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Famous PDEs

In the Natural Sciences we often encounter problems with many
variables constrained by boundary conditions and initial values.
Many of these problems can be modelled as partial differential
equations. One case which arises in many situations is the so-called
wave equation whose one-dimensional form reads

∂2u

∂x2 = A
∂2u

∂t2
, (1)

where A is a constant. The solution u depends on both spatial and
temporal variables, viz. u = u(x , t).

Famous PDEs, two dimension

In two dimension we have u = u(x , y , t). We will, unless otherwise
stated, simply use u in our discussion below. Familiar situations
which this equation can model are waves on a string, pressure
waves, waves on the surface of a fjord or a lake, electromagnetic
waves and sound waves to mention a few. For e.g., electromagnetic
waves we have the constant A = c2, with c the speed of light. It is
rather straightforward to extend this equation to two or three
dimension. In two dimensions we have

∂2u

∂x2 +
∂2u

∂y2 = A
∂2u

∂t2
,

Famous PDEs, diffusion equation

The diffusion equation whose one-dimensional version reads

∂2u

∂x2 = A
∂u

∂t
, (2)

and A is in this case called the diffusion constant. It can be used to
model a wide selection of diffusion processes, from molecules to the
diffusion of heat in a given material.

Famous PDEs, Laplace’s equation

Another familiar equation from electrostatics is Laplace’s equation,
which looks similar to the wave equation in Eq. (1) except that we
have set A = 0

∂2u

∂x2 +
∂2u

∂y2 = 0, (3)

or if we have a finite electric charge represented by a charge density
ρ(x) we have the familiar Poisson equation

∂2u

∂x2 +
∂2u

∂y2 = −4πρ(x). (4)

Famous PDEs, Helmholtz’ equation

Other famous partial differential equations are the Helmholtz (or
eigenvalue) equation, here specialized to two dimensions only

− ∂2u

∂x2 −
∂2u

∂y2 = λu, (5)

the linear transport equation (in 2 + 1 dimensions) familiar from
Brownian motion as well

∂u

∂t
+
∂u

∂x
+
∂u

∂y
= 0, (6)



Famous PDEs, Schroedinger’s equation in two dimensions

Schroedinger’s equation

−∂
2u

∂x2 −
∂2u

∂y2 + f (x , y)u = ı
∂u

∂t
.

Famous PDEs, Maxwell’s equations

Important systems of linear partial differential equations are the
famous Maxwell equations

∂E
∂t

= curlB,

and
−curlE = B

and
divE = divB = 0.

Famous PDEs, Euler’s equations

Similarly, famous systems of non-linear partial differential equations
are for example Euler’s equations for incompressible, inviscid flow

∂u
∂t

+ u∇u = −Dp; divu = 0,

with p being the pressure and

∇ =
∂

∂x
ex +

∂

∂y
ey ,

in the two dimensions. The unit vectors are ex and ey .

Famous PDEs, the Navier-Stokes’ equations

Another example is the set of Navier-Stokes equations for
incompressible, viscous flow

∂u
∂t

+ u∇u−∆u = −Dp; divu = 0.

Famous PDEs, general equation in two dimensions
A general partial differential equation with two given dimensions
reads

A(x , y)
∂2u

∂x2 + B(x , y)
∂2u

∂x∂y
+ C (x , y)

∂2u

∂y2 = F (x , y , u,
∂u

∂x
,
∂u

∂y
),

and if we set

B = C = 0,

we recover the 1 + 1-dimensional diffusion equation which is an
example of a so-called parabolic partial differential equation. With

B = 0, AC < 0

we get the 2 + 1-dim wave equation which is an example of a
so-called elliptic PDE, where more generally we have B2 > AC . For
B2 < AC we obtain a so-called hyperbolic PDE, with the Laplace
equation in Eq. (3) as one of the classical examples. These
equations can all be easily extended to non-linear partial differential
equations and 3 + 1 dimensional cases.

Diffusion equation

The diffusion equation describes in typical applications the evolution
in time of the density u of a quantity like the particle density,
energy density, temperature gradient, chemical concentrations etc.

The basis is the assumption that the flux density ρ obeys the
Gauss-Green theorem

∫

V
divρdx =

∫

∂V
ρndS ,

where n is the unit outer normal field and V is a smooth region
with the space where we seek a solution. The Gauss-Green theorem
leads to

divρ = 0.



Diffusion equation

Assuming that the flux is proportional to the gradient ∇u but
pointing in the opposite direction since the flow is from regions of
high concetration to lower concentrations, we obtain

ρ = −D∇u,
resulting in

div∇u = D∆u = 0,

which is Laplace’s equation. The constant D can be coupled with
various physical constants, such as the diffusion constant or the
specific heat and thermal conductivity discussed below.

Diffusion equation, famous laws

If we let u denote the concetration of a particle species, this results
in Fick’s law of diffusion. If it denotes the temperature gradient, we
have Fourier’slaw of heat conduction and if it refers to the
electrostatic potential we have Ohm’s law of electrical conduction.

Coupling the rate of change (temporal dependence) of u with the
flux density we have

∂u

∂t
= −divρ,

which results in

∂u

∂t
= Ddiv∇u = D∆u,

the diffusion equation, or heat equation.

Diffusion equation, heat equation

If we specialize to the heat equation, we assume that the diffusion
of heat through some material is proportional with the temperature
gradient T (x, t) and using conservation of energy we arrive at the
diffusion equation

κ

Cρ
∇2T (x, t) =

∂T (x, t)

∂t

where C is the specific heat and ρ the density of the material. Here
we let the density be represented by a constant, but there is no
problem introducing an explicit spatial dependence, viz.,

κ

Cρ(x, t)
∇2T (x, t) =

∂T (x, t)

∂t
.

Diffusion equation, heat equation in one dimension

Setting all constants equal to the diffusion constant D, i.e.,

D =
Cρ

κ
,

we arrive at

∇2T (x, t) = D
∂T (x, t)

∂t
.

Specializing to the 1 + 1-dimensional case we have

∂2T (x , t)

∂x2 = D
∂T (x , t)

∂t
.

Diffusion equation, dimensionless form

We note that the dimension of D is time/length2. Introducing the
dimensionless variables αx̂ = x we get

∂2T (x , t)

α2∂x̂2 = D
∂T (x , t)

∂t
,

and since α is just a constant we could define α2D = 1 or use the
last expression to define a dimensionless time-variable t̂. This yields
a simplified diffusion equation

∂2T (x̂ , t̂)

∂x̂2 =
∂T (x̂ , t̂)

∂ t̂
.

It is now a partial differential equation in terms of dimensionless
variables. In the discussion below, we will however, for the sake of
notational simplicity replace x̂ → x and t̂ → t. Moreover, the
solution to the 1 + 1-dimensional partial differential equation is
replaced by T (x̂ , t̂)→ u(x , t).

Explicit Scheme

In one dimension we have the following equation

∇2u(x , t) =
∂u(x , t)

∂t
,

or

uxx = ut ,

with initial conditions, i.e., the conditions at t = 0,

u(x , 0) = g(x) 0 < x < L

with L = 1 the length of the x-region of interest.



Explicit Scheme, boundary conditions
The boundary conditions are

u(0, t) = a(t) t ≥ 0,

and

u(L, t) = b(t) t ≥ 0,

where a(t) and b(t) are two functions which depend on time only,
while g(x) depends only on the position x . Our next step is to find
a numerical algorithm for solving this equation. Here we recur to
our familiar equal-step methods and introduce different step lengths
for the space-variable x and time t through the step length for x

∆x =
1

n + 1
and the time step length ∆t. The position after i steps and time at
time-step j are now given by

tj = j∆t j ≥ 0
xi = i∆x 0 ≤ i ≤ n + 1

Explicit Scheme, algorithm

If we use standard approximations for the derivatives we obtain

ut ≈
u(x , t + ∆t)− u(x , t)

∆t
=

u(xi , tj + ∆t)− u(xi , tj)

∆t

with a local approximation error O(∆t) and

uxx ≈
u(x + ∆x , t)− 2u(x , t) + u(x −∆x , t)

∆x2 ,

or

uxx ≈
u(xi + ∆x , tj)− 2u(xi , tj) + u(xi −∆x , tj)

∆x2 ,

with a local approximation error O(∆x2). Our approximation is to
higher order in coordinate space. This can be justified since in most
cases it is the spatial dependence which causes numerical problems.

Explicit Scheme, simplifications
These equations can be further simplified as

ut ≈
ui ,j+1 − ui ,j

∆t
,

and

uxx ≈
ui+1,j − 2ui ,j + ui−1,j

∆x2 .

The one-dimensional diffusion equation can then be rewritten in its
discretized version as

ui ,j+1 − ui ,j
∆t

=
ui+1,j − 2ui ,j + ui−1,j

∆x2 .

