Computational Physics Lectures: Random walks, Brownian motion and the Metropolis algorithm

Morten Hjorth-Jensen ${ }^{1,2}$

Department of Physics, University of Oslo

Department of Physics and Astronomy and National Superconducting Cyclotron
Laboratory, Michigan State University

Apr 18, 2018
© 1999-2018, Morten Hjorth-Jensen. Relesesed under CC Attribution-NonCommercial 4.0 I icense

Why Markov chains, Brownian motion and the Metropolis

algorithm
We want to study a physical system which evolves towards
equilibrium, from som given initial conditions. Recall the simple example of particles in a box. At an initial time t_{0} all particles ar in the left half of the box. Thereafter they are allowed to diffuse into the two halves of the box
\#!/usr/bin/env python
from matplotilib import pyplot as plt
from math import ent

rom matplotlib imp
from math import exp

Irom math mport exp
import numpy as np
import random
import rand
\# initial number of particles
No
NoxTime
$\mathrm{NO}=1000$
MaxTime $=10 * \mathrm{No}$
values $=$ np.
values = np.zeros(MaxTime)
time $=$ np. zeros (MaxTime)
random seed()
$\#$ initial
number of particles in left half

if nle
nl
ne

Why Markov chains, Brownian motion and the Metropolis

algorithm

- We want to study a physical system which evolves towards equilibrium, from given initial conditions.
- We start with a PDF $w\left(x_{0}, t_{0}\right)$ and we want to understand
how the system evolves with time.
We want to reach a situation where after a given number of time steps we obtain a steady state. This means that the system reaches its most likely state (equilibrium situation)
Our PDF is normally a multidimensional object whose
normalization constant is impossible to find.
Analytical calculations from $w(x, t)$ are not possible
- To sample directly from from $w(x, t)$ is not possible/difficult.
- The transition probability W is also not known.
- How can we establish that we have reached a steady state?
Sounds impossible! Sounds impossible!
Use Markov chain Monte Carlo

Brownian motion and Markov processes

A Markov process is a random walk with a selected probability for making a move. The new move is independent of the previous history of the system.

The Markov process is used repeatedly in Monte Carlo simulations in order to generate new random states.
The reason for choosing a Markov process is that when it is run for a long enough time starting with a random state, we will eventually reach the most likely state of the system.
In thermodynamics, this means that after a certain number of Markov processes we reach an equilibrium distribution.

This mimicks the way a real system reaches its most likely state at
a given temperature of the surroundings.

Brownian motion and Markov processes, Ergodicity and

Detailed balance

To reach this distribution, the Markov process needs to obey two important conditions, that of ergodicity and detailed balance. These conditions impose then constraints on our algorithms for accepting or rejecting new random states
The Metropolis algorithm discussed here abides to both these constraints.
The Metropolis algorithm is widely used in Monte Carlo simulations and the understanding of it rests within the interpretation of and the understanding of it rests with

Brownian motion and Markov processes, jargon

In a random walk one defines a mathematical entity called a walker, whose attributes completely define the state of the system in question
The state of the system can refer to any physical quantities, from the vibrational state of a molecule specified by a set of quantum numbers, to the brands of coffee in your favourite supermarket.
The walker moves in an appropriate state space by a combination of The walker moves in an appropriate state space by a combination of

This sequence of steps forms a chain.

Brownian motion and Markov processes, sequence of

ingredients

- We want to study a physical system which evolves towards equilibrium, from given initial conditions.
Markov chains are intimately linked with the physical process of diffusion.
From a Markov chain we can then derive the conditions for detailed balance and ergodicity. These are the conditions needed for obtaining a steady state
The widely used algorithm for doing this is the so-called Metropolis algorithm, in its refined form the
Metropolis-Hastings al gorithm.

Applications: almost every field in science

- Financial engineering, see for example Patriarca et al, Physica 340, page 334 (2004)
- Neuroscience, see for example Lipinski, Physics Medical
- Neuroscience, see for example Lipinski, Physics Medical
Biology 35, page 441 (1990) or Farnell and Gibson, Journal of Biology 35, page 441 (1990) or Farnell and
Computational Physics 208, page 253 (2005)
- Tons of applications in physics
- and chemistry
- and biology, medicine
- Nobel prize in economy to Black and Scholes

$$
\frac{\partial V}{\partial t}+\frac{1}{2} \sigma^{2} S^{2} \frac{\partial^{2} V}{\partial S^{2}}+r S \frac{\partial V}{\partial S}-r V=0
$$

The Black and Scholes equation is a partial differential equation, which describes the price of the option over time. It is a diffusion equation with a random term

The list of applications is endless

A simple example (close to project 4) and some more jargon
The obvious case is that of a random walker on a one-, or two- or
three-dimensional lattice (dubbed coordinate space hereafter).
Consider a system whose energy is defined by the orientation of single spins. Consider the state i, with given energy E_{i} represented by the following N spins

$$
\begin{array}{cccccccccc}
\uparrow & \uparrow & \uparrow & \ldots & \uparrow & \downarrow & \uparrow & \ldots & \uparrow & \downarrow \\
1 & 2 & 3 & \ldots & k-1 & k & k+1 & \ldots & N-1 & N
\end{array}
$$

We may be interested in the transition with one single spinflip to a new state j with energy E_{j}

$$
\begin{array}{cccccccccc}
\uparrow & \uparrow & \uparrow & \ldots & \uparrow & \uparrow & \uparrow & \ldots & \uparrow & \downarrow \\
1 & 2 & 3 & \ldots & k-1 & k & k+1 & \ldots & N-1 & \stackrel{N}{N}
\end{array}
$$

This change from one microstate i (or spin configuration) to another microstate j is the configuration space analogue to a another in space, we 'jump' from one microstate to place

Markov processes

A Markov process allows in principle for a microscopic description of Brownian motion. As with the random walk studied in the previous section, we consider a particle which moves along the x-axis in the form of a series of jumps with step length $\Delta x=1$. Time discretized and the subsequent moves are statistically and not on the results from arlier trials. We start at a position $x=j=j \Delta x$ and move to a new position $x=i \Delta x$ during a ste $x=j=j \Delta x$ and move to a new position $x=i \Delta x$ during
$\Delta t=\epsilon$, where $i>0$ and $j>0$ are integers. The original probability distribution function (PDF) of the particles is given by $w_{i}(t=0)$ where i refers to a specific position on the grid in

The function $w_{i}(t=0)$ is now the discretized version of $w(x, t)$. We can regard the discretized PDF as a vector.

