
Computational Physics Lectures: How to write a
scientific project, with examples

Morten Hjorth-Jensen1,2

Department of Physics, University of Oslo1

Department of Physics and Astronomy and National Superconducting Cyclotron
Laboratory, Michigan State University2

Jan 8, 2018
c© 1999-2018, Morten Hjorth-Jensen. Released under CC Attribution-NonCommercial 4.0 license

Overarching aims first

An essential part of this course is to enable you to do science via
numerical experiments and develop projects which allow you to
study complex systems. The aim is to enhance what we call
algorithminc thinking.

Algorithm : A finite set of unambiguous instructions that, given
some set of initial conditions, can be performed in a prescribed
sequence to achieve a certain goal.

What do we mean with computing?
Computing means solving scientific problems using
computers. It covers numerical as well as symbolic
computing. Computing is also about developing an
understanding of the scientific process by enhancing
algorithmic thinking when solving problems.
And this competence is about:

derivation, verification, and implementation of algorithms
understanding what can go wrong with algorithms
overview of important, known algorithms
understanding how algorithms are used to solve complicated
problems
reproducible science and ethics
algorithmic thinking for gaining deeper insights about scientific
problems

All these elements (and many more) will hopefully aid you in
maturing and gaining a better understanding of the scientific
process per se. Writing good reports is a central element in
achieving such insights.

The standard situation we meet on a daily basis

The standard situation we meet at an almost daily basis:

Theory+experiment+simulation is almost the norm in research
and industry
To be able to model complex systems with no simple answers.
Solve real problems.
Emphasis on insight and understanding of fundamental
principles and laws in the Sciences.
Be able to visualize, present, discuss, interpret and come with
a critical analysis of the results, and develop a sound ethical
attitude to own and other’s work.
Enhance reasoning about the scientific method

Again, a proper presentation of obtained results via good scientic
reports, aids in including all the above aspects.

Practicalities
When working on the projects, we recommend strongly that you
form teams of two to three participants. You must have a github
account where we can monitor your progress and give you
appropriate feedback.

Furthermore, when setting up your git repository for a given
numerical project, you should create a folder where selected
benchmarks are placed. These benchmarks could represent a
calculation with specific input parameters. This makes your work
reproducible, and allows us to see that your programs reproduce
selected benchmarks. Furthermore, developing a habit of producing
benchmarks, allows you to keep track of the results produced by
different versions of your codes.

If you have not used version control before now, it is thus time to
do so. Proper version control is central to a good ethical scientific
conduct. We do require that you use some kind of version control
software when working on the projects. We recommend strongly
github. All lectures and additional material is available at the
github address of the course

Programming languages

We recommend that you use either C++ or Fortran2008 for your
projects. You can use Python as programming language, but
normally the efficiency of Python for the problems addressed in this
course is lower than for codes written in Fortran or C++. We
recommend however that use Python as a scripting language for
running codes and making plots, as well as using the ipython
notebooks provided by us.



Some basic ingredients for a successful numerical project

When building up a numerical project there are several elements
you should think of, amongst these we take the liberty of
mentioning the following:

1 How to structure a code in terms of functions
2 How to make a module
3 How to read input data flexibly from the command line
4 How to create graphical/web user interfaces
5 How to write unit tests (test functions)
6 How to refactor code in terms of classes (instead of functions

only), in our case you think of a system and a solver class
7 How to conduct and automate large-scale numerical

experiments
8 How to write scientific reports in various formats (LATEX,

HTML)

More basic ingredients

The conventions and techniques outlined here will save you a lot of
time when you incrementally extend software over time from
simpler to more complicated problems. In particular, you will
benefit from many good habits:

1 New code is added in a modular fashion to a library (modules)
2 Programs are run through convenient user interfaces
3 It takes one quick command to let all your code undergo heavy

testing
4 Tedious manual work with running programs is automated,
5 Your scientific investigations are reproducible, scientific reports

with top quality typesetting are produced both for paper and
electronic devices.

The report: how to write a good scienfitic/technical report

What should it contain? A typical structure
An abstract where you give the main summary of your work
An introduction where you explain the aims and rationale for
the physics case and what you have done. At the end of the
introduction you should give a brief summary of the structure
of the report
Theoretical models and technicalities. This is the methods
section
Results and discussion
Conclusions and perspectives
Appendix with extra material
Bibliography

Keep always a good log of what you do.

The report, the abstract

The abstract gives the reader a quick overview of what has been
done and the most important results. Here is a typical example
taken from a scientific article
We study the collective motion of a suspension of rodlike
microswimmers in a two-dimensional film of viscoelastic
fluids. We find that the fluid elasticity has a small effect on
a suspension of pullers, while it significantly affects the
pushers. The attraction and orientational ordering of the
pushers are enhanced in viscoelastic fluids. The induced
polymer stresses break down the large-scale flow structures
and suppress velocity fluctuations. In addition, the energy
spectra and induced mixing in the suspension of pushers are
greatly modified by fluid elasticity.

The report, the introduction

What should I focus on? Introduction
You don’t need to answer all questions in a chronological order.
When you write the introduction you could focus on the following
aspects

Motivate the reader, the first part of the introduction gives
always a motivation and tries to give the overarching ideas
What I have done
The structure of the report, how it is organized etc

The report, discussion of methods

What should I focus on? Methods sections
Describe the methods and algorithms
You need to explain how you implemented the methods and
also say something about the structure of your algorithm and
present some parts of your code
You should plug in some calculations to demonstrate your
code, such as selected runs used to validate and verify your
results. The latter is extremely important!! A reader needs to
understand that your code reproduces selected benchmarks
and reproduces previous results, either numerical and/or
well-known closed form expressions.