Defining α = ∆t/∆x2 results in the explicit scheme

ui ,j+1 = αui−1,j + (1− 2α)ui ,j + αui+1,j . (7)

Explicit Scheme, solving the equations

Since all the discretized initial values

ui ,0 = g(xi ),

are known, then after one time-step the only unknown quantity is
ui ,1 which is given by

ui ,1 = αui−1,0+(1−2α)ui ,0+αui+1,0 = αg(xi−1)+(1−2α)g(xi )+αg(xi+1).

We can then obtain ui ,2 using the previously calculated values ui ,1
and the boundary conditions a(t) and b(t). This algorithm results
in a so-called explicit scheme, since the next functions ui ,j+1 are
explicitely given by Eq. (7).

Explicit Scheme, simple case

We specialize to the case a(t) = b(t) = 0 which results in
u0,j = un+1,j = 0. We can then reformulate our partial differential
equation through the vector Vj at the time tj = j∆t

Vj =




u1,j
u2,j
. . .
un,j


 .

Explicit Scheme, matrix-vector formulation
This results in a matrix-vector multiplication

Vj+1 = AVj

with the matrix A given by

A =




1− 2α α 0 0 . . .
α 1− 2α α 0 . . .
. . . . . . . . . . . .
0 . . . 0 . . . α 1− 2α




which means we can rewrite the original partial differential equation
as a set of matrix-vector multiplications

Vj+1 = AVj = · · · = Aj+1V0,

where V0 is the initial vector at time t = 0 defined by the initial
value g(x). In the numerical implementation one should avoid to
treat this problem as a matrix vector multiplication since the matrix
is triangular and at most three elements in each row are different
from zero.



Explicit Scheme, sketch of code

It is rather easy to implement this matrix-vector multiplication as
seen in the following piece of code

// First we set initialise the new and old vectors
// Here we have chosen the boundary conditions to be zero.
// n+1 is the number of mesh points in x
// Armadillo notation for vectors

u(0) = unew(0) = u(n) = unew(n) = 0.0;
for (int i = 1; i < n; i++) {

x = i*step;
// initial condition
u(i) = func(x);
// intitialise the new vector
unew(i) = 0;

}
// Time integration
for (int t = 1; t <= tsteps; t++) {

for (int i = 1; i < n; i++) {
// Discretized diff eq
unew(i) = alpha * u(i-1) + (1 - 2*alpha) * u(i) + alpha * u(i+1);

}
// note that the boundaries are not changed.

Explicit Scheme, stability condition

However, although the explicit scheme is easy to implement, it has
a very weak stability condition, given by

∆t/∆x2 ≤ 1/2.

This means that if ∆x = 0.01 (a rather frequent choice), then
∆t = 5× 10−5. This has obviously bad consequences if our time
interval is large. In order to derive this relation we need some
results from studies of iterative schemes. If we require that our
solution approaches a definite value after a certain amount of time
steps we need to require that the so-called spectral radius ρ(A) of
our matrix A satisfies the condition

ρ(A) < 1. (8)

Explicit Scheme, spectral radius and stability

The spectral radius is defined as

ρ(A) = max
{
|λ| : det(A− λÎ ) = 0

}
,

which is interpreted as the smallest number such that a circle with
radius centered at zero in the complex plane contains all
eigenvalues of A. If the matrix is positive definite, the condition in
Eq. (8) is always satisfied.

Explicit Scheme, eigenvalues and stability

We can obtain closed-form expressions for the eigenvalues of A. To
achieve this it is convenient to rewrite the matrix as

A = Î − αB̂,
with

B̂ =




2 −1 0 0 . . .
−1 2 −1 0 . . .
. . . . . . . . . . . . −1
0 0 . . . −1 2


 .

Explicit Scheme, final stability analysis

The eigenvalues of A are λi = 1− αµi , with µi being the
eigenvalues of B̂ . To find µi we note that the matrix elements of B̂
are

bij = 2δij − δi+1j − δi−1j ,

meaning that we have the following set of eigenequations for
component i

(B̂x̂)i = µixi ,

resulting in

(B̂x̂)i =
n∑

j=1

(2δij − δi+1j − δi−1j) xj = 2xi − xi+1 − xi−1 = µixi .

Explicit Scheme, stability condition
If we assume that x can be expanded in a basis of
x = (sin (θ), sin (2θ), . . . , sin (nθ)) with θ = lπ/n + 1, where we
have the endpoints given by x0 = 0 and xn+1 = 0, we can rewrite
the last equation as

2 sin (iθ)− sin ((i + 1)θ)− sin ((i − 1)θ) = µi sin (iθ),

or

2 (1− cos (θ)) sin (iθ) = µi sin (iθ),

which is nothing but

2 (1− cos (θ)) xi = µixi ,

with eigenvalues µi = 2− 2 cos (θ).

Our requirement in Eq. (8) results in

−1 < 1− α2 (1− cos (θ)) < 1,

which is satisfied only if α < (1− cos (θ))−1 resulting in α ≤ 1/2
or ∆t/∆x2 ≤ 1/2.



Explicit Scheme, general tridiagonal matrix

A more general tridiagonal matrix

A =




a b 0 0 . . .
c a b 0 . . .
. . . . . . . . . . . . b
0 0 . . . c a


 ,

has eigenvalues µi = a + s
√
bc cos (iπ/n + 1) with i = 1 : n.

Implicit Scheme

In deriving the equations for the explicit scheme we started with the
so-called forward formula for the first derivative, i.e., we used the
discrete approximation

ut ≈
u(xi , tj + ∆t)− u(xi , tj)

∆t
.

However, there is nothing which hinders us from using the
backward formula

ut ≈
u(xi , tj)− u(xi , tj −∆t)

∆t
,

still with a truncation error which goes like O(∆t).

Implicit Scheme

We could also have used a midpoint approximation for the first
derivative, resulting in

ut ≈
u(xi , tj + ∆t)− u(xi , tj −∆t)

2∆t
,

with a truncation error O(∆t2). Here we will stick to the backward
formula and come back to the latter below. For the second
derivative we use however

uxx ≈
u(xi + ∆x , tj)− 2u(xi , tj) + u(xi −∆x , tj)

∆x2 ,

and define again α = ∆t/∆x2.

Implicit Scheme

We obtain now

ui ,j−1 = −αui−1,j + (1− 2α)ui ,j − αui+1,j .

Here ui ,j−1 is the only unknown quantity. Defining the matrix A

A =




1 + 2α −α 0 0 . . .
−α 1 + 2α −α 0 . . .
. . . . . . . . . . . . . . .
. . . . . . . . . . . . −α
0 0 . . . −α 1 + 2α



,

we can reformulate again the problem as a matrix-vector
multiplication

AVj = Vj−1

Implicit Scheme

It means that we can rewrite the problem as

Vj = A−1Vj−1 = A−1 (A−1Vj−2
)

= · · · = A−jV0.

This is an implicit scheme since it relies on determining the vector
ui ,j−1 instead of ui ,j+1. If α does not depend on time t, we need to
invert a matrix only once. Alternatively we can solve this system of
equations using our methods from linear algebra. These are
however very cumbersome ways of solving since they involve
∼ O(N3) operations for a N × N matrix. It is much faster to solve
these linear equations using methods for tridiagonal matrices, since
these involve only ∼ O(N) operations.

Implicit Scheme

The implicit scheme is always stable since the spectral radius
satisfies ρ(A) < 1. We could have inferred this by noting that the
matrix is positive definite, viz. all eigenvalues are larger than zero.
We see this from the fact that A = Î + αB̂ has eigenvalues
λi = 1 + α(2− 2cos(θ)) which satisfy λi > 1. Since it is the
inverse which stands to the right of our iterative equation, we have
ρ(A−1) < 1 and the method is stable for all combinations of ∆t
and ∆x .



Program Example for Implicit Equation. We show here parts of
a simple example of how to solve the one-dimensional diffusion
equation using the implicit scheme discussed above. The program
uses the function to solve linear equations with a tridiagonal matrix.

// parts of the function for backward Euler
void backward_euler(int n, int tsteps, double delta_x, double alpha)
{

double a, b, c;
vec u(n+1); // This is u of Au = y
vec y(n+1); // Right side of matrix equation Au=y, the solution at a previous step

// Initial conditions
for (int i = 1; i < n; i++) {

y(i) = u(i) = func(delta_x*i);
}
// Boundary conditions (zero here)
y(n) = u(n) = u(0) = y(0);
// Matrix A, only constants
a = c = - alpha;
b = 1 + 2*alpha;
// Time iteration
for (int t = 1; t <= tsteps; t++) {

// here we solve the tridiagonal linear set of equations,
tridag(a, b, c, y, u, n+1);
// boundary conditions
u(0) = 0;
u(n) = 0;
// replace previous time solution with new
for (int i = 0; i <= n; i++) {

y(i) = u(i);
}
// You may consider printing the solution at regular time intervals
.... // print statements

} // end time iteration
...