Markov processes

For the Markov process we have a transition probability from position $x=j l$ to a position $x=$ il given by

$$
W_{i j}(\epsilon)=W(i l-j l, \epsilon)=\left\{\begin{array}{cc}
\frac{1}{2} & |i-j|=1 \\
0 & \text { else }
\end{array},\right.
$$

where $W_{i j}$ is normally called the transition probability and we can represent it, see below, as a matrix. Here we have specialized to a case where the transition probability is known. Our new PDF $w_{i}(t=\epsilon)$ is now related to the PDF at $t=0$ through the relation

$$
w_{i}(t=\epsilon)=\sum_{i} w(j \rightarrow i) w_{j}(t=0) .
$$

This equation represents the discretized time-development of an original PDF with equal probability of jumping left or right.

Markov processes, the probabilities

Since both W and w represent probabilities, they have to be normalized, i.e., we require that at each time step we have

$$
\sum_{i} w_{i}(t)=1
$$

and

$$
\sum_{j} W(j \rightarrow i)=1,
$$

which applies for all j-values. The further constraints are $0 \leq W_{i j} \leq 1$ and $0 \leq w_{j} \leq 1$. Note that the probability for remaining at the same place is in general not necessarily equal zero.

The time development of our initial PDF can now be represented through the action of the transition probability matrix applied n times. At a time $t_{n}=n \epsilon$ our initial distribution has developed into

The following simple example may help in understanding the
The following simple example may help in understanding the
4×4 matrix \hat{W}

$$
w_{i}\left(t_{n}\right)=\sum_{j} W_{i j}\left(t_{n}\right) w_{j}(0),
$$

and defining

$$
W(i l-j l, n \epsilon)=\left(W^{n}(\epsilon)\right)_{i j}
$$

we obtain

$$
w_{i}(n \epsilon)=\sum_{j}\left(W^{n}(\epsilon)\right)_{i j} w_{j}(0),
$$

or in matrix form
$\hat{w}(n \epsilon)=\hat{W}^{n}(\epsilon) \hat{w}(0)$

$$
\hat{W}=\left(\begin{array}{cccc}
1 / 4 & 1 / 9 & 3 / 8 & 1 / 3 \\
2 / 4 & 2 / 9 & 0 & 1 / 3 \\
0 & 1 / 9 & 3 / 8 & 0 \\
1 / 4 & 5 / 9 & 2 / 8 & 1 / 3
\end{array}\right)
$$

and we choose our initial state as

$$
\hat{w}(t=0)=\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right)
$$

An Illustrative Example

An Illustrative Example, next step

The next iteration results in
normalized. Summing the vector elements gives one and summing over columns for the matrix results also in one. Furthermore, the largest eigenvalue is one. We act then on \hat{w} with \hat{W}. The first iteration is

$$
\hat{w}(t=\epsilon)=\hat{W} \hat{w}(t=0),
$$

resulting in

$$
\hat{w}(t=\epsilon)=\left(\begin{array}{c}
1 / 4 \\
1 / 2 \\
0 \\
1 / 4
\end{array}\right) .
$$

$$
\begin{aligned}
& \qquad \hat{w}(t=2 \epsilon)=\hat{W} \hat{w}(t=\epsilon), \\
& \text { resulting in } \\
& \qquad \hat{w}(t=2 \epsilon)=\left(\begin{array}{l}
0.201389 \\
0.319444 \\
0.055556 \\
0.423611
\end{array}\right) . \\
& \text { Note that the vector } \hat{w} \text { is always normalized to } 1
\end{aligned}
$$

An Illustrative Example, the steady state

We find the steady state of the system by solving the set of equations

$$
w(t=\infty)=W w(t=\infty),
$$

which is an eigenvalue problem with eigenvalue equal to one! This set of equations reads
$W_{11} w_{1}(t=\infty)+W_{12} W_{2}(t=\infty)+W_{13} W_{3}(t=\infty)+W_{14} W_{4}(t=\infty)$ $W_{21} w_{1}(t=\infty)+W_{22} w_{2}(t=\infty)+W_{23} w_{3}(t=\infty)+W_{24} w_{4}(t=\infty)=$ $W_{31} w_{1}(t=\infty)+W_{32} w_{2}(t=\infty)+W_{33} w_{3}(t=\infty)+W_{34} w_{4}(t=\infty)=$ $W_{41} w_{1}(t=\infty)+W_{42} w_{2}(t=\infty)+W_{43} w_{3}(t=\infty)+W_{44} w_{4}(t=\infty)$
with the constraint that

$$
\sum_{i} w_{i}(t=\infty)=1,
$$

An Illustrative Example, iterative steps

The table here demonstrates the convergence as a function of the number of iterations or time steps. After twelve iterations we have reached the exact value with six leading digits.

