Computational Physics Lectures: Programming
aspects, object orientation in C++ and Fortran

Morten Hjorth-Jensen:?

Department of Physics, University of Oslo!

Department of Physics and Astronomy and National Superconducting Cyclotron
Laboratory, Michigan State University?

Mar 21, 2018

© 1999-2018, Morten Hjorth-Jensen. Released under CC Attribution-NonCommercial 4.0 license

Object orientation

Why object orientation?

» Three main topics: objects, class hierarchies and polymorphism

» The aim here is to be to be able to write a more general code
which can easily be tailored to new situations.

» Polymorphism is a term used in software development to
describe a variety of techniques employed by programmers to
create flexible and reusable software components. The term is
Greek and it loosely translates to "many forms". Strategy: try
to single out the variables needed to describe a given system
and those needed to describe a given solver.

Object orientation

In programming languages, a polymorphic object is an entity, such
as a variable or a procedure, that can hold or operate on values of
differing types during the program'’s execution. Because a
polymorphic object can operate on a variety of values and types, it
can also be used in a variety of programs, sometimes with little or
no change by the programmer. The idea of write once, run many,
also known as code reusability, is an important characteristic to the
programming paradigm known as Object-Oriented Programming
(OOP).

OOP describes an approach to programming where a program is
viewed as a collection of interacting, but mostly independent
software components. These software components are known as
objects in OOP and they are typically implemented in a
programming language as an entity that encapsulates both data
and procedures.

Programming classes

In Fortran a vector or matrix start with 1, but it is easy to change a
vector so that it starts with zero or even a negative number. If we
have a double precision Fortran vector which starts at —10 and
ends at 10, we could declare it as REAL (KIND=8)
vector(-10:10). Similarly, if we want to start at zero and end at
10 we could write REAL(KIND=8) :: vector(0:10). We have
also seen that Fortran allows us to write a matrix addition
A=B-+CasA =B + C. This means that we have overloaded the
addition operator so that it translates this operation into two loops
and an addition of two matrix elements a;; = b;; + ¢;;.

Programming classes

The way the matrix addition is written is very close to the way we
express this relation mathematically. The benefit for the
programmer is that our code is easier to read. Furthermore, such a
way of coding makes it more likely to spot eventual errors as well.
In Ansi C and C++ arrays start by default from i = 0. Moreover, if
we wish to add two matrices we need to explicitely write out the
two loops as

for(i=0 ; i < n ; i++) {
for(j=0 ; j < mn ; j++) {
alil [j1=b[i] [j1+c[i] []]

Programming classes

However, the strength of C++ is the possibility to define new data
types, tailored to some particular problem. Via new data types and
overloading of operations such as addition and subtraction, we can
easily define sets of operations and data types which allow us to
write a matrix addition in exactly the same way as we would do in
Fortran. We could also change the way we declare a C++ matrix
elements aj;, from a[i][j] to say a(/,;), as we would do in Fortran.
Similarly, we could also change the default range from 0: n—1 to
1:n.

To achieve this we need to introduce two important entities in
C++ programming, classes and templates.

Programming classes

The function and class declarations are fundamental concepts
within C++. Functions are abstractions which encapsulate an
algorithm or parts of it and perform specific tasks in a program.
We have already met several examples on how to use functions.
Classes can be defined as abstractions which encapsulate data and
operations on these data. The data can be very complex data
structures and the class can contain particular functions which
operate on these data. Classes allow therefore for a higher level of
abstraction in computing. The elements (or components) of the
data type are the class data members, and the procedures are the
class member functions.

Programming classes

Classes are user-defined tools used to create multi-purpose software
which can be reused by other classes or functions. These
user-defined data types contain data (variables) and functions
operating on the data.

A simple example is that of a point in two dimensions. The data
could be the x and y coordinates of a given point. The functions
we define could be simple read and write functions or the possibility
to compute the distance between two points.

