
Computational Physics Lectures: Random walks,
Brownian motion and the Metropolis algorithm

Morten Hjorth-Jensen1,2

Department of Physics, University of Oslo1

Department of Physics and Astronomy and National Superconducting Cyclotron
Laboratory, Michigan State University2

Apr 18, 2018
c© 1999-2018, Morten Hjorth-Jensen. Released under CC Attribution-NonCommercial 4.0 license

Why Markov chains, Brownian motion and the Metropolis
algorithm

We want to study a physical system which evolves towards
equilibrium, from som given initial conditions. Recall the simple
example of particles in a box. At an initial time t0 all particles are
in the left half of the box. Thereafter they are allowed to diffuse
into the two halves of the box.
#!/usr/bin/env python
from matplotlib import pyplot as plt
from math import exp
import numpy as np
import random

initial number of particles
N0 = 1000
MaxTime = 10*N0
values = np.zeros(MaxTime)
time = np.zeros(MaxTime)
random.seed()
initial number of particles in left half
nleft = N0
for t in range (0, MaxTime, 1):

if N0*random.random() <= nleft:
nleft -= 1

else:
nleft += 1

time[t] = t
values[t] = nleft

Finally we plot the results
plt.plot(time, values,’b-’)
plt.axis([0,MaxTime, N0/4, N0])
plt.xlabel(’t’)
plt.ylabel(’N’)
plt.title(’Number of particles in left half’)
plt.savefig(’box.pdf’)
plt.show()

Why Markov chains, Brownian motion and the Metropolis
algorithm

I We want to study a physical system which evolves towards
equilibrium, from given initial conditions.

I We start with a PDF w(x0, t0) and we want to understand
how the system evolves with time.

I We want to reach a situation where after a given number of
time steps we obtain a steady state. This means that the
system reaches its most likely state (equilibrium situation)

I Our PDF is normally a multidimensional object whose
normalization constant is impossible to find.

I Analytical calculations from w(x , t) are not possible.
I To sample directly from from w(x , t) is not possible/difficult.
I The transition probability W is also not known.
I How can we establish that we have reached a steady state?

Sounds impossible!

Use Markov chain Monte Carlo

Brownian motion and Markov processes

A Markov process is a random walk with a selected probability for
making a move. The new move is independent of the previous
history of the system.
The Markov process is used repeatedly in Monte Carlo simulations
in order to generate new random states.
The reason for choosing a Markov process is that when it is run for
a long enough time starting with a random state, we will eventually
reach the most likely state of the system.
In thermodynamics, this means that after a certain number of
Markov processes we reach an equilibrium distribution.
This mimicks the way a real system reaches its most likely state at
a given temperature of the surroundings.

Brownian motion and Markov processes, Ergodicity and
Detailed balance

To reach this distribution, the Markov process needs to obey two
important conditions, that of ergodicity and detailed balance.
These conditions impose then constraints on our algorithms for
accepting or rejecting new random states.
The Metropolis algorithm discussed here abides to both these
constraints.
The Metropolis algorithm is widely used in Monte Carlo simulations
and the understanding of it rests within the interpretation of
random walks and Markov processes.

Brownian motion and Markov processes, jargon

In a random walk one defines a mathematical entity called a
walker, whose attributes completely define the state of the system
in question.
The state of the system can refer to any physical quantities, from
the vibrational state of a molecule specified by a set of quantum
numbers, to the brands of coffee in your favourite supermarket.
The walker moves in an appropriate state space by a combination of
deterministic and random displacements from its previous position.
This sequence of steps forms a chain.

Brownian motion and Markov processes, sequence of
ingredients

I We want to study a physical system which evolves towards
equilibrium, from given initial conditions.

I Markov chains are intimately linked with the physical process
of diffusion.

I From a Markov chain we can then derive the conditions for
detailed balance and ergodicity. These are the conditions
needed for obtaining a steady state.

I The widely used algorithm for doing this is the so-called
Metropolis algorithm, in its refined form the
Metropolis-Hastings algorithm.

Applications: almost every field in science

I Financial engineering, see for example Patriarca et al, Physica
340, page 334 (2004).