The report, results part

What should I focus on? Results
Present your results
Give a critical discussion of your work and place it in the
correct context.
Relate your work to other calculations/studies
An eventual reader should be able to reproduce your
calculations if she/he wants to do so. All input variables
should be properly explained.
Make sure that figures and tables should contain enough
information in their captions, axis labels etc so that an
eventual reader can gain a first impression of your work by
studying figures and tables only.

The report, conclusions and perspectives

What should I focus on? Conclusions
State your main findings and interpretations
Try as far as possible to present perspectives for future work
Try to discuss the pros and cons of the methods and possible
improvements

The report, appendices

What should I focus on? additional material
Additional calculations used to validate the codes
Selected calculations, these can be listed with few comments
Listing of the code if you feel this is necessary

You can consider moving parts of the material from the methods
section to the appendix. You can also place additional material on
your webpage.

The report, references

What should I focus on? References
Give always references to material you base your work on,
either scientific articles/reports or books.
Refer to articles as: name(s) of author(s), journal, volume
(boldfaced), page and year in parenthesis.
Refer to books as: name(s) of author(s), title of book,
publisher, place and year, eventual page numbers

Where do I find scientific articles, books etc and examples of
reports

With a UiO IP number you can access freely all books and
scientific journals available at our University library
For scientific articles, go to for example the journal Physical
Review Letters of the American Physical Society
For project examples and how we give feedback on projects, go
to the project folder of the course and click on the
ProjectExample link.

How can I use Python and matplotlib to make figures for
my report

Writing scripts in for example Python to produce high-quality
figures allows you in a fast and efficient way to produce scientific
results that can be included in a report. Furthermore, many
operations can easily be automated, avoding thereby tedious
repetitions of commands, as well as possible errors. Here we
present a simple Python program which solves parts of project 2 for
one quantum mechanical particle in a harmonic oscillator potential.
The code plots the radial distribution of the three lowest-lying
states, in addition to displaying the lowest three eigenvalues. It is
easy to modify the trapping potential and run numerical
experiments and test different boundary conditions. The plot is
obtained using matplotlib, a Python plotting library which produces
publication quality figures in a variety of formats and interactive
environments across platforms.



The Python code
The code sets up the Hamiltonian matrix by defining the the
minimun and maximum values of r with a maximum value of
integration points. These are set in the initialization function. It
plots the eigenfunctions of the three lowest eigenstates.
#Program which solves the one-particle Schrodinger equation
#for a potential specified in function
#potential(). This example is for the harmonic oscillator in 3d

from matplotlib import pyplot as plt
import numpy as np
#Function for initialization of parameters
def initialize():

RMin = 0.0
RMax = 10.0
lOrbital = 0
Dim = 400
return RMin, RMax, lOrbital, Dim

# Here we set up the harmonic oscillator potential
def potential(r):

return r*r

#Get the boundary, orbital momentum and number of integration points
RMin, RMax, lOrbital, Dim = initialize()

#Initialize constants
Step = RMax/(Dim+1)
DiagConst = 2.0 / (Step*Step)
NondiagConst = -1.0 / (Step*Step)
OrbitalFactor = lOrbital * (lOrbital + 1.0)

#Calculate array of potential values
v = np.zeros(Dim)
r = np.linspace(RMin,RMax,Dim)
for i in xrange(Dim):

r[i] = RMin + (i+1) * Step;
v[i] = potential(r[i]) + OrbitalFactor/(r[i]*r[i]);

#Setting up a tridiagonal matrix and finding eigenvectors and eigenvalues
Hamiltonian = np.zeros((Dim,Dim))
Hamiltonian[0,0] = DiagConst + v[0];
Hamiltonian[0,1] = NondiagConst;
for i in xrange(1,Dim-1):

Hamiltonian[i,i-1] = NondiagConst;
Hamiltonian[i,i] = DiagConst + v[i];
Hamiltonian[i,i+1] = NondiagConst;

Hamiltonian[Dim-1,Dim-2] = NondiagConst;
Hamiltonian[Dim-1,Dim-1] = DiagConst + v[Dim-1];
# diagonalize and obtain eigenvalues, not necessarily sorted
EigValues, EigVectors = np.linalg.eig(Hamiltonian)
# sort eigenvectors and eigenvalues
permute = EigValues.argsort()
EigValues = EigValues[permute]
EigVectors = EigVectors[:,permute]
# now plot the results for the three lowest lying eigenstates
for i in xrange(3):

print EigValues[i]
FirstEigvector = EigVectors[:,0]
SecondEigvector = EigVectors[:,1]
ThirdEigvector = EigVectors[:,2]
plt.plot(r, FirstEigvector**2 ,’b-’,r, SecondEigvector**2 ,’g-’,r, ThirdEigvector**2 ,’r-’)
plt.axis([0,4.6,0.0, 0.025])
plt.xlabel(r’$r$’)
plt.ylabel(r’Radial probability $r^2|R(r)|^2$’)
plt.title(r’Radial probability distributions for three lowest-lying states’)
plt.savefig(’eigenvector.pdf’)
plt.show()

Procrastination... the curse of all?

Enjoy this video

And research shows that procrastinating enhances creativity!!