Programming classes

C++ has a class complex in its standard template library (STL).
The standard usage in a given function could then look like

// Program to calculate addition and multiplication of two complex nun
using namespace std;
#include <iostream>
#include <cmath>
#include <complez>
int main()
{
complex<double> x(6.1,8.2), y(0.5,1.3);
// write out z+y
cout << x + y << x¥y << endl;
return O;

where we add and multiply two complex numbers x = 6.1 + 8.2
and y = 0.5 + ¢1.3 with the obvious results z = x+ y = 6.6 +19.5
and z=x-y = —7.61 +:12.03.

Programming classes

We proceed by splitting our task in three files.

We define first a header file complex.h which contains the
declarations of the class. The header file contains the class
declaration (data and functions), declaration of stand-alone
functions, and all inlined functions, starting as follows

#ifndef Complex_H

#define Complex_H

// warious include statements and definitions

#include <iostream> // Standard ANSI-C++ include files
#include <new>

#include

class Complex

{...

definition of variables and their character
}s

// declarations of warious functions used by the class

#endif

Programming classes

Next we provide a file complex.cpp where the code and algorithms
of different functions (except inlined functions) declared within the
class are written. The files complex.h and complex.cpp are
normally placed in a directory with other classes and libraries we
have defined.

Finally, we discuss here an example of a main program which uses
this particular class. An example of a program which uses our
complex class is given below. In particular we would like our class
to perform tasks like declaring complex variables, writing out the
real and imaginary part and performing algebraic operations such as
adding or multiplying two complex numbers.

Programming classes
#include <iostream>
#include <cmath>
#include "mycomplex.h"
using namespace std;
int main()

// we declare a complez variable a

Complex a(0.1,1.3);

// we declare complez variables b and c

Complex b(3.0), ¢(5.0,-2.3);

// using the copy constructor to define a new complexr variable z=c
Complex z(c); // Could use C++11 as z{c}

// C++11 way of declaring compile with c++ -std=c++11

Complex g{3,4};

cout << g.Re() << " " << g.Im() << endl;

// we declare a new complexz variable d using the assignment operat
Complex d = z;

// we declare a new complexz variable e using the assignment operat
Complex e = d;

d = a +c;

e = axc - d/b;

// write out of the real and imaginary parts

cout << "Re(d)=" << d.Re() << ", Im(d)=" << d.Im() << endl;

cout << "Re(d)=" << e.Re() << ", Im(d)=" << e.Im() << endl;

// write out absolute value

cout << "Abs(d)=" << d.abs() << endl;

cout << "Abs(e)=" << e.abs() << endl;

ratiirn O

https://github.com/CompPhysics/ComputationalPhysicsMSU/blob/master/doc/Programs/OOExamples/ComplexClass/NoTemplates/main.cpp

Programming classes

We include the header file complex.h and define four different
complex variables. These are a = 0.1+:1.3, b = 3.0 + 0 (note
that if you don't define a value for the imaginary part this is set to
zero), ¢ = 5.0 —12.3 and d = b. Thereafter we have defined
standard algebraic operations and the member functions of the
class which allows us to print out the real and imaginary part of a
given variable.

Programming classes, the header file mycomplex.h
#ifndef Complexz_H
#define Complex_H
// warious include statements and definitions
#include <iostream> // Standard ANSI-C++ include files
#include <new>

// My own Complex class
class Complex

{

private:
double re, im; // real and imaginary part

public:
// Constructors, default, extended and copy constructor
Complex ();

Complex (double re = 0.0, double im = 0.0);

// copy constructor

Complex(const Complex& c) : re(c.re), im(c.im) {}
// destructor

“Complex () {}

double Re () const; // T real_part = a.Re();
double Im () conmst; // T imag_part = a.Im();
double abs () const; // T m = a.abs(); // modulus

// asstgnment operator c = a;

Complex& operator= (const Complex& c);

friend Complex operator+ (const Complex& a, const Complex& b);

friend Complex operator- (const Complex& a, const Complex& b);
friend Complex operator* (const Complex& a, const Complex& b);

fraand Camnlevy arnerator/ (coancetr Commnlev? a coancetr Coamnlev? h) -

https://github.com/CompPhysics/ComputationalPhysicsMSU/blob/master/doc/Programs/OOExamples/ComplexClass/NoTemplates/mycomplex.h

Programming classes, the cpp file mycomplex.cpp

#include <cmath>

#include "mycomplex.h"