I Neuroscience, see for example Lipinski, Physics Medical
Biology 35, page 441 (1990) or Farnell and Gibson, Journal of
Computational Physics 208, page 253 (2005)

I Tons of applications in physics
I and chemistry
I and biology, medicine
I Nobel prize in economy to Black and Scholes

∂V

∂t
+

1
2
σ2S2∂

2V

∂S2 + rS
∂V

∂S
− rV = 0.

The Black and Scholes equation is a partial differential equation,
which describes the price of the option over time. It is a diffusion
equation with a random term.
The list of applications is endless

http://www.sciencedirect.com/science/article/pii/S0378437104004327
http://iopscience.iop.org/article/10.1088/0031-9155/35/3/012/meta;jsessionid=FA91B191036E1F10948F7C42B6A6D295.c1
http://www.sciencedirect.com/science/article/pii/S0021999105001087

A simple example (close to project 4) and some more jargon
The obvious case is that of a random walker on a one-, or two- or
three-dimensional lattice (dubbed coordinate space hereafter).
Consider a system whose energy is defined by the orientation of
single spins. Consider the state i , with given energy Ei represented
by the following N spins

↑ ↑ ↑ . . . ↑ ↓ ↑ . . . ↑ ↓
1 2 3 . . . k − 1 k k + 1 . . . N − 1 N

We may be interested in the transition with one single spinflip to a
new state j with energy Ej

↑ ↑ ↑ . . . ↑ ↑ ↑ . . . ↑ ↓
1 2 3 . . . k − 1 k k + 1 . . . N − 1 N

This change from one microstate i (or spin configuration) to
another microstate j is the configuration space analogue to a
random walk on a lattice. Instead of jumping from one place to
another in space, we ’jump’ from one microstate to another.

Markov processes

A Markov process allows in principle for a microscopic description of
Brownian motion. As with the random walk studied in the previous
section, we consider a particle which moves along the x-axis in the
form of a series of jumps with step length ∆x = l . Time and space
are discretized and the subsequent moves are statistically
independent, i.e., the new move depends only on the previous step
and not on the results from earlier trials. We start at a position
x = jl = j∆x and move to a new position x = i∆x during a step
∆t = ε, where i ≥ 0 and j ≥ 0 are integers. The original
probability distribution function (PDF) of the particles is given by
wi (t = 0) where i refers to a specific position on the grid in
The function wi (t = 0) is now the discretized version of w(x , t).
We can regard the discretized PDF as a vector.

Markov processes

For the Markov process we have a transition probability from a
position x = jl to a position x = il given by

Wij(ε) = W (il − jl , ε) =

{ 1
2 |i − j | = 1
0 else ,

where Wij is normally called the transition probability and we can
represent it, see below, as a matrix. Here we have specialized to
a case where the transition probability is known.
Our new PDF wi (t = ε) is now related to the PDF at t = 0
through the relation

wi (t = ε) =
∑
j

W (j → i)wj(t = 0).

This equation represents the discretized time-development of an
original PDF with equal probability of jumping left or right.

Markov processes, the probabilities

Since both W and w represent probabilities, they have to be
normalized, i.e., we require that at each time step we have∑

i

wi (t) = 1,

and ∑
j

W (j → i) = 1,

which applies for all j-values. The further constraints are
0 ≤Wij ≤ 1 and 0 ≤ wj ≤ 1. Note that the probability for
remaining at the same place is in general not necessarily equal zero.

Markov processes

The time development of our initial PDF can now be represented
through the action of the transition probability matrix applied n
times. At a time tn = nε our initial distribution has developed into

wi (tn) =
∑
j

Wij(tn)wj(0),

and defining

W (il − jl , nε) = (W n(ε))ij

we obtain

wi (nε) =
∑
j

(W n(ε))ijwj(0),

or in matrix form
ŵ(nε) = Ŵ n(ε)ŵ(0). (1)

An Illustrative Example

The following simple example may help in understanding the
meaning of the transition matrix Ŵ and the vector ŵ . Consider the
4× 4 matrix Ŵ

Ŵ =

1/4 1/9 3/8 1/3
2/4 2/9 0 1/3
0 1/9 3/8 0

1/4 5/9 2/8 1/3

 ,

and we choose our initial state as

ŵ(t = 0) =

1
0
0
0

 .