}

Crank-Nicolson scheme

It is possible to combine the implicit and explicit methods in a
slightly more general approach. Introducing a parameter θ (the
so-called θ-rule) we can set up an equation

θ

∆x2 (ui−1,j − 2ui ,j + ui+1,j)+
1− θ
∆x2 (ui+1,j−1 − 2ui ,j−1 + ui−1,j−1) =

1
∆t

(ui ,j − ui ,j−1) ,

(9)
which for θ = 0 yields the forward formula for the first derivative
and the explicit scheme, while θ = 1 yields the backward formula
and the implicit scheme. These two schemes are called the
backward and forward Euler schemes, respectively. For θ = 1/2 we
obtain a new scheme after its inventors, Crank and Nicolson. This
scheme yields a truncation in time which goes like O(∆t2) and it is
stable for all possible combinations of ∆t and ∆x .

Derivation of CN scheme

To derive the Crank-Nicolson equation, we start with the forward
Euler scheme and Taylor expand u(x , t + ∆t), u(x + ∆x , t) and
u(x −∆x , t)

u(x + ∆x , t) = u(x , t) +
∂u(x , t)

∂x
∆x +

∂2u(x , t)

2∂x2 ∆x2 +O(∆x3),

(10)

u(x −∆x , t) = u(x , t)− ∂u(x , t)

∂x
∆x +

∂2u(x , t)

2∂x2 ∆x2 +O(∆x3),

u(x , t + ∆t) = u(x , t) +
∂u(x , t)

∂t
∆t +O(∆t2).

Taylor expansions

With these Taylor expansions the approximations for the derivatives
takes the form

[
∂u(x , t)

∂t

]

approx
=
∂u(x , t)

∂t
+O(∆t), (11)

[
∂2u(x , t)

∂x2

]

approx
=
∂2u(x , t)

∂x2 +O(∆x2).

It is easy to convince oneself that the backward Euler method must
have the same truncation errors as the forward Euler scheme.

Error in CN scheme
For the Crank-Nicolson scheme we also need to Taylor expand
u(x + ∆x , t + ∆t) and u(x −∆x , t + ∆t) around t ′ = t + ∆t/2.

u(x + ∆x , t + ∆t) = u(x , t ′) +
∂u(x , t ′)
∂x

∆x +
∂u(x , t ′)
∂t

∆t

2
+
∂2u(x , t ′)
2∂x2 ∆x2 +

∂2u(x , t ′)
2∂t2

∆t2

4
+

∂2u(x , t ′)
∂x∂t

∆t

2
∆x +O(∆t3)

u(x −∆x , t + ∆t) = u(x , t ′)− ∂u(x , t ′)
∂x

∆x +
∂u(x , t ′)
∂t

∆t

2
+
∂2u(x , t ′)
2∂x2 ∆x2 +

∂2u(x , t ′)
2∂t2

∆t2

4
−

∂2u(x , t ′)
∂x∂t

∆t

2
∆x +O(∆t3)

u(x + ∆x , t) = u(x , t ′) +
∂u(x , t ′)
∂x

∆x − ∂u(x , t ′)
∂t

∆t

2
+
∂2u(x , t ′)
2∂x2 ∆x2 +

∂2u(x , t ′)
2∂t2

∆t2

4
−

∂2u(x , t ′)
∂x∂t

∆t

2
∆x +O(∆t3)

u(x −∆x , t) = u(x , t ′)− ∂u(x , t ′)
∂x

∆x − ∂u(x , t ′)
∂t

∆t

2
+
∂2u(x , t ′)
2∂x2 ∆x2 +

∂2u(x , t ′)
2∂t2

∆t2

4
+

∂2u(x , t ′)
∂x∂t

∆t

2
∆x +O(∆t3)

u(x , t + ∆t) = u(x , t ′) +
∂u(x , t ′)
∂t

∆t

2
+
∂2u(x , t ′)

2∂t2
∆t2 +O(∆t3)

u(x , t) = u(x , t ′)− ∂u(x , t ′)
∂t

∆t

2
+
∂2u(x , t ′)

2∂t2
∆t2 +O(∆t3)

We now insert these expansions in the approximations for the
derivatives to find[

∂u(x , t ′)
∂t

]

approx
=
∂u(x , t ′)
∂t

+O(∆t2), (12)

[
∂2u(x , t ′)
∂x2

]

approx
=
∂2u(x , t ′)
∂x2 +O(∆x2).

Truncation errors and stability

The following table summarizes the three methods.

Scheme: Truncation Error: Stability requirements:
Crank-Nicolson O(∆x2) and O(∆t2) Stable for all ∆t and ∆x .
Backward Euler O(∆x2) and O(∆t) Stable for all ∆t and ∆x .
Forward Euler O(∆x2) and O(∆t) ∆t ≤ 1

2 ∆x2



Rewrite of CN scheme
Using our previous definition of α = ∆t/∆x2 we can rewrite Eq.
(9) as

−αui−1,j+(2 + 2α) ui ,j−αui+1,j = αui−1,j−1+(2− 2α) ui ,j−1+αui+1,j−1,

or in matrix-vector form as

(
2Î + αB̂

)
Vj =

(
2Î − αB̂

)
Vj−1,

where the vector Vj is the same as defined in the implicit case while
the matrix B̂ is

B̂ =




2 −1 0 0 . . .
−1 2 −1 0 . . .
. . . . . . . . . . . . . . .
. . . . . . . . . . . . −1
0 0 . . . −1 2



.

Final CN equations
We can rewrite the Crank-Nicolson scheme as follows

Vj =
(
2Î + αB̂

)−1 (
2Î − αB̂

)
Vj−1.

We have already obtained the eigenvalues for the two matrices(
2Î + αB̂

)
and

(
2Î − αB̂

)
. This means that the spectral function

has to satisfy

ρ(
(
2Î + αB̂

)−1 (
2Î − αB̂

)
) < 1,

meaning that

∣∣∣((2 + αµi )
−1 (2− αµi )

∣∣∣ < 1,

and since µi = 2− 2cos(θ) we have 0 < µi < 4. A little algebra
shows that the algorithm is stable for all possible values of ∆t and
∆x .

Parts of Code for the Crank-Nicolson Scheme

We can code in an efficient way the Crank-Nicolson algortihm by
first multplying the matrix

Ṽj−1 =
(
2Î − αB̂

)
Vj−1,

with our previous vector Vj−1 using the matrix-vector multiplication
algorithm for a tridiagonal matrix, as done in the forward-Euler
scheme. Thereafter we can solve the equation

(
2Î + αB̂

)
Vj = Ṽj−1,

using our method for systems of linear equations with a tridiagonal
matrix, as done for the backward Euler scheme.

Parts of Code for the Crank-Nicolson Scheme

We illustrate this in the following part of our program.

void crank_nicolson(int n, int tsteps, double delta_x, double alpha)
{

double a, b, c;
vec u(n+1); // This is u in Au = r
vec r(n+1); // Right side of matrix equation Au=r
....
// setting up the matrix
a = c = - alpha;
b = 2 + 2*alpha;

// Time iteration
for (int t = 1; t <= tsteps; t++) {

// Calculate r for use in tridag, right hand side of the Crank Nicolson method
for (int i = 1; i < n; i++) {

r(i) = alpha*u(i-1) + (2 - 2*alpha)*u(i) + alpha*u(i+1);
}
r(0) = 0;
r(n) = 0;
// Then solve the tridiagonal matrix
tridiag(a, b, c, r, u, xsteps+1);
u(0) = 0;
u(n) = 0;
// Eventual print statements etc
....