// Constructors

Complex:: Complex () { re = im = 0.0; }

Complex:: Complex (double re_a, double im_a) {re = re_a; im = im_a; }
double Complex:: Re () const { return re; } // getting the real part
double Complex:: Im () const { return im; } // and the imaginary g
double Complex:: abs () const { return sqrt(rexre + im*im); }

// ALl member functions not declared using the keyword static have a s
// called this that points to the instantiating object. When accessing
// the class where they are defined, the this pointer is implied and c
Complex& Complex:: operator= (const Complex& c)

re = c.re;
im = c.im;
return *this;
X
Complex operator+ (const Complex& a, const Complex& b) { return Comple
Complex operator- (const Complex& a, const Complex& b) { return Comple

Complex operator* (const Complex& a, const Complex& b) {return Complex
Complex operator/ (const Complex& a, const Complex& b) {return Complex

https://github.com/CompPhysics/ComputationalPhysicsMSU/blob/master/doc/Programs/OOExamples/ComplexClass/NoTemplates/mycomplex.cpp

Programming classes

The class is defined via the statement class Complex. We must
first use the key word class, which in turn is followed by the
user-defined variable name Complex. The body of the class, data
and functions, is encapsulated within the parentheses {...}.

Programming classes

Data and specific functions can be private, which means that they
cannot be accessed from outside the class. This means also that
access cannot be inherited by other functions outside the class. If
we use protected instead of private, then data and functions
can be inherited outside the class.

Programming classes

The key word public means that data and functions can be
accessed from outside the class. Here we have defined several
functions which can be accessed by functions outside the class. The
declaration friend means that stand-alone functions can work on
privately declared variables of the type (re, im). Data members
of a class should be declared as private variables.

Programming classes

The first public function we encounter is a so-called constructor,
which tells how we declare a variable of type Complex and how this
variable is initialized. We have chose three possibilities in the
example above:

A declaration like Complex c; calls the member function
Complex () which can have the following implementation

Complex:: Complex () { re = im = 0.0; }
meaning that it sets the real and imaginary parts to zero. Note the

way a member function is defined. The constructor is the first
function that is called when an object is instantiated.

Programming classes

Another possibility is
Complex:: Complex () {}

which means that there is no initialization of the real and imaginary
parts. The drawback is that a given compiler can then assign
random values to a given variable.

A call like Complex a(0.1,1.3); means that we could call the
member function ‘Complex(double, double)as

Complex:: Complex (double re_a, double im_a) {
re = re_a; im = im_a; }

Programming classes

The simplest member function are those we defined to extract the
real and imaginary part of a variable. Here you have to recall that
these are private data, that is they invisible for users of the class.
We obtain a copy of these variables by defining the functions
double Complex:: Re () const { return re; }} // getting the real part
double Complex:: Im () const { return im; } // and the imaginary po
Note that we have introduced the declaration const. What does it
mean? This declaration means that a variabale cannot be changed
within a called function.

Programming classes

If we define a variable as const double p = 3; and then try to
change its value, we will get an error when we compile our
program. This means that constant arguments in functions cannot
be changed.

// const arguments (in functions) cannot be changed:

void myfunc (const Complex& c)

{ c.re = 0.2; /* ILLEGAL!! compiler error... */ '}

If we declare the function and try to change the value to 0.2, the
compiler will complain by sending an error message.

Programming classes

If we define a function to compute the absolute value of complex
variable like

double Complex:: abs () { return sqrt(re*re + im*im);}

without the constant declaration and define thereafter a function
myabs as

double myabs (const Complex& c)
{ return c.absQ; } // Not ok because c.abs() is not a const func.

the compiler would not allow the c.abs() call in myabs since
Complex: :abs is not a constant member function.

Programming classes

Constant functions cannot change the object’s state. To avoid this
we declare the function abs as

double Complex:: abs () const { return sqrt(rexre + im*im); }

Programming classes

C++ (and Fortran) allow for overloading of operators. That means
we can define algebraic operations on for example vectors or any
arbitrary object. As an example, a vector addition of the type

c = a + b means that we need to write a small part of code with a
for-loop over the dimension of the array. We would rather like to
write this statement as ¢ = a+b; as this makes the code much
more readable and close to eventual equations we want to code. To
achieve this we need to extend the definition of operators.