An Illustrative Example

We note that both the vector and the matrix are properly
normalized. Summing the vector elements gives one and summing
over columns for the matrix results also in one. Furthermore, the
largest eigenvalue is one. We act then on ŵ with Ŵ . The first
iteration is

ŵ(t = ε) = Ŵ ŵ(t = 0),

resulting in

ŵ(t = ε) =

1/4
1/2
0

1/4

 .

An Illustrative Example, next step

The next iteration results in

ŵ(t = 2ε) = Ŵ ŵ(t = ε),

resulting in

ŵ(t = 2ε) =

0.201389
0.319444
0.055556
0.423611

 .

Note that the vector ŵ is always normalized to 1.

An Illustrative Example, the steady state
We find the steady state of the system by solving the set of
equations

w(t =∞) = Ww(t =∞),

which is an eigenvalue problem with eigenvalue equal to one! This
set of equations reads

W11w1(t =∞) + W12w2(t =∞) + W13w3(t =∞) + W14w4(t =∞) =w1(t =∞)

W21w1(t =∞) + W22w2(t =∞) + W23w3(t =∞) + W24w4(t =∞) =w2(t =∞)

W31w1(t =∞) + W32w2(t =∞) + W33w3(t =∞) + W34w4(t =∞) =w3(t =∞)

W41w1(t =∞) + W42w2(t =∞) + W43w3(t =∞) + W44w4(t =∞) =w4(t =∞)

(2)

with the constraint that∑
i

wi (t =∞) = 1,

yielding as solution

ŵ(t =∞) =

0.244318
0.319602
0.056818
0.379261

 .

An Illustrative Example, iterative steps

The table here demonstrates the convergence as a function of the
number of iterations or time steps. After twelve iterations we have
reached the exact value with six leading digits.

Iteration w1 w2 w3 w4

0 1.000000 0.000000 0.000000 0.000000
1 0.250000 0.500000 0.000000 0.250000
2 0.201389 0.319444 0.055556 0.423611
3 0.247878 0.312886 0.056327 0.382909
4 0.245494 0.321106 0.055888 0.377513
5 0.243847 0.319941 0.056636 0.379575
6 0.244274 0.319547 0.056788 0.379391
7 0.244333 0.319611 0.056801 0.379255
8 0.244314 0.319610 0.056813 0.379264
9 0.244317 0.319603 0.056817 0.379264

10 0.244318 0.319602 0.056818 0.379262
11 0.244318 0.319602 0.056818 0.379261
12 0.244318 0.319602 0.056818 0.379261

ŵ(t = ∞) 0.244318 0.319602 0.056818 0.379261

An Illustrative Example, what does it mean?

We have after t-steps

ŵ(t) = Ŵ tŵ(0),

with ŵ(0) the distribution at t = 0 and Ŵ representing the
transition probability matrix.

An Illustrative Example, understanding the basics

We can always expand ŵ(0) in terms of the right eigenvectors v̂ of
Ŵ as

ŵ(0) =
∑
i

αi v̂i ,

resulting in

ŵ(t) = Ŵ tŵ(0) = Ŵ t
∑
i

αi v̂i =
∑
i

λti αi v̂i ,

with λi the i th eigenvalue corresponding to the eigenvector v̂i .
If we assume that λ0 is the largest eigenvector we see that in the
limit t →∞, ŵ(t) becomes proportional to the corresponding
eigenvector v̂0. This is our steady state or final distribution.

Simple c++ program to perform the above calculations
The c++ program we have included here (using Armadillo)
performs the above operations for, in this case, a 5× 5 matrix. The
largest eigenvalue is 1.
#include <iostream>
#include "armadillo"
using namespace arma;
using namespace std;