}

Python code for solving the one-dimensional diffusion
equation

The following Python code sets up and solves the diffusion
equation for all three methods discussed.
# Code for solving the 1+1 dimensional diffusion equation
# du/dt = ddu/ddx on a rectangular grid of size L x (T*dt),
# with with L = 1, u(x,0) = g(x), u(0,t) = u(L,t) = 0

import numpy, sys, math
from matplotlib import pyplot as plt
import numpy as np

def forward_step(alpha,u,uPrev,N):
"""
Steps forward-euler algo one step ahead.
Implemented in a separate function for code-reuse from crank_nicolson()
"""

for x in xrange(1,N+1): #loop from i=1 to i=N
u[x] = alpha*uPrev[x-1] + (1.0-2*alpha)*uPrev[x] + alpha*uPrev[x+1]

def forward_euler(alpha,u,N,T):
"""
Implements the forward Euler sheme, results saved to
array u
"""

#Skip boundary elements
for t in xrange(1,T):

forward_step(alpha,u[t],u[t-1],N)

def tridiag(alpha,u,N):
"""
Tridiagonal gaus-eliminator, specialized to diagonal = 1+2*alpha,
super- and sub- diagonal = - alpha
"""
d = numpy.zeros(N) + (1+2*alpha)
b = numpy.zeros(N-1) - alpha

#Forward eliminate
for i in xrange(1,N):

#Normalize row i (i in u convention):
b[i-1] /= d[i-1];
u[i] /= d[i-1] #Note: row i in u = row i-1 in the matrix
d[i-1] = 1.0
#Eliminate
u[i+1] += u[i]*alpha
d[i] += b[i-1]*alpha

#Normalize bottom row
u[N] /= d[N-1]
d[N-1] = 1.0

#Backward substitute
for i in xrange(N,1,-1): #loop from i=N to i=2

u[i-1] -= u[i]*b[i-2]
#b[i-2] = 0.0 #This is never read, why bother...

def backward_euler(alpha,u,N,T):
"""
Implements backward euler scheme by gaus-elimination of tridiagonal matrix.
Results are saved to u.
"""
for t in xrange(1,T):

u[t] = u[t-1].copy()
tridiag(alpha,u[t],N) #Note: Passing a pointer to row t, which is modified in-place

def crank_nicolson(alpha,u,N,T):
"""
Implents crank-nicolson scheme, reusing code from forward- and backward euler
"""
for t in xrange(1,T):

forward_step(alpha/2,u[t],u[t-1],N)
tridiag(alpha/2,u[t],N)

def g(x):
"""Initial condition u(x,0) = g(x), x \in [0,1]"""
return numpy.sin(math.pi*x)

# Number of integration points along x-axis
N = 100
# Step length in time
dt = 0.01
# Number of time steps till final time
T = 100
# Define method to use 1 = explicit scheme, 2= implicit scheme, 3 = Crank-Nicolson
method = 2

#dx = 1/float(N+1)
u = numpy.zeros((T,N+2),numpy.double)
(x,dx) = numpy.linspace (0,1,N+2, retstep=True)
alpha = dt/(dx**2)

#Initial codition
u[0,:] = g(x)
u[0,0] = u[0,N+1] = 0.0 #Implement boundaries rigidly

if method == 1:
forward_euler(alpha,u,N,T)

elif method == 2:
backward_euler(alpha,u,N,T)

elif method == 3:
crank_nicolson(alpha,u,N,T)

else:
print "Please select method 1,2, or 3!"
import sys
sys.exit(0)

# To do: add movie

Solution for the One-dimensional Diffusion Equation

It cannot be repeated enough, it is always useful to find cases
where one can compare the numerical results and the developed
algorithms and codes with closed-form solutions. The above case is
also particularly simple. We have the following partial differential
equation

∇2u(x , t) =
∂u(x , t)

∂t
,

with initial conditions

u(x , 0) = g(x) 0 < x < L.



Solution for the One-dimensional Diffusion Equation

The boundary conditions are

u(0, t) = 0 t ≥ 0, u(L, t) = 0 t ≥ 0,

We assume that we have solutions of the form (separation of
variable)

u(x , t) = F (x)G (t).

which inserted in the partial differential equation results in

F ′′

F
=

G ′

G
,

where the derivative is with respect to x on the left hand side and
with respect to t on right hand side. This equation should hold for
all x and t. We must require the rhs and lhs to be equal to a
constant.

Solution for the One-dimensional Diffusion Equation

We call this constant −λ2. This gives us the two differential
equations,

F ′′ + λ2F = 0; G ′ = −λ2G ,

with general solutions

F (x) = A sin(λx) + B cos(λx); G (t) = Ce−λ
2t .

Solution for the One-dimensional Diffusion Equation

To satisfy the boundary conditions we require B = 0 and
λ = nπ/L. One solution is therefore found to be

u(x , t) = An sin(nπx/L)e−n
2π2t/L2

.

But there are infinitely many possible n values (infinite number of
solutions). Moreover, the diffusion equation is linear and because of
this we know that a superposition of solutions will also be a
solution of the equation. We may therefore write

u(x , t) =
∞∑

n=1

An sin(nπx/L)e−n
2π2t/L2

.

Solution for the One-dimensional Diffusion Equation

The coefficient An is in turn determined from the initial condition.
We require

u(x , 0) = g(x) =
∞∑

n=1

An sin(nπx/L).

The coefficient An is the Fourier coefficients for the function g(x).
Because of this, An is given by (from the theory on Fourier series)

An =
2
L

∫ L

0
g(x) sin(nπx/L)dx .

Different g(x) functions will obviously result in different results for
An.

Explict scheme for the diffusion equation in two dimensions
The 2 + 1-dimensional diffusion equation, with the diffusion
constant D = 1, is given by

∂u

∂t
=

(
∂2u

∂x2 +
∂2u

∂y2

)
,

where we have u = u(x , y , t). We assume that we have a square
lattice of length L with equally many mesh points in the x and y
directions.

We discretize again position and time using now

uxx ≈
u(x + h, y , t)− 2u(x , y , t) + u(x − h, y , t)

h2 ,

which we rewrite as, in its discretized version,

uxx ≈
uli+1,j − 2uli ,j + uli−1,j

h2 ,

where xi = x0 + ih, yj = y0 + jh and tl = t0 + l∆t, with
h = L/(n + 1) and ∆t the time step.

Explict scheme for the diffusion equation in two dimensions
We have defined our domain to start x(y) = 0 and end at
X (y) = L. The second derivative with respect to y reads

uyy ≈
uli ,j+1 − 2uli ,j + uli ,j−1

h2 .

We use again the so-called forward-going Euler formula for the first
derivative in time. In its discretized form we have

ut ≈
ul+1
i ,j − uli ,j

∆t
,

resulting in

ul+1
i ,j = uli ,j + α

[
uli+1,j + uli−1,j + uli ,j+1 + uli ,j−1 − 4uli ,j

]
,

where the left hand side, with the solution at the new time step, is
the only unknown term, since starting with t = t0, the right hand
side is entirely determined by the boundary and initial conditions.
We have α = ∆t/h2. This scheme can be implemented using
essentially the same approach as we used in Eq. (7).



Laplace’s and Poisson’s Equations

Laplace’s equation reads

∇2u(x) = uxx + uyy = 0.

with possible boundary conditions u(x , y) = g(x , y) on the border
δΩ. There is no time-dependence. We seek a solution in the region
Ω and we choose a quadratic mesh with equally many steps in both
directions. We could choose the grid to be rectangular or following
polar coordinates r , θ as well. Here we choose equal steps lengths
in the x and the y directions. We set

h = ∆x = ∆y =
L

n + 1
,

where L is the length of the sides and we have n + 1 points in both
directions.

Laplace’s and Poisson’s Equations, discretized version

The discretized version reads

uxx ≈
u(x + h, y)− 2u(x , y) + u(x − h, y)

h2 ,

and

uyy ≈
u(x , y + h)− 2u(x , y) + u(x , y − h)

h2 ,

which we rewrite as

uxx ≈
ui+1,j − 2ui ,j + ui−1,j

h2 ,

and

uyy ≈
ui ,j+1 − 2ui ,j + ui ,j−1

h2 .

Laplace’s and Poisson’s Equations, final discretized version

Inserting in Laplace’s equation we obtain

ui ,j =
1
4

[ui ,j+1 + ui ,j−1 + ui+1,j + ui−1,j ] . (13)

This is our final numerical scheme for solving Laplace’s equation.
Poisson’s equation adds only a minor complication to the above
equation since in this case we have

uxx + uyy = −ρ(x , y),

and we need only to add a discretized version of ρ(x) resulting in

ui ,j =
1
4

[ui ,j+1 + ui ,j−1 + ui+1,j + ui−1,j ] +
h2

4
ρi ,j . (14)

Laplace’s and Poisson’s Equations, boundary conditions

The boundary condtions read

ui ,0 = gi ,0 0 ≤ i ≤ n + 1,

ui ,L = gi ,0 0 ≤ i ≤ n + 1,

u0,j = g0,j 0 ≤ j ≤ n + 1,

and

uL,j = gL,j 0 ≤ j ≤ n + 1.

With n + 1 mesh points the equations for u result in a system of
(n + 1)2 linear equations in the (n + 1)2 unknown ui ,j .

Scheme for solving Laplace’s (Poisson’s) equation

We rewrite Eq. (14)

4ui ,j = [ui ,j+1 + ui ,j−1 + ui+1,j + ui−1,j ]− h2ρi ,j = ∆ij − ρ̃ij , (15)

where we have defined

∆ij = [ui ,j+1 + ui ,j−1 + ui+1,j + ui−1,j ] ,

and

ρ̃ij = h2ρi ,j .

Scheme for solving Laplace’s (Poisson’s) equation

In order to illustrate how we can transform the last equations into a
linear algebra problem of the type Ax = w, with A a matrix and x
and w unknown and known vectors respectively, let us also for the
sake of simplicity assume that the number of points n = 3. We
assume also that u(x , y) = g(x , y) on the border δΩ.