Iteration	w_{1}	w_{2}	w_{3}	w_{4}
0	1.000000	0.000000	0.000000	0.000000
		0.23		

$\begin{array}{llll}0.250000 & 0.500000 & 0.000000 & 0.250000\end{array}$ $\begin{array}{llll}0.201389 & 0.319444 & 0.055556 & 0.423611 \\ 0.247878 & 0.312886 & 0.056327 & 0.382909\end{array}$ $\begin{array}{lllll}0.245494 & 0.312886 & 0.056327 & 0.382909\end{array}$ $\begin{array}{lllll}0.245494 & 0.321106 & 0.055888 & 0.377513\end{array}$ $\begin{array}{lllll}0.243847 & 0.319941 & 0.056636 & 0.379575\end{array}$ $\begin{array}{llll}0.244274 & 0.319547 & 0.056788 & 0.379391 \\ 0.244333 & 0.319611 & 0.056801 & 0.379255\end{array}$ $\begin{array}{lllll}0.244333 & 0.319611 & 0.055801 & 0.379255 \\ 0.24314 & 0.319610 & 0.056813 & 0.37224\end{array}$ $\begin{array}{lllll}8 & 0.244314 & 0.319610 & 0.0568813 & 0.379264 \\ 9 & 0.243317 & 0.319603 & 0.05817 & 0.379264\end{array}$ $\begin{array}{lllll}9 & 0.244317 \\ 10 & 0.244318 & 0.319603 & 0.0319602 & 0.056817 \\ 0.056818 & 0.379264 \\ & 0.379262\end{array}$ $\begin{array}{lllll}10 & 0.244318 & 0.319662 & 0.056818 & 0.379262 \\ 11 & 0.243318 & 0.319602 & 0.556818 & 0.379261\end{array}$ $\begin{array}{lllll}12 & 0.243418 & 0.319602 & 0.056818 & 0.379261 \\ 12 & 0.243318 & 0.319602 & 0.056818 & 0.379261\end{array}$

We can always expand $\hat{w}(0)$ in terms of the right eigenvectors \hat{v} of \hat{W} as

$$
\hat{w}(0)=\sum_{i} \alpha_{i} \hat{v}_{i},
$$

resulting in

$$
\hat{w}(t)=\hat{W}^{t} \hat{w}(0)=\hat{W}^{t} \sum_{i} \alpha_{i} \hat{v}_{i}=\sum_{i} \lambda_{i}^{t} \alpha_{i} \hat{v}_{i},
$$

with λ_{i} the $i^{\text {th }}$ eigenvalue corresponding to the eigenvector \hat{v} If we assume that λ_{0} is the largest eigenvector we see that in the linit $t \rightarrow \infty, \hat{w}(t)$ becomes proportional to the corresponding eigenvector \hat{v}_{0}. This is our steady state or final distribution

Simple c++ program to perform the above calculations
The c++ program we have included here (using Armadillo) performs the above operations for, in this case, a 5×5 matrix. The
largest eigenvalue is 1

using namespace arma;
using namespace std;
int main()

 // Inititializizing
wold (0) $=1.0$
 $W(0,0)=0 ; W(0,1)=0, \quad W(0,2)=0.25 ;$
$W(1,0)=0 ; W(1,1)=0 ; W(1,2)=0.25 ;$
$W(2,0)=0.5 ; W(2,1)=1.0 ; W(2,2)=0$, $W(3,0)=0.0 ; W(2,1)=$
$W(4,0)=0.5 ; W(4,1)=$
doub1e eps $=$,
W.print ,

Entropy and the most likely state

\# 1D-randomualk: A walker makes several steps
\# with a given number of walks pr. trial
It
\# with a given number of walks pr. trial.
It computes the entropy by filing in bins with count
import numpy, sys, math
def me_trial(number_walks, move_probability, walk_cum, walk2_cum, probab Do a MonteCarlo trial, that is,
random-walk one particle

Input:
$\substack{\text { number }}$
nen

- number_walks: Number of steps to walk the part move_probability: $\begin{aligned} & \text { Number of steps to walk the } \\ & \text { Probability that the particle } \\ & \text { will step } \\ & \text { right }\end{aligned}$ ill step right when painticle a st unpy-array of length number_walks + on the particles as as a fun position ion
function of time of the particles as a function of time
(usefullz to calculate mean pos. as a functi
of time) positions squared but with the sum of Output: As walk_cum, walk__cum, and probability are (pointers
nump arrays, they are altered also in the calling function.
nunt ,

The Metropolis Algorithm and Detailed Balance

Let us recapitulate some of our results about Markov chains and random walks.

- The time development of our PDF $w(t)$, after
one time-step from $t=0$ is given by

$$
w_{i}(t=\epsilon)=W(j \rightarrow i) w_{j}(t=0)
$$

This equation represents the discretized time-development of an original PDF. We can rewrite this as a

$$
w_{i}(t=\epsilon)=W_{i j} w_{j}(t=0) .
$$

with the transition matrix W for a random walk given by

$$
W_{i j}(\epsilon)=W(i l-j l, \epsilon)=\left\{\begin{array}{cc}
\frac{1}{2} & |i-j|= \\
0 & \text { else }
\end{array}\right.
$$

The Metropolis Algorithm and Detailed Balance

We call $W_{i j}$ for the transition probability and we represent it as a matrix.

