat this process by combining these equations and
obtain the general expression

ym(h) = ym−1(h/2) +
ym−1(h/2)− ym−1(h)

2p − 1
,

which then carries a leading error O(hp+m). This scheme requires
us simply to solve our differential equations for various values of
h/2m. For the case of project 2, it gives us the exact harmonic
oscillator energies after 3− 5 iterations.