Programming classes

Let us study the declarations in our complex class. In our main
function we have a statement like d = b;, which means that we
call d.operator= (b) and we have defined a so-called assignment
operator as a part of the class defined as
Complex& Complex:: operator= (const Complex& c)
re = c.re;
im = c.im;
return *this;
}
Note: All member functions not declared using the keyword static
have a special pointer called this that points to the instantiating
object. When accessing members within the class where they are
defined, the this pointer is implied and can be omitted

Programming classes

With this function, statements like Complex d = b; or Complex
d(b) ; make a new object d, which becomes a copy of b. We can
make simple implementations in terms of the assignment
Complex:: Complex (const Complex& c)
{ *this = ¢c; }
which is a pointer to "this object", *this is the present object, so

*this = c¢; means setting the present object equal to ¢, that is
this->operator= (c);.

Programming classes

The meaning of

the addition operator + for Complex objects is defined in the function
Complex operator+ (const Complex& a, const Complex& b); // :
The compiler translates ¢ = a + b; into ¢ = operator+ (a,

b) ;. Since this implies the call to function, it brings in an

additional overhead. If speed is crucial and this function call is

performed inside a loop, then it is more difficult for a given

compiler to perform optimizations of a loop.

Programming classes

The solution to this is to inline functions. We discussed inlining in
chapter 2 of the lecture notes. Inlining means that the function
body is copied directly into the calling code, thus avoiding calling
the function. Inlining is enabled by the inline keyword

inline Complex operator+ (const Complex& a, const Complex& b)

{ return Complex (a.re + b.re, a.im + b.im); }
Inline functions, with complete bodies must be written in the
header file complex.h. If they are included in the header file, we can
skip the inline keyword.

Programming classes

Consider the case ¢ = a + b; thatis, c.operator= (operator+
(a,b)); If operator+, operator= and the constructor
Complex(r,i) all are inline functions, this transforms to

c.re
c.im

a.re + b.re;
a.im + b.im;

by the compiler, i.e., no function calls

Programming classes

The stand-alone function operator+ is a friend of the Complex
class

class Complex

{
friend Complex operator+ (const Complex& a, const Complex& b);
};

so it can read (and manipulate) the private data parts re and im via

inline Complex operator+ (const Complex& a, const Complex& b)
{ return Complex (a.re + b.re, a.im + b.im); }

Programming classes

Since we do not need to alter the re and im variables, we can get
the values by Re() and Im(), and there is no need to be a friend
function

inline Complex operator+ (const Complex& a, const Complex& b)
{ return Complex (a.Re() + b.Re(), a.Im() + b.Im()); }

Programming classes

The multiplication functionality can now be extended to imaginary
numbers by the following code

inline Complex operator* (const Complex& a, const Complex& b)

return Complex(a.rexb.re - a.im*b.im, a.im*b.re + a.rexb.im);

It will be convenient to inline all functions used by this operator.

Programming classes

To inline the complete expression a*b;, the constructors and
operator= must also be inlined. This can be achieved via the
following piece of code

inline Complex:: Complex () { re = im = 0.0; }

inline Complex:: Complex (double re_, double im_)

inline Complex:: Complex (const Complex& c)

inline Complex:: operator= (const Complex& c)

.}

Programming classes

// e, ¢, d are complez

e = c*d;

// first compiler translation:

e.operator= (operator* (c,d));

// result of nested inline functions

// operator=, operator*, Complex(double,double=0):
e.re = c.rexd.re - c.im*d.im;

e.im = c.im*d.re + c.rexd.im;

The definitions operator- and operator/ follow the same set up.

Programming classes

Finally, if we wish to write to file or another device a complex
number using the simple syntax cout « c;, we obtain this by
defining the effect of << for a Complex object as

ostream& operator<< (ostream& o, const Complex& c)
{ o0 << "(" << c.Re() << "," << ¢.Im() << ") "; return o;}

Programming classes, templates

What if we wanted to make a class which takes integers or floating
point numbers with single precision? A simple way to achieve this is
copy and paste our class and replace double with for example int.
C++ allows us to do this automatically via the usage of templates,
which are the C++ constructs for parameterizing parts of classes.
Class templates is a template for producing classes. The declaration
consists of the keyword template followed by a list of template
arguments enclosed in brackets.