Both W and w represent probabilities and they have to be normalized, meaning that at each time step we have

$$
\sum_{i} w_{i}(t)=1,
$$

and

$$
\sum_{j} W(j \rightarrow i)=1
$$

Here we have written the previous matrix $W_{i j}=W(j \rightarrow i)$
The further constraints are $0 \leq W_{i j} \leq 1$ and $0 \leq w_{j} \leq 1$

- We can thus write the action of W as

$$
w_{i}(t+1)=\sum_{j} w_{i j} w_{j}(t),
$$

or as vector-matrix relation

$$
\begin{equation*}
\hat{w}(t+1)=\hat{W} \hat{w}(t), \tag{3}
\end{equation*}
$$

and if we have that $\|\hat{w}(t+1)-\hat{w}(t)\| \rightarrow 0$, we say that we have reached the most likely state of the system, the so-called steady

```
way of phrasing this is
\(w(t=\infty)=W w(t=\infty)\) state or equilibrium state

\section*{The Metropolis Algorithm and Detailed Balance}

The question then is how can we model anything under such a severe lack of knowledge? The Metropolis algorithm comes to our rescue here. Since \(W(j \rightarrow i)\) is unknown, we model it as the product of two probabilities, a probability for accepting the proposed move from the state \(j\) to the state \(j\), and a probability for making the transition to the state \(i\) being in the state \(j\). We labe these probabilities \(A(j \rightarrow i)\) and \(T(j \rightarrow i)\), respectively. Our total transition probability is then
\[
W(j \rightarrow i)=T(j \rightarrow i) A(j \rightarrow i) .
\]

The algorithm can then be expressed as
- We make a suggested move to the new state \(i\) with some transition or moving probability \(T_{j \rightarrow i}\).
- We accept this move to the new state with an acceptance probability \(A_{j \rightarrow i}\). The new state \(i\) is in turn used as our new starting point for the next move. We reject this proposed moved with a \(1-A_{j \rightarrow i}\) and the original state \(j\) is used again as

\section*{The Metropolis Algorithm and Detailed Balance}

We wish to derive the required properties of the probabilities \(T\) and A such that \(w_{i}^{(t \rightarrow \infty)} \rightarrow w_{i}\), starting from any distribution, will lead us to the correct distribution.
We can now derive the dynamical process towards equilibrium. To obtain this equation we note that after \(t\) time steps the probability obtain this equation we note that after \(t\) time steps the probability
for being in a state \(i\) is related to the probability of being in a state for being in a state \(i\) is related to the probability of being in a stater
\(j\) and performing a transition to the new state together with the \(j\) and performing a transition to the new state together with the
probability of actually being in the state \(i\) and making a move to any of the possible states \(j\) from the previous time step.

\section*{The Metropolis Algorithm and Detailed Balance}

\section*{We can express this as, assuming that \(T\) and \(A\) are} time-independent,
\[
w_{i}(t+1)=\sum_{j}\left[w_{j}(t) T_{j \rightarrow i} A_{j \rightarrow i}+w_{i}(t) T_{i \rightarrow j}\left(1-A_{i \rightarrow j}\right)\right] .
\]

The Metropolis Algorithm and Detailed Balance

All probabilities are normalized, meaning that \(\sum_{j} T_{i \rightarrow j}=1\). Using the latter, we can rewrite the previous equation as
\[
w_{i}(t+1)=w_{i}(t)+\sum_{j}\left[w_{j}(t) T_{j \rightarrow i} A_{j \rightarrow i}-w_{i}(t) T_{i \rightarrow j} A_{i \rightarrow j}\right],
\]
which can be rewritten as
\[
w_{i}(t+1)-w_{i}(t)=\sum_{j}\left[w_{j}(t) T_{j \rightarrow i} A_{j \rightarrow i}-w_{i}(t) T_{i \rightarrow j} A_{i \rightarrow j}\right] .
\]

The last equation is very similar to the so-called Master equation, which relates the temporal dependence of a PDF \(w_{i}(t)\) to various transition rates. The equation can be derived from the so-called Chapman-Einstein-Enskog-Kolmogorov equation. The equation is given as
\[
\begin{equation*}
\frac{d w_{i}(t)}{d t}=\sum_{j}\left[W(j \rightarrow i) w_{j}-W(i \rightarrow j) w_{i}\right], \tag{4}
\end{equation*}
\]
which simply states that the rate at which the systems moves from a state \(j\) to a final state \(i\) (the first term on the right-hand side of the last equation) is balanced by the rate at which the system undergoes transitions from the state \(i\) to a state \(j\) (the second emporal dave reached the so-called steady state, then have
\(\frac{d w_{i}(t)}{d t}=0\).

The Metropolis Algorithm and Detailed Balance
In the limit \(t \rightarrow \infty\) we require that the two distributions
\(w_{i}(t+1)=w_{i}\) and \(w_{i}(t)=w_{i}\) and we have
\[
\sum_{j} w_{j} T_{j \rightarrow i} A_{j \rightarrow i}=\sum_{j} w_{i} T_{i \rightarrow j} A_{i \rightarrow j},
\]
which is the condition for balance when the most likely state (or steady state) has been reached. We see also that the right-hand side can be rewritten as
\[
\sum_{j} w_{i} T_{i \rightarrow j} A_{i \rightarrow j}=\sum_{j} w_{i} W_{i \rightarrow j},
\]
and using the property that \(\sum_{j} W_{i \rightarrow j}=1\), we can rewrite our equation as
\[
w_{i}=\sum_{j} w_{j} T_{j \rightarrow i} A_{j \rightarrow i}=\sum_{j} w_{j} W_{j \rightarrow i},
\]
which is nothing but the standard equation for a Markov chain

\section*{The Metropolis Algorithm and Detailed Balance}

However, the condition that the rates should equal each other is in general not sufficient to guarantee that we, after many simulations, generate the correct distribution. We may risk to end up with roduce an at of detailed balance
\[
W(j \rightarrow i) w_{j}=W(i \rightarrow j) w_{i} .
\]

These equations were derived by Lars Onsager when studying irreversible processes. At equilibrium detailed balance gives thus
\[
\frac{W(j \rightarrow i)}{W(i \rightarrow j)}=\frac{w_{i}}{w_{j}} .
\]

Rewriting the last equation in terms of our transition probabilities \(T\) and acceptance probobalities \(A\) we obtain
\(w_{j}(t) T_{j \rightarrow i} A_{j \rightarrow i}=w_{i}(t) T_{i \rightarrow j} A_{i \rightarrow j}\).

The Metropolis Algorithm and Detailed Balance

Since we normally have an expression for the probability distribution functions \(w_{i}\), we can rewrite the last equation as
\[
\frac{T_{j \rightarrow i} A_{j \rightarrow i}}{T_{i \rightarrow j} A_{i \rightarrow j}}=\frac{w_{i}}{w_{j}} .
\]

\section*{The Metropolis Algorithm and Detailed Balance}

In statistical physics this condition ensures that it is e.g., the Boltzmann distribution which is generated when equilibrium is reached.
We introduce now the Boltzmann distribution
\[
w_{i}=\frac{\exp \left(-\beta\left(E_{i}\right)\right)}{Z},
\]
which states that the probability of finding the system in a state \(i\) with energy \(E_{i}\) at an inverse temperature \(\beta=1 / k_{B} T\) is
\(w_{i} \propto \exp \left(-\beta\left(E_{i}\right)\right)\). The denominator \(Z\) is a normalization constant which ensures that the sum of all probabilities is normalized to one It is defined as the sum of probabilities over all microstates \(j\) of the system
\[
z=\sum_{j} \exp \left(-\beta\left(E_{i}\right)\right) .
\]

\section*{The Metropolis Algorithm and Detailed Balance}

From the partition function we can in principle generate all interesting quantities for a given system in equilibrium with its surroundings at a temperature \(T\)
With the probability distribution given by the Boltzmann distribution we are now in a position where we can generate expectation values for a given variable \(A\) through the definition