The inner values of the function u are then given by

4u11 − u21 − u01 − u12 − u10 =− ρ̃11

4u12 − u02 − u22 − u13 − u11 =− ρ̃12

4u21 − u11 − u31 − u22 − u20 =− ρ̃21

4u22 − u12 − u32 − u23 − u21 =− ρ̃22.



Scheme for solving Laplace’s (Poisson’s) equation

If we isolate on the left-hand side the unknown quantities u11, u12,
u21 and u22, that is the inner points not constrained by the
boundary conditions, we can rewrite the above equations as a
matrix A times an unknown vector x, that is

Ax = b,

or in more detail



4 −1 −1 0
−1 4 0 −1
−1 0 4 −1
0 −1 −1 4







u11
u12
u21
u22


 =




u01 + u10 − ρ̃11
u13 + u02 − ρ̃12
u31 + u20 − ρ̃21
u32 + u23 − ρ̃22


 .

Scheme for solving Laplace’s (Poisson’s) equation

The right hand side is constrained by the values at the boundary
plus the known function ρ̃. For a two-dimensional equation it is
easy to convince oneself that for larger sets of mesh points, we will
not have more than five function values for every row of the above
matrix. For a problem with n + 1 mesh points, our matrix
A ∈ R(n+1)×(n+1) leads to (n − 1)× (n − 1) unknown function
values uij . This means that, if we fix the endpoints for the
two-dimensional case (with a square lattice) at i(j) = 0 and
i(j) = n + 1, we have to solve the equations for 1 ≥ i(j)len.

Since the matrix is rather sparse but is not on a tridiagonal form,
elimination methods like the LU decomposition discussed, are not
very practical. Rather, iterative schemes like Jacobi’s method or the
Gauss-Seidel are preferred. The above matrix is also always
diagonally dominant, a necessary condition for these iterative
solvers to converge.

Scheme for solving Laplace’s (Poisson’s) equation using
Jacobi’s iterative method

In setting up for example Jacobi’s method, it is useful to rewrite
the matrix A as

A = D + U + L,

with D being a diagonal matrix with 4 as the only value, U is an
upper triangular matrix and L a lower triangular matrix. In our case
we have

D =




4 0 0 0
0 4 0 0
0 0 4 0
0 0 0 4


 ,

and

L =




0 0 0 0
−1 0 0 0
−1 0 0 0
0 −1 −1 0


 U =




0 −1 −1 0
0 0 0 −1
0 0 0 −1
0 0 0 0


 .

Scheme for solving Laplace’s (Poisson’s) equation, with
Jacobi’s method

We assume now that we have an estimate for the unknown
functions u11, u12, u21 and u22. We will call this the zeroth value
and label it as u(0)11 , u(0)12 , u(0)21 and u

(0)
22 . We can then set up an

iterative scheme where the next solution is defined in terms of the
previous one as

u
(1)
11 =

1
4

(b1 − u
(0)
12 − u

(0)
21 )

u
(1)
12 =

1
4

(b2 − u
(0)
11 − u

(0)
22 )

u
(1)
21 =

1
4

(b3 − u
(0)
11 − u

(0)
22 )

u
(1)
22 =

1
4

(b4 − u
(0)
12 − u

(0)
21 ),

where we have defined the vector

b =




u01 + u10 − ρ̃11
u13 + u02 − ρ̃12
u31 + u20 − ρ̃21
u32 + u23 − ρ̃22


 .

Scheme for solving Laplace’s (Poisson’s) equation, final
rewrite

We can rewrite the equations in a more compact form in terms of
the matrices D, L and U as, after r + 1 iterations,

x(r+1) = D−1
(
b− (L + U)x(r)

)
, (16)

where the unknown functions are now defined in terms of

x =




u11
u12
u21
u22


 .

If we wish to implement Gauss-Seidel’s algorithm, the set of
equations to solve are then given by

x(r+1) = −(D + L)−1
(
b−Ux(r)

)
, (17)

or alternatively as

x(r+1) = D−1
(
b− Lx(r+1) −Ux(r)

)
.

Jacobi Algorithm for solving Laplace’s Equation

It is thus fairly straightforward to extend this equation to the
three-dimensional case. Whether we solve Eq. (13) or Eq. (14),
the solution strategy remains the same. We know the values of u at
i = 0 or i = n + 1 and at j = 0 or j = n + 1 but we cannot start at
one of the boundaries and work our way into and across the system
since Eq. (13) requires the knowledge of u at all of the
neighbouring points in order to calculate u at any given point.



Jacobi Algorithm for solving Laplace’s Equation

The way we solve these equations is based on an iterative scheme
based on the Jacobi method or the Gauss-Seidel method or the
relaxation methods.

Implementing Jacobi’s method is rather simple. We start with an
initial guess for u(0)i ,j where all values are known. To obtain a new
solution we solve Eq. (13) or Eq. (14) in order to obtain a new
solution u

(1)
i ,j . Most likely this solution will not be a solution to Eq.

(13). This solution is in turn used to obtain a new and improved
u
(2)
i ,j . We continue this process till we obtain a result which satisfies

some specific convergence criterion.

Jacobi Algorithm for solving Laplace’s Equation, the
algorithm

Summarized, this algorithm reads

1 Make an initial guess for ui ,j at all interior points (i , j) for all
i = 1 : n and j = 1 : n

2 Use Eq. (13) to compute um at all interior points (i , j). The
index m stands for iteration number m.

3 Stop if prescribed convergence threshold is reached, otherwise
continue to the next step.

4 Update the new value of u for the given iteration
5 Go to step 2

Jacobi Algorithm for solving Laplace’s Equation, simple
example

A simple example may help in understanding this method. We
consider a condensator with parallel plates separated at a distance
L resulting in for example the voltage differences
u(x , 0) = 200sin(2πx/L) and u(x , 1) = −200sin(2πx/L). These
are our boundary conditions and we ask what is the voltage u
between the plates? To solve this problem numerically we provide
below a C++ program which solves iteratively Eq. (13) using
Jacobi’s method. Only the part which computes Eq. (13) is
included here.

....
// We define the step size for a square lattice with n+1 points

double h = (xmax-xmin)/(n+1);
double L = xmax-xmin; // The length of the lattice

// We allocate space for the vector u and the temporary vector to
// be upgraded in every iteration

mat u( n+1, n+1); // using Armadillo to define matrices
mat u_temp( n+1, n+1); // This is the temporary value
u = 0. // This is also our initial guess for all unknown values

// We need to set up the boundary conditions. Specify for various cases
.....

// The iteration algorithm starts here
iterations = 0;
while( (iterations <= max_iter) && ( diff > 0.00001) ){

u_temp = u; diff = 0.;
for (j = 1; j<= n,j++){

for(l = 1; l <= n; l++){
u(j,l) = 0.25*(u_temp(j+1,l)+u_temp(j-1,l)+ &

u_temp(j,l+1)+u_temp(j,l-1));
diff += fabs(u_temp(i,j)-u(i,j));

}
}
iterations++;
diff /= pow((n),2.0);

} // end while loop

Jacobi Algorithm for solving Laplace’s Equation, to observe

The important part of the algorithm is applied in the function
which sets up the two-dimensional Laplace equation. There we
have a while statement which tests the difference between the
temporary vector and the solution ui ,j . Moreover, we have fixed the
number of iterations to a given maximum. We need also to provide
a convergence tolerance. In the above program example we have
fixed this to be 0.00001. Depending on the type of applications one
may have to change both the number of maximum iterations and
the tolerance.

Python code for solving the two-dimensional Laplace
equation

The following Python code sets up and solves the Laplace equation
in two dimensions.
# Solves the 2d Laplace equation using relaxation method

import numpy, math

def relax(A, maxsteps, convergence):
"""
Relaxes the matrix A until the sum of the absolute differences
between the previous step and the next step (divided by the number of
elements in A) is below convergence, or maxsteps is reached.