int main()
{

int dim = 5;
mat W = zeros<mat>(dim,dim);
vec wold = zeros<mat>(dim);
vec wnew = zeros<mat>(dim);
vec eigenvector = zeros<mat>(dim);
// Initializing the first vector
wold(0) = 1.0;
// Setting up the stochastic matrix W
W(0,0) = 0.; W(0,1) = 0.; W(0,2) = 0.25; W(0,3) = 0.0; W(0,4) = 0.;
W(1,0) = 0.; W(1,1) = 0.; W(1,2) = 0.25; W(1,3) = 0.; W(1,4) = 0.0;
W(2,0) = 0.5; W(2,1) = 1.0; W(2,2) = 0.; W(2,3) = 0.5; W(2,4) = 0.;
W(3,0) = 0.0; W(3,1) = 0.; W(3,2) = 0.25; W(3,3) = 0.; W(3,4) = 0.;
W(4,0) = 0.5; W(4,1) = 0.; W(4,2) = 0.25; W(4,3) = 0.5; W(4,4) = 1.0;
double eps = 1.0E-10;
W.print("W =");
double difference = norm(wold-wnew, 2);
int count = 0;
do{

// Multiplying the old vector with the transition probability
count += 1;
wnew = W*wold;
difference = norm(wold-wnew, 2);
wold = wnew;
cout << "Iteration number = " << count << endl;
wnew.print("New vector =");

} while(difference > eps);

// Getting the eigenvectors and eigenvalues of the stochastic matrix
cx_vec eigval;
eig_gen(eigval, W);
eigval.print("Eigenvalues=");
return 0;

}

Entropy and the most likely state
1D-randomwalk: A walker makes several steps,
with a given number of walks pr. trial.
It computes the entropy by filling in bins with counts

import numpy, sys, math

def mc_trial(number_walks,move_probability,walk_cum,walk2_cum, probability):
"""
Do a MonteCarlo trial, that is,
random-walk one particle.

Input:
- number_walks: Number of steps to walk the particle
- move_probability: Probability that the particle

will step right when doing a step
- walk_cum: Numpy-array of length number_walks + 1,

containing the sum of the position
of the particles as a function of time
(usefull to calculate mean pos. as a function
of time)

- walk2_cum: Same as walk_cum, but with the sum of the
positions squared

- probability: Number of times each gridpoint is hit

Output: As walk_cum, walk2_cum, and probability are (pointers to)
numpy arrays, they are altered also in the calling function.
"""
#Initial pos. As walk_cum[0]=walk2_cum[0] = 0.0
#by initialization, it is uneccessary to add this step to
#the arrays...
pos = 0;

for walk in xrange(number_walks+1):
if numpy.random.random() <= move_probability:

pos += 1
else:

pos -= 1
walk_cum[walk] += pos
walk2_cum[walk] += pos**2
#Zero-position of the array is the leftmost
#end of the grid
probability[pos+number_walks] += 1

def mc_sample(length,trials, number_walks, move_probability):
"""
Generate the probability distribution for finding
a walker at a gridpoint, after a number of walks on a
1d lattice with wrap-around boundary conditions

Input:
- length: Lattice-points away from x=0
- trials: Number of MonteCarlo trials (number of walkers)
- move_probability: Probability of moving right

Output:
Normalized probability of finding a walker on a
specific grid position
"""

#Grid position of every walker
x = numpy.zeros(trials,numpy.int)

#Loop over timesteps and walkers,
#and find the walkers "ending positions"
for t in xrange(number_walks):

for i in xrange(trials):
if numpy.random.random() <= move_probability:

x[i] += 1
#Wraparound?
if x[i] > length:

x[i] = -length
else:

x[i] -= 1
if x[i] < -length:

x[i] = +length

#Calculate the probability of finding a walker
#each grid-position
probability = numpy.zeros(2*length+1)
for i in xrange(len(probability)):

pos = i-length
#count number of occurences of this pos i x array
count = 0
for j in xrange(len(x)):

if x[j] == pos:
count += 1

#Normalize and save
probability[i] = count/float(trials)

return probability

#Main program

length = 10
trials = 100000
number_walks = 100
move_probability = 0.5

#Do the MC
probability = mc_sample(length,trials,number_walks,move_probability);

#Not reliable: ln(0)
#entropy = - numpy.sum(probability*numpy.log(probability))

entropy = 0.0
for i in xrange(len(probability)):

if probability[i] > 0.0:
entropy -= probability[i]*math.log(probability[i])

print "Timesteps =",number_walks
print "Walkers (num. trials) =",trials
print "Entropy =",entropy
print
if len(probability) <= 101:

print "Probability distribution (Flat => high entropy):"
print probability

else:
print "Probability distribution to big to print"

The Metropolis Algorithm and Detailed Balance

Let us recapitulate some of our results about Markov chains and
random walks.