\[
\langle A\rangle=\sum_{j} A_{j} w_{j}=\frac{\sum_{j} A_{j} \exp \left(-\beta\left(E_{j}\right)\right.}{Z} .
\]

In general, most systems have an infinity of microstates making thereby the computation of \(Z\) practically impossible and a brute
force Monte Carlo calculation over a given number of randomly force Monte Carlo calculation over a given number of randomly
selected microstates may therefore not yield those microstates which are important at equilibrium. To select the most important contributions we need to use the condition for detailed balance. Since this is just given by the ratios of probabilities, we never need to evaluate the partition function \(Z\).

For the Boltzmann distribution, detailed balance results in
\[
\frac{w_{i}}{w_{j}}=\exp \left(-\beta\left(E_{i}-E_{j}\right)\right) .
\]

Let us now specialize to a system whose energy is defined by the orientation of single spins. Consider the state \(i\), with given energy
\(E_{i}\) represented by the following \(N\) spins \(E_{i}\) represented by the following \(N\) spins
\(\begin{array}{llllccc}\uparrow & \uparrow & \uparrow & \ldots & \uparrow & \downarrow & \uparrow \\ 1 & 2 & 3 & \ldots & k-1 & k & k+1\end{array}\)
\(\stackrel{\uparrow}{N-1} \stackrel{\downarrow}{N}\)

We are interested in the transition with one single spinflip to a new state \(j\) with energy \(E_{j}\)
\[
\begin{array}{cccccccccc}
\uparrow & \uparrow & \uparrow & \ldots & \uparrow & \uparrow & \uparrow & \ldots & \uparrow & \downarrow \\
1 & 2 & 3 & \ldots & k-1 & k & k+1 & \ldots & N-1 & N
\end{array}
\]

This change from one microstate \(i\) (or spin configuration) to another microstate \(j\) is the configuration space analogue to a random walk on a lattice. Instead of jumping from one place to another in space, we 'jump' from one microstate to another.

\section*{The Metropolis Algorithm and Detailed Balance}

However, the selection of states has to generate a final distribution which is the Boltzmann distribution. This is again the same we saw for a random walker, for the discrete case we had always a binomial distribution, whereas for the continuous case we had a normal distribution. The way we sample configurations should result, when equilibrium is established, in the Boltzmann distribution. Else, our gorithm for selecting microstates is wrong. As stated above, we do in general not know the closed-form expression of the transition rate and we are free to model it as gives us
\[
\frac{A_{j \rightarrow i}}{A_{i \rightarrow j}}=\frac{w_{i} T_{i \rightarrow j}}{w_{j} T_{j \rightarrow i}} .
\]

The simplest form of the Metropolis algorithm (sometimes called for brute force Metropolis) assumes that the transition probability \(T(i \rightarrow j)\) is symmetric, implying that \(T(i \rightarrow j)=T(j \rightarrow i)\).

The Metropolis Algorithm and Detailed Balance

We obtain then (using the Boltzmann distribution)
\[
\frac{A(j \rightarrow i)}{A(i \rightarrow j)}=\exp \left(-\beta\left(E_{i}-E_{j}\right)\right) .
\]

We are in this case interested in a new state \(E_{j}\) whose energy is lower than \(E_{i}\), viz., \(\Delta E=E_{j}-E_{i} \leq 0\). A simple test would then be to accept only those microstates which lower the energy. Suppos we have ten microstates with energy
\(E_{0} \leq E_{1} \leq E_{2} \leq E_{3} \leq \cdots \leq E_{9}\). Our desired energy is \(E_{0}\).

\section*{The Metropolis Algorithm and Detailed Balance}

At a given temperature \(T\) we start our simulation by randomly choosing state \(E_{9}\). Flipping spins we may then find a path from \(E_{9} \rightarrow E_{8} \rightarrow E_{7} \cdots \rightarrow E_{1} \rightarrow E_{0}\). This would however lead to biased statistical averages since it would violate the ergodic hypothesis discussed in the previous section. This principle states that it should be possible for any Markov process to reach every possible state of the system from any starting point if the simulations is carried out for a long enough time.
Any state in a Boltzmann distribution has a probability different from zero and if such a state cannot be reached from a given starting point, then the system is not ergodic. This means that another possible path to \(E_{0}\) could be
\(E_{9} \rightarrow E_{7} \rightarrow E_{8} \cdots \rightarrow E_{9} \rightarrow E_{5} \rightarrow E_{0}\) and so forth. Even though
such a path could have a negligibl and if we simulate long enough it shobability it is still a possibility. computation of an expectation value.

The Metropolis Algorithm and Detailed Balance

Thus, we require that our algorithm should satisfy the principle of Thus, we require that our algorithm should satisfy the principe
\[
\frac{A(j \rightarrow i)}{A(i \rightarrow j)}=\exp \left(-\beta\left(E_{i}-E_{j}\right)\right),
\]
is that we do not know the acceptance probability. This equation only specifies the ratio of pairs of probabilities. Normally we want an algorithm which is as efficient as possible and maximizes the number of accepted moves. Moreover, we know that the acceptance probability has 0 as its smallest value and 1 as its largest. If we assume that the largest possible acceptance probability is 1 , we adjust thereafter the other acceptance probability to this constraint

To understand this better, assume that we have two energies, \(E\) and \(E_{j}\), with \(E_{i}<E_{j}\). This means that the largest acceptance value must be \(A(j \rightarrow i)\) since we move to a state with lower energy. It follows from also from the fact that the probability \(w_{i}\) is larger tha \(w_{j}\). The trick then is to fix this value to \(A(\vec{j} \rightarrow\)
\(A(i \rightarrow j)=\exp \left(-\beta\left(E_{j}-E_{i}\right)\right)\).
\[
\begin{aligned}
& \text { One possible way to encode this equation reads } \\
& \qquad A(j \rightarrow i)=\left\{\begin{array}{cc}
\exp \left(-\beta\left(E_{i}-E_{j}\right)\right) & E_{i}-E_{j}>0 \\
1 & \text { else }
\end{array}\right.
\end{aligned}
\]
implying that if we move to a state with a lower energy, we always accept this move with acceptance probability \(A(j \rightarrow i)=1\). If the energy is higher, we need to check this acceptance probability with the ratio between the probabilities from our PDF From a practical point of view, the above ratio is compared with a random number. If the ratio is smaller than a given random number we accept the move to a higher energy, else we stay in the same state.

\section*{The Metropolis Algorithm and Detailed Balance}

Two examples that illustrate the Metropolis algorithm

Let us look at two simple examples that illustrate the Metropolis algorithm.
We have the ratio
\[
w_{j} T_{j \rightarrow i} A_{j \rightarrow i}=w_{i} T_{i \rightarrow j} A_{i \rightarrow j} .
\]

Let us assume for the first example that we have two states only and that we know the likelihoods \(w_{1}=1 / 3\) and \(w_{2}=2 / 3\). Can we find \(A\) and \(T\) using the ratios
\[
\frac{w_{2}}{w_{1}}=2 \quad \frac{w_{1}}{w_{2}}=\frac{1}{2} ?
\]

The other value

For the second case
\[
\frac{w_{1}}{w_{2}}=\frac{1}{2}=\frac{T_{2 \rightarrow 1} A_{2 \rightarrow 1}}{T_{1 \rightarrow 2} A_{1 \rightarrow 2}},
\]
we have then
\[
T_{2 \rightarrow 1} A_{2 \rightarrow 1}=\frac{1}{2} \times \frac{1}{2}
\]
since we have \(T_{1 \rightarrow 2}=T_{2 \rightarrow 1}=1 / 2\) we end with
\[
W_{2 \rightarrow 1}=T_{2 \rightarrow 1} A_{2 \rightarrow 1}=\frac{1}{4} .
\]
```