Input:
- A: matrix to relax
- maxsteps, convergence: Convergence criterions

Output:
- A is relaxed when this method returns

"""

iterations = 0
diff = convergence +1

Nx = A.shape[1]
Ny = A.shape[0]

while iterations < maxsteps and diff > convergence:
#Loop over all *INNER* points and relax
Atemp = A.copy()
diff = 0.0

for y in xrange(1,Ny-1):
for x in xrange(1,Ny-1):

A[y,x] = 0.25*(Atemp[y,x+1]+Atemp[y,x-1]+Atemp[y+1,x]+Atemp[y-1,x])
diff += math.fabs(A[y,x] - Atemp[y,x])

diff /=(Nx*Ny)
iterations += 1
print "Iteration #", iterations, ", diff =", diff;

def boundary(A,x,y):
"""
Set up boundary conditions

Input:
- A: Matrix to set boundaries on
- x: Array where x[i] = hx*i, x[last_element] = Lx
- y: Eqivalent array for y

Output:
- A is initialized in-place (when this method returns)

"""

#Boundaries implemented (condensator with plates at y={0,Lx}, DeltaV = 200):
# A(x,0) = 100*sin(2*pi*x/Lx)
# A(x,Ly) = -100*sin(2*pi*x/Lx)
# A(0,y) = 0
# A(Lx,y) = 0

Nx = A.shape[1]
Ny = A.shape[0]
Lx = x[Nx-1] #They *SHOULD* have same sizes!
Ly = x[Nx-1]

A[:,0] = 100*numpy.sin(math.pi*x/Lx)
A[:,Nx-1] = - 100*numpy.sin(math.pi*x/Lx)
A[0,:] = 0.0
A[Ny-1,:] = 0.0

#Main program

import sys

# Input parameters
Nx = 100
Ny = 100
maxiter = 1000

x = numpy.linspace(0,1,num=Nx+2) #Also include edges
y = numpy.linspace(0,1,num=Ny+2)
A = numpy.zeros((Nx+2,Ny+2))

boundary(A,x,y)
#Remember: as solution "creeps" in from the edges,
#number of steps MUST AT LEAST be equal to
#number of inner meshpoints/2 (unless you have a better
#estimate for the solution than zeros() )
relax(A,maxiter,0.00001)

# To do: add visualization

Jacobi’s algorithm extended to the diffusion equation in two
dimensions

Let us know implement the implicit scheme and show how we can
extend the previous algorithm for solving Laplace’s or Poisson’s
equations to the diffusion equation as well. As the reader will
notice, this simply implies a slight redefinition of the vector b
defined in Eq. (16).

To see this, let us first set up the diffusion in two spatial
dimensions, with boundary and initial conditions. The
2 + 1-dimensional diffusion equation (with dimensionless variables)
reads for a function u = u(x , y , t)

∂u

∂t
= D

(
∂2u

∂x2 +
∂2u

∂y2

)
.



Jacobi’s algorithm extended to the diffusion equation in two
dimensions

We assume that we have a square lattice of length L with equally
many mesh points in the x and y directions. Setting the diffusion
constant D = 1 and using the shorthand notation uxx = ∂2u/∂x2

etc for the second derivatives and ut = ∂u/∂t for the time
derivative, we have, with a given set of boundary and initial
conditions,

ut = uxx + uyy x , y ∈ (0, L), t > 0
u(x , y , 0) = g(x , y) x , y ∈ (0, L)

u(0, y , t) = u(L, y , t) = u(x , 0, t) = u(x , L, t)0 t > 0

Jacobi’s algorithm extended to the diffusion equation in two
dimensions, discretizing

We discretize again position and time, and use the following
approximation for the second derivatives

uxx ≈
u(x + h, y , t)− 2u(x , y , t) + u(x − h, y , t)

h2 ,

which we rewrite as, in its discretized version,

uxx ≈
uli+1,j − 2uli ,j + uli−1,j

h2 ,

where xi = x0 + ih, yj = y0 + jh and tl = t0 + l∆t, with
h = L/(n + 1) and ∆t the time step.

Jacobi’s algorithm extended to the diffusion equation in two
dimensions, the second derivative

The second derivative with respect to y reads

uyy ≈
uli ,j+1 − 2uli ,j + uli ,j−1

h2 .

We use now the so-called backward going Euler formula for the first
derivative in time. In its discretized form we have

ut ≈
uli ,j − ul−1

i ,j

∆t
,

resulting in

uli ,j + 4αuli ,j − α
[
uli+1,j + uli−1,j + uli ,j+1 + uli ,j−1

]
= ul−1

i ,j ,

where the right hand side is the only known term, since starting
with t = t0, the right hand side is entirely determined by the
boundary and initial conditions. We have α = ∆t/h2.

Jacobi’s algorithm extended to the diffusion equation in two
dimensions

For future time steps, only the boundary values are determined and
we need to solve the equations for the interior part in an iterative
way similar to what was done for Laplace’s or Poisson’s equations.
To see this, we rewrite the previous equation as

uli ,j =
1

1 + 4α

[
α(uli+1,j + uli−1,j + uli ,j+1 + uli ,j−1) + ul−1

i ,j

]
,

or in a more compact form as

uli ,j =
1

1 + 4α

[
α∆l

ij + ul−1
i ,j

]
, (18)

with ∆l
ij =

[
uli ,j+1 + uli ,j−1 + uli+1,j + uli−1,j

]
. This equation has

essentially the same structure as Eq. (15), except that the function
ρij is replaced by the solution at a previous time step l − 1.
Furthermore, the diagonal matrix elements are now given by
1 + 4α, while the non-zero non-diagonal matrix elements equal α.
This matrix is also positive definite, meaning in turn that iterative
schemes like the Jacobi or the Gauss-Seidel methods will converge
to the desired solution after a given number of iterations.

Solving project 1 again but now with Jacobi’s method
Let us revisit project 1 and the Thomas algorithm for solving a
system of tridiagonal matrices for the equation
// Solves linear equations for simple tridiagonal matrix using the iterative Jacobi method
....
// Begin main program
int main(int argc, char *argv[]){

// missing statements, see code link above

mat A = zeros<mat>(n,n);
// Set up arrays for the simple case
vec b(n); vec x(n);
A(0,1) = -1; x(0) = h; b(0) = hh*f(x(0));
x(n-1) = x(0)+(n-1)*h; b(n-1) = hh*f(x(n-1));
for (int i = 1; i < n-1; i++){

x(i) = x(i-1)+h;
b(i) = hh*f(x(i));
A(i,i-1) = -1.0;
A(i,i+1) = -1.0;

}
A(n-2,n-1) = -1.0; A(n-1,n-2) = -1.0;

// solve Ax = b by iteration with a random starting vector
int maxiter = 100; double diff = 1.0;
double epsilon = 1.0e-10; int iter = 0;
vec SolutionOld = randu<vec>(n);
vec SolutionNew = zeros<vec>(n);
while (iter <= maxiter || diff > epsilon){

SolutionNew = (b -A*SolutionOld)*0.5;
iter++; diff = fabs(sum(SolutionNew-SolutionOld)/n);
SolutionOld = SolutionNew;

}
vec solution = SolutionOld;}

Program to solve Jacobi’s method in two dimension
The following program sets up the diffusion equation solver in two
spatial dimensions using Jacobi’s method. Note that we have
skipped a loop over time. This has to be inserted in order to
perform the calculations.
/* Simple program for solving the two-dimensional diffusion

equation or Poisson equation using Jacobi’s iterative method
Note that this program does not contain a loop over the time
dependence.

*/

#include <iostream>
#include <iomanip>
#include <armadillo>
using namespace std;
using namespace arma;

int JacobiSolver(int, double, double, mat &, mat &, double);

int main(int argc, char * argv[]){
int Npoints = 40;
double ExactSolution;
double dx = 1.0/(Npoints-1);
double dt = 0.25*dx*dx;
double tolerance = 1.0e-14;
mat A = zeros<mat>(Npoints,Npoints);
mat q = zeros<mat>(Npoints,Npoints);

// setting up an additional source term
for(int i = 0; i < Npoints; i++)

for(int j = 0; j < Npoints; j++)
q(i,j) = -2.0*M_PI*M_PI*sin(M_PI*dx*i)*sin(M_PI*dx*j);

int itcount = JacobiSolver(Npoints,dx,dt,A,q,tolerance);

// Testing against exact solution
double sum = 0.0;
for(int i = 0; i < Npoints; i++){

for(int j=0;j < Npoints; j++){
ExactSolution = -sin(M_PI*dx*i)*sin(M_PI*dx*j);
sum += fabs((A(i,j) - ExactSolution));

}
}
cout << setprecision(5) << setiosflags(ios::scientific);
cout << "Jacobi method with error " << sum/Npoints << " in " << itcount << " iterations" << endl;

}



The Jacobi solver function
// Function for setting up the iterative Jacobi solver
int JacobiSolver(int N, double dx, double dt, mat &A, mat &q, double abstol)
{

int MaxIterations = 100000;
mat Aold = zeros<mat>(N,N);

double D = dt/(dx*dx);

for(int i=1; i < N-1; i++)
for(int j=1; j < N-1; j++)

Aold(i,j) = 1.0;

// Boundary Conditions -- all zeros
for(int i=0; i < N; i++){

A(0,i) = 0.0;
A(N-1,i) = 0.0;
A(i,0) = 0.0;
A(i,N-1) = 0.0;

}
// Start the iterative solver
for(int k = 0; k < MaxIterations; k++){

for(int i = 1; i < N-1; i++){
for(int j=1; j < N-1; j++){

A(i,j) = dt*q(i,j) + Aold(i,j) +
D*(Aold(i+1,j) + Aold(i,j+1) - 4.0*Aold(i,j) +

Aold(i-1,j) + Aold(i,j-1));
}

}
double sum = 0.0;
for(int i = 0; i < N;i++){

for(int j = 0; j < N;j++){
sum += (Aold(i,j)-A(i,j))*(Aold(i,j)-A(i,j));
Aold(i,j) = A(i,j);

}
}
if(sqrt (sum) <abstol){

return k;
}

}
cerr << "Jacobi: Maximum Number of Interations Reached Without Convergence\n";
return MaxIterations;

}

Parallel Jacobi
In order to parallelize the Jacobi method we need to introduce to
new MPI functions, namely MPIGather and MPIAllgather.