Pro&/ramming classes, the same class but now with templates
e can therefore make a more general class by rewriting our

original example as

template<class T>
class Complex
{
private:
T re, im; // real and imaginary part
public:
Complex (); // Complex c;
Complex (T re_a, T im_a) {re = re_a; im = im_a; }; // Definition of
// copy constructor
Complex(const Complex& c) : re(c.re), im(c.im) {}
// destructor
“Complex () {} // destructor
Complex& operator= (const Complex& c)
{
re = c.re;
im = c.im;
return *this;

}
T Re () const { return re; } // getting the real part
T Im () const { return im; } // T imag_part = a.Im();
T abs () const { return sqrt(re*re + im*im); } // T m= a.ab

friend Complex operator+ (const Complex& a, const Complex& b) { retu
friend Complex operator- (const Complex& a, const Complex& b) { ret
friend Complex operator* (const Complex& a, const Complex& b) {retur
friend Complex operator/ (const Complex& a. const Complex& b) {retur

https://github.com/CompPhysics/ComputationalPhysicsMSU/blob/master/doc/Programs/OOExamples/ComplexClass/WithTemplates/mycomplex.h

Programming classes

What it says is that Complex is a parameterized type with T as a
parameter and T has to be a type such as double or float. The
class complex is now a class template and we would define variables
in a code as

Complex<double> a(10.0,5.1);
Complex<int> b(1,0);

Programming classes

Member functions of our class are defined by preceding the name of
the function with the template keyword. Consider the function we
defined as Complex:: Complex (double re_a, double im_a).
We would rewrite this function as

template<class T>

Complex<T>:: Complex (T re_a, T im_a)

{ re = re_a; im = im_a; }

The member functions are otherwise defined following ordinary
member function definitions.

A matrix-vector class, first its usage
#include <cmath>
#include <iostream>
#include <fstream>
#include <iomanip>
#include "/Users/hjensen/Teaching/fys{411/programs/cgm/vectorclass.h"

using namespace std;

Vector ConjugateGradient(Matrix A, Vector b, Vector x0){
int dim = x0.Dimension();

const double tolerance = 1.0e-14;

Vector x(dim),r(dim),v(dim),z(dim);

double c,t,d;

x0;
b - A*xx;

r;
dot (r,r);

or(int i=0;i<dim;i++){

if (sqrt(dot(v,v))<tolerance){

cerr << "An error has occurred in ConjugateGradient: execution o
break;

X
r
A4
c
b

Axv;
c/dot(v,z);
X + t*v;

r - t*xz;
Aot (+ +) -

2. K Moot N Y

A matrix-vector class, the class definitions themselves

#ifndef _vectorclass
#define _vectorclass

#include <cmath>
#include <tostream>
using namespace std;

class Point;
class Vector;
class Matrix;

/********************************/

/* Point Class */
I,

class Point{
private:
int dimension;
double *data;

public:

Point (int dim);

Point (const Point& v);
“PAasn+ () -

A matrix-vector class, and finally all its functions

#include "vectorclass.h"”

Point: :Point(int dim){
dimension = dim;
data = new double[dimension];

for(int i=0;i<dimension;i++)
data[i] = 0.0;

Point: :Point (const Point &v){
dimension = v.Dimension();
data = new double[dimension];

for(int i=0;i<dimension;i++)
datal[i] = v.datal[i];

Point:: "Point O {
dimension = O;
delete[] data;
data = NULL;

}

ant PAaint: Dimenceian() ~ane+d

Programming classes, the vector only class but now with
templates

#include <cmath>

#include <iostream>

#include <fstream>

#include <iomanip>

#include "vectortemplates.h"

using namespace std;

// Main function begins here

int main(int argc, char * argv[]){
int dim = 2;
Vector<double> x(dim), b(dim);
// Set values for z and y
x(0) = x(1) = 10.0;
Vector<double> y(dim);

y(0) = 2.