And the
f int main()
int dim =
Mmatm,
vec wold = zeros<mat>,dim);
vec unee= zeros<mat>(dim); (dim);
\, Initivalizing zeros<mat> (dim);
/1, Setting up; the stochastic matrix
W(0,0)=0.75; W(0,1)=0.5;
M,
l.print ("W="); ; = norm(wold-wnew, 2);
int co
// Multiplying the old vector with the transition probabilit)
lol}\begin{array}{l}{\mathrm{ count +1; ;}}
{\mathrm{ mew = wwold; ;}}
Mnifference = norm(wold-wnew, 2)
lol

```

```

 }
    ```
And the output

The next example
We are going to study one single particle in equilibrium with its
surroundings, the latter modelled via a large heat bath with
temperature \(T\).
The model used to describe this particle is that of an ideal gas in one dimension and with velocity \(-v\) or \(v\). We are interested in
finding \(P(v) d v\), which expresses the probability for finding the
system with a given velocity \(v \in[v, v+d v]\). The energy for this
one-dimensional system is
\[
E=\frac{1}{2} k T=\frac{1}{2} v^{2},
\]
with mass \(m=1\).
We will use the Boltzmann distribution
We obtain the likelihoods we started with for the states \(w_{1}\) and \(w_{2}!!\) We have thus shown that the Metropolis algorithm gives the \(w_{2}\) !! We lave thus shown that the Metrop
\[
P(\beta)=\frac{e^{-\beta E}}{Z},
\]
with \(\beta=1 / k T\) being the inverse temperature, \(E\) is the energy of
the system and \(Z\) is the partition function

The python code
```

 * Program to test
 #!/usr/binmeno python
    ```

```

 import matplotlib.pyplot as plt
 \
 # inntialize the rng with, log seed
 M random.sed()
 MCcycles = 100000
 beta = 1./Temperature
 loral =1./Temperature
 *)
 MelocityRage = 10*sqqt(\mathrm{ (mperature)}
 VelocityStep =2*Ve
 Averagenergy = Energy Ny,yRang
 Averagennery2 = Energy*Energy
 V NelocityValues =np.zeros(MCycycles)
 for i in range (1,MCcycles, 1): Metropolis starts here
 Mrilolvecity = CurrentVelocity +(2.0*random. random()-1.0)*Vel
 EnergyChange= 0.5*(TrialVelocity*TrialVelocity
    ```