Here we present a parallel implementation of the Jacobi method
without an explicit link to the diffusion equation. Let us go back to
the plain Jacobi method and implement it in parallel.
// Main program first
#include <mpi.h>

// Omitted statements
int main(int argc, char * argv[]){

int i,j, N = 20;
double **A,*x,*q;
int totalnodes,mynode;

MPI_Init(&argc,&argv);
MPI_Comm_size(MPI_COMM_WORLD, &totalnodes);
MPI_Comm_rank(MPI_COMM_WORLD, &mynode);

if(mynode==0){

}
ParallelJacobi(mynode,totalnodes,N,A,x,q,1.0e-14);
if(mynode==0){

for(int i = 0; i < N; i++)
cout << x[i] << endl;

}
MPI_Finalize();

}

Parallel Jacobi
Here follows the parallel implementation of the Jacobi algorithm
int ParallelJacobi(int mynode, int numnodes, int N, double **A, double *x, double *b, double abstol){

int i,j,k,i_global;
int maxit = 100000;
int rows_local,local_offset,last_rows_local,*count,*displacements;
double sum1,sum2,*xold;
double error_sum_local, error_sum_global;
MPI_Status status;

rows_local = (int) floor((double)N/numnodes);
local_offset = mynode*rows_local;
if(mynode == (numnodes-1))

rows_local = N - rows_local*(numnodes-1);

/*Distribute the Matrix and R.H.S. among the processors */
if(mynode == 0){

for(i=1;i<numnodes-1;i++){
for(j=0;j<rows_local;j++)

MPI_Send(A[i*rows_local+j],N,MPI_DOUBLE,i,j,MPI_COMM_WORLD);
MPI_Send(b+i*rows_local,rows_local,MPI_DOUBLE,i,rows_local,

MPI_COMM_WORLD);
}
last_rows_local = N-rows_local*(numnodes-1);
for(j=0;j<last_rows_local;j++)

MPI_Send(A[(numnodes-1)*rows_local+j],N,MPI_DOUBLE,numnodes-1,j,
MPI_COMM_WORLD);

MPI_Send(b+(numnodes-1)*rows_local,last_rows_local,MPI_DOUBLE,numnodes-1,
last_rows_local,MPI_COMM_WORLD);

}
else{

A = CreateMatrix(rows_local,N);
x = new double[rows_local];
b = new double[rows_local];
for(i=0;i<rows_local;i++)

MPI_Recv(A[i],N,MPI_DOUBLE,0,i,MPI_COMM_WORLD,&status);
MPI_Recv(b,rows_local,MPI_DOUBLE,0,rows_local,MPI_COMM_WORLD,&status);

}

xold = new double[N];
count = new int[numnodes];
displacements = new int[numnodes];

//set initial guess to all 1.0
for(i=0; i<N; i++){

xold[i] = 1.0;
}

for(i=0;i<numnodes;i++){
count[i] = (int) floor((double)N/numnodes);
displacements[i] = i*count[i];

}
count[numnodes-1] = N - ((int)floor((double)N/numnodes))*(numnodes-1);

for(k=0; k<maxit; k++){
error_sum_local = 0.0;
for(i = 0; i<rows_local; i++){

i_global = local_offset+i;
sum1 = 0.0; sum2 = 0.0;
for(j=0; j < i_global; j++)

sum1 = sum1 + A[i][j]*xold[j];
for(j=i_global+1; j < N; j++)

sum2 = sum2 + A[i][j]*xold[j];

x[i] = (-sum1 - sum2 + b[i])/A[i][i_global];
error_sum_local += (x[i]-xold[i_global])*(x[i]-xold[i_global]);

}

MPI_Allreduce(&error_sum_local,&error_sum_global,1,MPI_DOUBLE,
MPI_SUM,MPI_COMM_WORLD);

MPI_Allgatherv(x,rows_local,MPI_DOUBLE,xold,count,displacements,
MPI_DOUBLE,MPI_COMM_WORLD);

if(sqrt(error_sum_global)<abstol){
if(mynode == 0){

for(i=0;i<N;i++)
x[i] = xold[i];

}
else{

DestroyMatrix(A,rows_local,N);
delete[] x;
delete[] b;

}
delete[] xold;
delete[] count;
delete[] displacements;
return k;

}
}

cerr << "Jacobi: Maximum Number of Interations Reached Without Convergence\n";
if(mynode == 0){

for(i=0;i<N;i++)
x[i] = xold[i];

}
else{

DestroyMatrix(A,rows_local,N);
delete[] x;
delete[] b;

}
delete[] xold;
delete[] count;
delete[] displacements;

return maxit;
}

Parallel Jacobi
Here follows the parallel implementation of the diffusion equation
using OpenMP
/* Simple program for solving the two-dimensional diffusion

equation or Poisson equation using Jacobi’s iterative method
Note that this program does not contain a loop over the time
dependence. It uses OpenMP to parallelize

*/

#include <iostream>
#include <iomanip>
#include <armadillo>
#include <omp.h>
using namespace std;
using namespace arma;

int JacobiSolver(int, double, double, mat &, mat &, double);

int main(int argc, char * argv[]){
int Npoints = 100;
double ExactSolution;
double dx = 1.0/(Npoints-1);
double dt = 0.25*dx*dx;
double tolerance = 1.0e-8;
mat A = zeros<mat>(Npoints,Npoints);
mat q = zeros<mat>(Npoints,Npoints);

int thread_num;
omp_set_num_threads(4);
thread_num = omp_get_max_threads ();
cout << " The number of processors available = " << omp_get_num_procs () << endl ;
cout << " The number of threads available = " << thread_num << endl;
// setting up an additional source term
for(int i = 0; i < Npoints; i++)

for(int j = 0; j < Npoints; j++)
q(i,j) = -2.0*M_PI*M_PI*sin(M_PI*dx*i)*sin(M_PI*dx*j);

int itcount = JacobiSolver(Npoints,dx,dt,A,q,tolerance);

// Testing against exact solution
double sum = 0.0;
for(int i = 0; i < Npoints; i++){

for(int j=0;j < Npoints; j++){
ExactSolution = -sin(M_PI*dx*i)*sin(M_PI*dx*j);
sum += fabs((A(i,j) - ExactSolution));

}
}
cout << setprecision(5) << setiosflags(ios::scientific);
cout << "Jacobi error is " << sum/Npoints << " in " << itcount << " iterations" << endl;

}

// Function for setting up the iterative Jacobi solver
int JacobiSolver(int N, double dx, double dt, mat &A, mat &q, double abstol)
{

int MaxIterations = 100000;

double D = dt/(dx*dx);
// initial guess
mat Aold = randu<mat>(N,N);
// Boundary conditions, all zeros
for(int i=0; i < N; i++){

A(0,i) = 0.0;
A(N-1,i) = 0.0;
A(i,0) = 0.0;
A(i,N-1) = 0.0;

}
double sum = 1.0;
int k = 0;
// Start the iterative solver
while (k < MaxIterations && sum > abstol){
int i, j;
sum = 0.0;
// Define parallel region

# pragma omp parallel default(shared) private (i, j) reduction(+:sum)
{

# pragma omp for
for(i = 1; i < N-1; i++){

for(j = 1; j < N-1; j++){
A(i,j) = dt*q(i,j) + Aold(i,j) +

D*(Aold(i+1,j) + Aold(i,j+1) - 4.0*Aold(i,j) +
Aold(i-1,j) + Aold(i,j-1));

}
}
for(i = 0; i < N;i++){

for(j = 0; j < N;j++){
sum += fabs(Aold(i,j)-A(i,j));
Aold(i,j) = A(i,j);

}
}
sum /= (N*N);

} //end parallel region
k++;
} //end while loop
return k;

}

Wave Equation in two Dimensions

The 1 + 1-dimensional wave equation reads

∂2u

∂x2 =
∂2u

∂t2
,

with u = u(x , t) and we have assumed that we operate with
dimensionless variables. Possible boundary and initial conditions
with L = 1 are

uxx = utt x ∈ (0, 1), t > 0
u(x , 0) = g(x) x ∈ (0, 1)

u(0, t) = u(1, t) = 0 t > 0
∂u/∂t|t=0 = 0 x ∈ (0, 1)

.