I The time development of our PDF w(t), after

one time-step from t = 0 is given by

wi (t = ε) = W (j → i)wj(t = 0).

This equation represents the discretized time-development of an
original PDF. We can rewrite this as a

wi (t = ε) = Wijwj(t = 0).

with the transition matrix W for a random walk given by

Wij(ε) = W (il − jl , ε) =

{ 1
2 |i − j | = 1
0 else

The Metropolis Algorithm and Detailed Balance

We call Wij for the transition probability and we represent it as a
matrix.

I Both W and w represent probabilities and they have to be
normalized, meaning that at each time step we have∑

i

wi (t) = 1,

and ∑
j

W (j → i) = 1.

Here we have written the previous matrix Wij = W (j → i).

The Metropolis Algorithm and Detailed Balance

The further constraints are 0 ≤Wij ≤ 1 and 0 ≤ wj ≤ 1.
I We can thus write the action of W as

wi (t + 1) =
∑
j

Wijwj(t),

or as vector-matrix relation

ŵ(t + 1) = Ŵ ŵ(t),

and if we have that ||ŵ(t + 1)− ŵ(t)|| → 0, we say that we have
reached the most likely state of the system, the so-called steady
state or equilibrium state.

The Metropolis Algorithm and Detailed Balance

Another way of phrasing this is

w(t =∞) = Ww(t =∞). (3)

The Metropolis Algorithm and Detailed Balance
The question then is how can we model anything under such a
severe lack of knowledge? The Metropolis algorithm comes to our
rescue here. Since W (j → i) is unknown, we model it as the
product of two probabilities, a probability for accepting the
proposed move from the state j to the state j , and a probability for
making the transition to the state i being in the state j . We label
these probabilities A(j → i) and T (j → i), respectively. Our total
transition probability is then

W (j → i) = T (j → i)A(j → i).

The algorithm can then be expressed as

I We make a suggested move to the new state i with some
transition or moving probability Tj→i .

I We accept this move to the new state with an acceptance
probability Aj→i . The new state i is in turn used as our new
starting point for the next move. We reject this proposed
moved with a 1−Aj→i and the original state j is used again as
a sample.

The Metropolis Algorithm and Detailed Balance

We wish to derive the required properties of the probabilities T and
A such that w (t→∞)

i → wi , starting from any distribution, will lead
us to the correct distribution.
We can now derive the dynamical process towards equilibrium. To
obtain this equation we note that after t time steps the probability
for being in a state i is related to the probability of being in a state
j and performing a transition to the new state together with the
probability of actually being in the state i and making a move to
any of the possible states j from the previous time step.

The Metropolis Algorithm and Detailed Balance

We can express this as, assuming that T and A are
time-independent,

wi (t + 1) =
∑
j

[wj(t)Tj→iAj→i + wi (t)Ti→j (1− Ai→j)] .

The Metropolis Algorithm and Detailed Balance

All probabilities are normalized, meaning that
∑

j Ti→j = 1. Using
the latter, we can rewrite the previous equation as

wi (t + 1) = wi (t) +
∑
j

[wj(t)Tj→iAj→i − wi (t)Ti→jAi→j] ,

which can be rewritten as

wi (t + 1)− wi (t) =
∑
j

[wj(t)Tj→iAj→i − wi (t)Ti→jAi→j] .

The Metropolis Algorithm and Detailed Balance
The last equation is very similar to the so-called Master equation,
which relates the temporal dependence of a PDF wi (t) to various
transition rates. The equation can be derived from the so-called
Chapman-Einstein-Enskog-Kolmogorov equation. The equation is
given as

dwi (t)

dt
=
∑
j

[W (j → i)wj −W (i → j)wi] , (4)

which simply states that the rate at which the systems moves from
a state j to a final state i (the first term on the right-hand side of
the last equation) is balanced by the rate at which the system
undergoes transitions from the state i to a state j (the second
term). If we have reached the so-called steady state, then the
temporal development is zero. This means that in equilibrium we
have

dwi (t)

dt
= 0.