y(1) = -2

b = x+y;

cout << "The vector b: " << endl;
b.Print();

cout << endl;

cout << "The norm of b: " << endl;

cout<< b.VectorNorm2() << endl;
Vector<int> z(dim) ;
>(N) = 9.

https://github.com/CompPhysics/ComputationalPhysicsMSU/blob/master/doc/Programs/OOExamples/MatrixVectorClass/WithTemplates/main.cpp
https://github.com/CompPhysics/ComputationalPhysicsMSU/blob/master/doc/Programs/OOExamples/MatrixVectorClass/WithTemplates/main.cpp

Programming classes, the vector only class but now with

templates
// Vector class with templates

#ifndef _vectorclass
#define _vectorclass
#include <cmath>
#include <tostream>
#include <sstream>
#include <iomanip>
#include <cstdlib>
using namespace std;

template<class T>
class Vector{
private:
int dimension;
T *data;

public:

Vector();

Vector (int dim);
Vector(const Vector<T>& v);
“Vector();

int Dimension() const;
void Normalize();

T VectorNormi();
T Tarmr+ ArvMNAavmd) .

https://github.com/CompPhysics/ComputationalPhysicsMSU/blob/master/doc/Programs/OOExamples/MatrixVectorClass/WithTemplates/vectortemplates.h
https://github.com/CompPhysics/ComputationalPhysicsMSU/blob/master/doc/Programs/OOExamples/MatrixVectorClass/WithTemplates/vectortemplates.h

Virtual classes

Inheritance plays a central role in OO programming. When you
derive a new class from another existing class using the virtual
keyword, the derived class inherits data members and member
functions of the already defined classes. A virtual member is a
member function that can be redefined in a derived class, while
preserving its calling properties through references. The syntax for
a function to become virtual is to precede its declaration with the
virtual keyword.

Virtual classes

// virtual members
#include <tostream>
using namespace std;

class Polygon {
protected:
int width, height;
public:
void set_values (int a, int b)
{ width=a; height=b; }
virtual int area ()
{ return 0; }
};

class Rectangle: public Polygon {
public:
int area ()
{ return width * height; }
};

class Triangle: public Polygon {
public:
int area ()
{ return (width * height / 2); }
};

int main () {

Rarrarnceala v~Aacrd o

http://www.cplusplus.com/doc/tutorial/polymorphism/

Unit Testing

Unit Testing is the practice of testing the smallest testable parts,
called units, of an application individually and independently to
determine if they behave exactly as expected. Unit tests (short
code fragments) are usually written such that they can be
preformed at any time during the development to continually verify
the behavior of the code. In this way, possible bugs will be
identified early in the development cycle, making the debugging at
later stage much easier.

Unit Testing, benefits

There are many benefits associated with Unit Testing, such as

» |t increases confidence in changing and maintaining code. Big
changes can be made to the code quickly, since the tests will
ensure that everything still is working properly.

» Since the code needs to be modular to make Unit Testing
possible, the code will be easier to reuse. This improves the
code design.

» Debugging is easier, since when a test fails, only the latest
changes need to be debugged.

» Different parts of a project can be tested without the need to
wait for the other parts to be available.

» A unit test can serve as a documentation on the functionality
of a unit of the code.

Simple example of unit test

Look up the guide on how to install unit tests for c++ at course
webpage. This is the version with classes.
#include <unittest++/UnitTest++.h>

class MyMultiplyClass{
public:
double multiply(double x, double y) {
return x * y;
}

};
TEST (MyMath) {
MyMultiplyClass my;

CHECK_EQUAL (56, my.multiply(7,8));
}

int main()

{
}

return UnitTest::RunAllTests();

Simple example of unit test

And without classes
#include <unittest++/UnitTest++.h>

double multiply(double x, double y) {
return x * y;
}

TEST (MyMath) {
CHECK_EQUAL (56, multiply(7,8));

}
int main()
{
return UnitTest::RunAllTests();
}

For Fortran users, the link at
http://sourceforge.net/projects/fortranxunit/ contains a
similar software for unit testing.

http://sourceforge.net/projects/fortranxunit/