Wave Equation in two Dimensions, discretizing
We discretize again time and position,

uxx ≈
u(x + ∆x , t)− 2u(x , t) + u(x −∆x , t)

∆x2 ,

and

utt ≈
u(x , t + ∆t)− 2u(x , t) + u(x , t −∆t)

∆t2
,

which we rewrite as

uxx ≈
ui+1,j − 2ui ,j + ui−1,j

∆x2 ,

and

utt ≈
ui ,j+1 − 2ui ,j + ui ,j−1

∆t2
,

resulting in

ui ,j+1 = 2ui ,j − ui ,j−1 +
∆t2

∆x2 (ui+1,j − 2ui ,j + ui−1,j) . (19)



Wave Equation in two Dimensions

If we assume that all values at times t = j and t = j − 1 are known,
the only unknown variable is ui ,j+1 and the last equation yields thus
an explicit scheme for updating this quantity. We have thus an
explicit finite difference scheme for computing the wave function u.
The only additional complication in our case is the initial condition
given by the first derivative in time, namely ∂u/∂t|t=0 = 0. The
discretized version of this first derivative is given by

ut ≈
u(xi , tj + ∆t)− u(xi , tj −∆t)

2∆t
,

and at t = 0 it reduces to

ut ≈
ui ,+1 − ui ,−1

2∆t
= 0,

implying that ui ,+1 = ui ,−1.

Wave Equation in two Dimensions

If we insert this condition in Eq. (19) we arrive at a special formula
for the first time step

ui ,1 = ui ,0 +
∆t2

2∆x2 (ui+1,0 − 2ui ,0 + ui−1,0) . (20)

We need seemingly two different equations, one for the first time
step given by Eq. (20) and one for all other time-steps given by Eq.
(19). However, it suffices to use Eq. (19) for all times as long as
we provide u(i ,−1) using

ui ,−1 = ui ,0 +
∆t2

2∆x2 (ui+1,0 − 2ui ,0 + ui−1,0) ,

in our setup of the initial conditions.

Wave Equation in two Dimensions

The situation is rather similar for the 2 + 1-dimensional case,
except that we now need to discretize the spatial y -coordinate as
well. Our equations will now depend on three variables whose
discretized versions are now

tl = l∆t l ≥ 0
xi = i∆x 0 ≤ i ≤ nx
yj = j∆y 0 ≤ j ≤ ny

,

and we will let ∆x = ∆y = h and nx = ny for the sake of simplicity.
The equation with initial and boundary conditions reads now

uxx + uyy = utt x , y ∈ (0, 1), t > 0
u(x , y , 0) = g(x , y) x , y ∈ (0, 1)

u(0, 0, t) = u(1, 1, t) = 0 t > 0
∂u/∂t|t=0 = 0 x , y ∈ (0, 1)

.

Wave Equation in two Dimensions
We have now the following discretized partial derivatives

uxx ≈
uli+1,j − 2uli ,j + uli−1,j

h2 ,

and

uyy ≈
uli ,j+1 − 2uli ,j + uli ,j−1

h2 ,

and

utt ≈
ul+1
i ,j − 2uli ,j + ul−1

i ,j

∆t2
,

which we merge into the discretized 2 + 1-dimensional wave
equation as

ul+1
i ,j = 2uli ,j−ul−1

i ,j +
∆t2

h2

(
uli+1,j − 4uli ,j + uli−1,j + uli ,j+1 + uli ,j−1

)
,

(21)
where again we have an explicit scheme with ul+1

i ,j as the only
unknown quantity.

Wave Equation in two Dimensions

It is easy to account for different step lengths for x and y . The
partial derivative is treated in much the same way as for the
one-dimensional case, except that we now have an additional index
due to the extra spatial dimension, viz., we need to compute u−1

i ,j

through

u−1
i ,j = u0

i ,j +
∆t

2h2

(
u0
i+1,j − 4u0

i ,j + u0
i−1,j + u0

i ,j+1 + u0
i ,j−1

)
,

in our setup of the initial conditions.

Analytical Solution for the two-dimensional wave equation

We develop here the closed-form solution for the 2 + 1 dimensional
wave equation with the following boundary and initial conditions

c2(uxx + uyy ) = utt x , y ∈ (0, L), t > 0
u(x , y , 0) = f (x , y) x , y ∈ (0, L)

u(0, 0, t) = u(L, L, t) = 0 t > 0
∂u/∂t|t=0 = g(x , y) x , y ∈ (0, L)

.



Analytical Solution for the two-dimensional wave equation,
first step

Our first step is to make the ansatz

u(x , y , t) = F (x , y)G (t),

resulting in the equation

FGtt = c2(FxxG + FyyG ),

or

Gtt

c2G
=

1
F

(Fxx + Fyy ) = −ν2.

Analytical Solution for the two-dimensional wave equation,
The lhs and rhs are independent of each other and we obtain two
differential equations

Fxx + Fyy + Fν2 = 0,

and

Gtt + Gc2ν2 = Gtt + Gλ2 = 0,

with λ = cν. We can in turn make the following ansatz for the x
and y dependent part

F (x , y) = H(x)Q(y),

which results in

1
H
Hxx = − 1

Q
(Qyy + Qν2) = −κ2.

Analytical Solution for the two-dimensional wave equation,
separation of variables

Since the lhs and rhs are again independent of each other, we can
separate the latter equation into two independent equations, one
for x and one for y , namely

Hxx + κ2H = 0,

and

Qyy + ρ2Q = 0,

with ρ2 = ν2 − κ2.

Analytical Solution for the two-dimensional wave equation,
separation of variables

The second step is to solve these differential equations, which all
have trigonometric functions as solutions, viz.

H(x) = A cos(κx) + B sin(κx),

and

Q(y) = C cos(ρy) + D sin(ρy).

Analytical Solution for the two-dimensional wave equation,
boundary conditions

The boundary conditions require that F (x , y) = H(x)Q(y) are zero
at the boundaries, meaning that H(0) = H(L) = Q(0) = Q(L) = 0.
This yields the solutions

Hm(x) = sin(
mπx

L
) Qn(y) = sin(

nπy

L
),

or

Fmn(x , y) = sin(
mπx

L
) sin(

nπy

L
).

With ρ2 = ν2 − κ2 and λ = cν we have an eigenspectrum
λ = c

√
κ2 + ρ2 or λmn = cπ/L

√
m2 + n2.

Analytical Solution for the two-dimensional wave equation,
separation of variables and solutions

The solution for G is

Gmn(t) = Bmn cos(λmnt) + Dmn sin(λmnt),

with the general solution of the form

u(x , y , t) =
∞∑

mn=1

umn(x , y , t) =
∞∑

mn=1

Fmn(x , y)Gmn(t).



Analytical Solution for the two-dimensional wave equation,
final steps

The final step is to determine the coefficients Bmn and Dmn from
the Fourier coefficients. The equations for these are determined by
the initial conditions u(x , y , 0) = f (x , y) and ∂u/∂t|t=0 = g(x , y).
The final expressions are

Bmn =
2
L

∫ L

0

∫ L

0
dxdyf (x , y) sin(

mπx

L
) sin(

nπy

L
),

and

Dmn =
2
L

∫ L

0

∫ L

0
dxdyg(x , y) sin(

mπx

L
) sin(

nπy

L
).

Inserting the particular functional forms of f (x , y) and g(x , y) one
obtains the final closed-form expressions.

Python code for solving the two-dimensional wave equation
The following Python code sets up and solves the two-dimensional
wave equation for all three methods discussed.
#Program which solves the 2+1-dimensional wave equation by a finite difference scheme

from numpy import *
#Define the grid
N = 31
h = 1.0 / (N-1)
dt = .0005
t_steps = 10000
x,y = ndgrid(linspace(0,1,N),linspace(0,1,N),sparse=False)

alpha = dt**2 / h**2

#Initial conditions with du/dt = 0
u = sin(x*pi)*cos(y*pi-pi/2)
u_old = zeros(u.shape,type(u[0,0]))
for i in xrange(1,N-1):

for j in xrange(1,N-1):
u_old[i,j] = u[i,j] + (alpha/2)*(u[i+1,j] - 4*u[i,j] + u[i-1,j] + u[i,j+1] + u[i,j-1])

u_new = zeros(u.shape,type(u[0,0]))

#We don’t necessarily want to plot every time step. We plot every n’th step where
n = 100
plotnr = 0

#Iteration over time steps
for k in xrange(t_steps):

for i in xrange(1,N-1): #1 - N-2 because we don’t want to change the boundaries
for j in xrange(1,N-1):

u_new[i,j] = 2*u[i,j] - u_old[i,j] + alpha*(u[i+1,j] - 4*u[i,j] + u[i-1,j] + u[i,j+1] + u[i,j-1])

#Prepare for next time step by manipulating pointers
temp = u_new
u_new = u_old
u_old = u
u = temp

#To do: Make movie