The Metropolis Algorithm and Detailed Balance
In the limit t →∞ we require that the two distributions
wi (t + 1) = wi and wi (t) = wi and we have∑

j

wjTj→iAj→i =
∑
j

wiTi→jAi→j ,

which is the condition for balance when the most likely state (or
steady state) has been reached. We see also that the right-hand
side can be rewritten as∑

j

wiTi→jAi→j =
∑
j

wiWi→j ,

and using the property that
∑

j Wi→j = 1, we can rewrite our
equation as

wi =
∑
j

wjTj→iAj→i =
∑
j

wjWj→i ,

which is nothing but the standard equation for a Markov chain
when the steady state has been reached.

The Metropolis Algorithm and Detailed Balance

However, the condition that the rates should equal each other is in
general not sufficient to guarantee that we, after many simulations,
generate the correct distribution. We may risk to end up with
so-called cyclic solutions. To avoid this we therefore introduce an
additional condition, namely that of detailed balance

W (j → i)wj = W (i → j)wi .

These equations were derived by Lars Onsager when studying
irreversible processes. At equilibrium detailed balance gives thus

W (j → i)

W (i → j)
=

wi

wj
.

Rewriting the last equation in terms of our transition probabilities
T and acceptance probobalities A we obtain

wj(t)Tj→iAj→i = wi (t)Ti→jAi→j .

The Metropolis Algorithm and Detailed Balance

Since we normally have an expression for the probability distribution
functions wi , we can rewrite the last equation as

Tj→iAj→i

Ti→jAi→j
=

wi

wj
.

The Metropolis Algorithm and Detailed Balance

In statistical physics this condition ensures that it is e.g., the
Boltzmann distribution which is generated when equilibrium is
reached.
We introduce now the Boltzmann distribution

wi =
exp (−β(Ei))

Z
,

which states that the probability of finding the system in a state i
with energy Ei at an inverse temperature β = 1/kBT is
wi ∝ exp (−β(Ei)). The denominator Z is a normalization constant
which ensures that the sum of all probabilities is normalized to one.
It is defined as the sum of probabilities over all microstates j of the
system

Z =
∑
j

exp (−β(Ei)).

The Metropolis Algorithm and Detailed Balance
From the partition function we can in principle generate all
interesting quantities for a given system in equilibrium with its
surroundings at a temperature T .
With the probability distribution given by the Boltzmann
distribution we are now in a position where we can generate
expectation values for a given variable A through the definition

〈A〉 =
∑
j

Ajwj =

∑
j Aj exp (−β(Ej)

Z
.

In general, most systems have an infinity of microstates making
thereby the computation of Z practically impossible and a brute
force Monte Carlo calculation over a given number of randomly
selected microstates may therefore not yield those microstates
which are important at equilibrium. To select the most important
contributions we need to use the condition for detailed balance.
Since this is just given by the ratios of probabilities, we never need
to evaluate the partition function Z .

The Metropolis Algorithm and Detailed Balance

For the Boltzmann distribution, detailed balance results in

wi

wj
= exp (−β(Ei − Ej)).

Let us now specialize to a system whose energy is defined by the
orientation of single spins. Consider the state i , with given energy
Ei represented by the following N spins

↑ ↑ ↑ . . . ↑ ↓ ↑ . . . ↑ ↓
1 2 3 . . . k − 1 k k + 1 . . . N − 1 N

The Metropolis Algorithm and Detailed Balance

We are interested in the transition with one single spinflip to a new
state j with energy Ej

↑ ↑ ↑ . . . ↑ ↑ ↑ . . . ↑ ↓
1 2 3 . . . k − 1 k k + 1 . . . N − 1 N

This change from one microstate i (or spin configuration) to
another microstate j is the configuration space analogue to a
random walk on a lattice. Instead of jumping from one place to
another in space, we ’jump’ from one microstate to another.