Brief Summary
The Monte Carlo approach, combined with the theory for Markov
chains can be summarized as follows: A Markov chain Monte Carlo
method for the simulation of a distribution \(w\) is any method
producing an ergodic Markov chain of events \(x\) whose stationary
distribution is \(w\). The Metropolis algorithm can be phrased as
- Generate an initial value \(x^{(i)}\)
- Generate a trial value \(y_{t}\) with probability \(T\left(y_{t} \mid x^{(i)}\right.\) ). The latter
- Generate a trial value \(y_{t}\) with probability \(T\left(y_{t} \mid x^{(i)}\right)\). The latter
- Take a new value
\[
x^{(i+1)}=\left\{\begin{array}{cc}
y_{t} & \text { with probability }=A\left(x^{(i)} \rightarrow y_{t}\right) \\
x^{(i)} & \text { with probability }=1-A\left(x^{(i)} \rightarrow y_{t}\right)
\end{array}\right.
\]
- We have defined the transition (acceptance) probability as
\[
A(x \rightarrow y)=\min \left\{\frac{w(y) T(x \mid y)}{w(x) T(y \mid x)}, 1\right\} .
\]

Diffusion and the diffusion equation are central topics in both Physics and Mathematics, and their ranges of applicability spa from stellar dynamics to the diffusion of particles governed by Schroedinger's equation. The latter is, for a free particle, nothing but the diffusion equation in complex time!
Let us consider the one-dimensional diffusion equation. We study large ensemble of particles performing Brownian motion along the \(x\)-axis. There is no interaction between the particles.
We define \(w(x, t) d x\) as the probability of finding a given number of particles in an interval of length \(d x\) in \(x \in[x, x+d x]\) at a time \(t\). This quantity is our probability distribution function (PDF).

From experiment there are strong indications that the flux of particles \(j(x, t)\), viz, the number of particles passing \(x\) at a time is proportional to the gradient of \(w(x, t)\). This proportionality is expressed mathematically through
\[
j(x, t)=-D \frac{\partial w(x, t)}{\partial x},
\]
where \(D\) is the so-called diffusion constant, with dimensionality length \({ }^{2}\) per time.

\section*{Diffusion Equation, continuity equation}

If the number of particles is conserved, we have the continuity equation
which leads to
\[
\frac{\partial j(x, t)}{\partial x}=-\frac{\partial w(x, t)}{\partial t},
\]
\[
\frac{\partial w(x, t)}{\partial t}=D \frac{\partial^{2} w(x, t)}{\partial x^{2}},
\]
which is the diffusion equation in one dimension.

\section*{Diffusion Equation, expectation values}

With the probability distribution function \(w(x, t) d x\) we can evaluate expectation values such as the mean distance
\[
\langle x(t)\rangle=\int_{-\infty}^{\infty} x w(x, t) d x,
\]
or
\[
\left\langle x^{2}(t)\right\rangle=\int_{-\infty}^{\infty} x^{2} w(x, t) d x,
\]
which allows for the computation of the variance
\(\sigma^{2}=\left\langle x^{2}(t)\right\rangle-\langle x(t)\rangle^{2}\). Note well that these expectation values are time-dependent.

\section*{Diffusion Equation, other expectation values}

In a similar way we can also define expectation values of functions \(f(x, t)\) as
\[
\langle f(x, t)\rangle=\int_{-\infty}^{\infty} f(x, t) w(x, t) d x
\]

The normalization condition
\[
\int_{-\infty}^{\infty} w(x, t) d x=1
\]
imposes significant constraints on \(w(x, t)\).

\section*{Diffusion Equation, normalization condition}

We have
\[
w(x= \pm \infty, t)=\left.0 \quad \frac{\partial^{n} w(x, t)}{\partial x^{n}}\right|_{x= \pm \infty}=0,
\]
implying that when we study the time-derivative \(\partial\langle x(t)\rangle / \partial t\), we obtain after integration by parts and using Eq. (5)
\[
\frac{\partial(x)}{\partial t}=\int_{-\infty}^{\infty} x \frac{\partial w(x, t)}{\partial t} d x=D \int_{-\infty}^{\infty} x \frac{\partial^{2} w(x, t)}{\partial x^{2}} d x,
\]
leading to
\[
\frac{\partial\langle x\rangle}{\partial t}=\left.D x \frac{\partial w(x, t)}{\partial x}\right|_{x= \pm \infty}-D \int_{-\infty}^{\infty} \frac{\partial w(x, t)}{\partial x} d x .
\]

The result is
\[
\frac{\partial\langle x\rangle}{\partial t}=0 .
\]

This means in turn that \(\langle x\rangle\) is independent of time. If we choose the initial position \(x(t=0)=0\), the average displacement \(\langle x\rangle=0\) If we link this discussion to a random walk in one dimension with equal probability of jumping to the left or right and with an initia around \(\langle x\rangle=0\) as function of time.

The variance is not necessarily 0 . Consider first
\[
\frac{\partial\left\langle x^{2}\right\rangle}{\partial t}=\left.D x^{2} \frac{\partial w(x, t)}{\partial x}\right|_{x= \pm \infty}-2 D \int_{-\infty}^{\infty} x \frac{\partial w(x, t)}{\partial x} d x,
\]
where we have performed an integration by parts as we did for \(\frac{\partial\langle x\rangle}{\partial t}\).