The Metropolis Algorithm and Detailed Balance

However, the selection of states has to generate a final distribution
which is the Boltzmann distribution. This is again the same we saw
for a random walker, for the discrete case we had always a binomial
distribution, whereas for the continuous case we had a normal
distribution. The way we sample configurations should result, when
equilibrium is established, in the Boltzmann distribution. Else, our
algorithm for selecting microstates is wrong.
As stated above, we do in general not know the closed-form
expression of the transition rate and we are free to model it as
W (i → j) = T (i → j)A(i → j). Our ratio between probabilities
gives us

Aj→i

Ai→j
=

wiTi→j

wjTj→i
.

The simplest form of the Metropolis algorithm (sometimes called
for brute force Metropolis) assumes that the transition probability
T (i → j) is symmetric, implying that T (i → j) = T (j → i).

The Metropolis Algorithm and Detailed Balance

We obtain then (using the Boltzmann distribution)

A(j → i)

A(i → j)
= exp (−β(Ei − Ej)).

We are in this case interested in a new state Ej whose energy is
lower than Ei , viz., ∆E = Ej − Ei ≤ 0. A simple test would then be
to accept only those microstates which lower the energy. Suppose
we have ten microstates with energy
E0 ≤ E1 ≤ E2 ≤ E3 ≤ · · · ≤ E9. Our desired energy is E0.

The Metropolis Algorithm and Detailed Balance

At a given temperature T we start our simulation by randomly
choosing state E9. Flipping spins we may then find a path from
E9 → E8 → E7 · · · → E1 → E0. This would however lead to biased
statistical averages since it would violate the ergodic hypothesis
discussed in the previous section. This principle states that it
should be possible for any Markov process to reach every possible
state of the system from any starting point if the simulations is
carried out for a long enough time.
Any state in a Boltzmann distribution has a probability different
from zero and if such a state cannot be reached from a given
starting point, then the system is not ergodic. This means that
another possible path to E0 could be
E9 → E7 → E8 · · · → E9 → E5 → E0 and so forth. Even though
such a path could have a negligible probability it is still a possibility,
and if we simulate long enough it should be included in our
computation of an expectation value.

The Metropolis Algorithm and Detailed Balance

Thus, we require that our algorithm should satisfy the principle of
detailed balance and be ergodic. The problem with our ratio

A(j → i)

A(i → j)
= exp (−β(Ei − Ej)),

is that we do not know the acceptance probability. This equation
only specifies the ratio of pairs of probabilities. Normally we want
an algorithm which is as efficient as possible and maximizes the
number of accepted moves. Moreover, we know that the acceptance
probability has 0 as its smallest value and 1 as its largest. If we
assume that the largest possible acceptance probability is 1, we
adjust thereafter the other acceptance probability to this constraint.

The Metropolis Algorithm and Detailed Balance

To understand this better, assume that we have two energies, Ei

and Ej , with Ei < Ej . This means that the largest acceptance value
must be A(j → i) since we move to a state with lower energy. It
follows from also from the fact that the probability wi is larger than
wj . The trick then is to fix this value to A(j → i) = 1. It means
that the other acceptance probability has to be

A(i → j) = exp (−β(Ej − Ei)).

The Metropolis Algorithm and Detailed Balance

One possible way to encode this equation reads

A(j → i) =

{
exp (−β(Ei − Ej)) Ei − Ej > 0

1 else
,

implying that if we move to a state with a lower energy, we always
accept this move with acceptance probability A(j → i) = 1. If the
energy is higher, we need to check this acceptance probability with
the ratio between the probabilities from our PDF. From a practical
point of view, the above ratio is compared with a random number.
If the ratio is smaller than a given random number we accept the
move to a higher energy, else we stay in the same state.

The Metropolis Algorithm and Detailed Balance

Nothing hinders us obviously in choosing another acceptance ratio,
like a weighting of the two energies via

A(j → i) = exp (−1
2
β(Ei − Ej)).

However, it is easy to see that such an acceptance ratio would
result in fewer accepted moves.

Two examples that illustrate the Metropolis algorithm

Let us look at two simple examples that illustrate the Metropolis
algorithm.
We have the ratio

wjTj→iAj→i = wiTi→jAi→j .

Let us assume for the first example that we have two states only
and that we know the likelihoods w1 = 1/3 and w2 = 2/3. Can we
find A and T using the ratios

w2

w1
= 2

w1

w2
=

1
2

?