\section*{Diffusion Equation, final expression for the variance}

Integration by parts results in
\[
\frac{\partial\left\langle x^{2}\right\rangle}{\partial t}=-\left.D x w(x, t)\right|_{x= \pm \infty}+2 D \int_{-\infty}^{\infty} w(x, t) d x=2 D,
\]
leading to
\[
\left\langle x^{2}\right\rangle=2 D t,
\]
and the variance as
\[
\left\langle x^{2}\right\rangle-\langle x\rangle^{2}=2 D t .
\]
(6)
\[
\sqrt{\left\langle x^{2}\right\rangle-\langle x\rangle^{2}}=\sqrt{2 D t} .
\]
\[
\begin{aligned}
& \text { Diffusion Equation, simple illustration } \\
& \qquad w(x, t) d x=\frac{1}{\sqrt{4 \pi D t}} \exp \left(-\frac{x^{2}}{4 D t}\right) d x \text {. } \\
& \text { At a time } t=2 s \text { the new variance is } \sigma^{2}=4 D \mathrm{~s} \text {, implying that the } \\
& \text { root mean square value is } \sqrt{\left\langle x^{2}\right\rangle-\langle x\rangle^{2}}=2 \sqrt{D} \text {. At a further time } \\
& t=8 \text { we have } \sqrt{\left\langle x^{2}\right\rangle-\langle x\rangle^{2}}=4 \sqrt{D \text {. While time has elapsed by a }} \\
& \text { factor of } 4 \text {, the root mean square has only changed by a factor of } 2 \text {. }
\end{aligned}
\]

\section*{Diffusion Equation, interpretation}

This should be contrasted to the displacement of a free particle wish initial velocity \(v_{0}\). In that case the distance from the initial
wister position after a time \(t\) is \(x(t)=v t\) whereas for a diffusion process position after a time \(t\) is \(x(t)=v t\) whereas for a diffusion process
the root mean square value is \(\sqrt{\left\langle x^{2}\right\rangle-\langle x\rangle^{2}} \propto \sqrt{t}\). Since diffusion is strongly linked with random walks, we could say that a random walker escapes much more slowly from the starting point than would a free particle

The root mean square displacement after a time \(t\) is then

Consider
\[
\langle x(n)\rangle=\sum_{i}^{n} \Delta x_{i}=0 \quad \Delta x_{i}= \pm 1,
\]
since we have an equal probability of jumping either to the left or to right. The value of \(\left\langle x(n)^{2}\right\rangle\) is
\(\left\langle x(n)^{2}\right\rangle=\left(\sum_{i}^{n} \Delta x_{i}\right)\left(\sum_{j}^{n} \Delta x_{j}\right)=\sum_{i}^{n} \Delta x_{i}^{2}+\sum_{i \neq j}^{n} \Delta x_{i} \Delta x_{j}=I^{2} n\).

For many enough steps the non-diagonal contribution is
\[
\sum_{i \neq j}^{N} \Delta x_{i} \Delta x_{j}=0,
\]
since \(\Delta x_{i, j}= \pm I\). The variance is then
\[
\left\langle x(n)^{2}\right\rangle-\langle x(n)\rangle^{2}=I^{2} n .
\]

It is also rather straightforward to compute the variance for \(L \neq R\). The result is

\section*{Random Walks, simple program}

The main program reads the name of the output file from screen
and sets up the arrays containing the walker's position after a give
number of steps. The corresponding program for a two-dimensional random walk (not listed in the main text) is found under programs/chapter12/program2.cp
1-dim random walk program.
A walker makes several trials steps wi
a giver mumber of walks per trial
\#include <iostream>
\#include
<fstream>
\#include <fstream>
\(\#\) include
<iomanip
\#include "lib. h"
using namespace
// Function to read in data from screen, note call by reference
void initialise(inta, inte, double\&)
Void Mc sampling for random walks
void mc_sampling (int, int, double, int *, int *) /prints to screen the results of the the
void output (int, int, int \(*\), int \(*\) ):
int main()

In Eq. (7) the variable \(n\) represents the number of time steps. If we define \(n=t / \Delta t\), we can then couple the variance result from a dom walk in one dimension with the variance from the diffusion equation of Eq. (6) by defining the diffusion constant as
\[
D=\frac{I^{2}}{\Lambda t} .
\]
\(\left\langle x(n)^{2}\right\rangle-\langle x(n)\rangle^{2}=\left.4 L R\right|^{2} n\).

Simple python code with visualization of one-dimensional
random walk
The python code here is just a mere rewriting of the above c++
code, with the difference that it employs matplotlib and gives the
final plot.
\# 1 -randomulk: A walker makes several steps,
\# with a given number of walks pr. trial
rom matpiot liib import pyplot as plt
mport numpy as np
def mc.trial(number_walks,move_probability, walk_cum,walk__cum)
Do a MonteCarlo trial, that is,
andom-walk one particle.
Input:
Input:
number_walks
move_probabii ity: \(\begin{gathered}\text { Number of steps to walk the particle } \\ \text { Probabilizity that the particle }\end{gathered}\)

walk_cum: Numpy-array of length number_walks +
Containing the sum of the position
```

Random walk
The algorithm tests the probability of moving to the left or to the
right by generating a random number.
void mc_sampling (int max_trials, int number_walks,
\{

```

```

 idum \(=1,1 /\) initialise random number generator
 for (int trial $=1$; trial $<=$ max_trials; trial ++)
int position $=0 ;$; ;
int position $=0$; ${ }^{\text {and }}$, walks $<=$ number_walks; walks +)
for (int walks
if (rano(kidum) $<=$ move_probability) $\{$
${ }_{\text {else }\{ }^{\text {position + }}$
else $\{$
position $-=$
pat
walk_cumulative [walks] $+=$ position;
valk=cumulative[walks] $+=$ position;
$\}^{\text {3 }} / / /$ end en of loop over walls.

```
```