Two examples that illustrate the Metropolis algorithm

We have the first case

w2

w1
= 2 =

T1→2A1→2

T2→1A2→1
,

and using the Metropolis algorithm we have then that since the
likelihood for moving to state 2 is larger than one, then we have

T1→2A1→2 = 1,

and assuming in a very democratic way that T1→2 = T2→1 = 1/2,
we have then that the transition matrix takes the values

W1→2 = T1→2A1→2 =
1
2
.

The other value

For the second case

w1

w2
=

1
2

=
T2→1A2→1

T1→2A1→2
,

we have then
T2→1A2→1 =

1
2
× 1

2
,

since we have T1→2 = T2→1 = 1/2 we end with

W2→1 = T2→1A2→1 =
1
4
.

The transition matrix

Summing up, our total transition likelihood written in terms of a
matrix reads

Ŵ =

[
W11 W12
W21 W22

]
=

[
? 1

2
1
4 ?

]
,

and using the normalization requirement for the column elements
we obtain

Ŵ =

[3
4

1
2

1
4

1
2

]
,

and this matrix has eigenvalues λ0 = 1 and λ1 = 1/4. The most
likely state is the one with the largest eigenvalue.

And the code which finds the most likely state
int main()
{

int dim = 2;
mat W = zeros<mat>(dim,dim);
vec wold = zeros<mat>(dim);
vec wnew = zeros<mat>(dim);
vec eigenvector = zeros<mat>(dim);
// Initializing the first vector
wold(0) = 1.0;
// Setting up the stochastic matrix W
W(0,0) = 0.75; W(0,1) = 0.5;
W(1,0) = 0.25; W(1,1) = 0.5;
double eps = 1.0E-10;
W.print("W =");
double difference = norm(wold-wnew, 2);
int count = 0;
do{

// Multiplying the old vector with the transition probability
count += 1;
wnew = W*wold;
difference = norm(wold-wnew, 2);
wold = wnew;
cout << "Iteration number = " << count << endl;
wnew.print("New vector =");

} while(difference > eps);
return 0;

}

https://github.com/CompPhysics/ComputationalPhysics/blob/master/doc/Programs/LecturePrograms/programs/RandomWalks/cpp/MetropolisTest.cpp

And the output

W =
0.7500 0.5000
0.2500 0.5000

Iteration number = 1
New vector =

0.7500
0.2500

...
Iteration number = 16
New vector =

0.6667
0.3333

Iteration number = 17
New vector =

0.6667
0.3333

We obtain the likelihoods we started with for the states w1 and
w2!! We have thus shown that the Metropolis algorithm gives the
correct likelihoods for this simple example!

The next example
We are going to study one single particle in equilibrium with its
surroundings, the latter modelled via a large heat bath with
temperature T .
The model used to describe this particle is that of an ideal gas in
one dimension and with velocity −v or v . We are interested in
finding P(v)dv , which expresses the probability for finding the
system with a given velocity v ∈ [v , v + dv]. The energy for this
one-dimensional system is

E =
1
2
kT =

1
2
v2,

with mass m = 1.
We will use the Boltzmann distribution

P(β) =
e−βE

Z
,

with β = 1/kT being the inverse temperature, E is the energy of
the system and Z is the partition function.

The python code
Program to test the Metropolis algorithm with one particle at given temp in
one dimension
#!/usr/bin/env python
import numpy as np
import matplotlib.mlab as mlab
import matplotlib.pyplot as plt
import random
from math import sqrt, exp, log
initialize the rng with a seed
random.seed()
Hard coding of input parameters
MCcycles = 100000
Temperature = 2.0
beta = 1./Temperature
InitialVelocity = -2.0
CurrentVelocity = InitialVelocity
Energy = 0.5*InitialVelocity*InitialVelocity
VelocityRange = 10*sqrt(Temperature)
VelocityStep = 2*VelocityRange/10.
AverageEnergy = Energy
AverageEnergy2 = Energy*Energy
VelocityValues = np.zeros(MCcycles)
The Monte Carlo sampling with Metropolis starts here
for i in range (1, MCcycles, 1):

TrialVelocity = CurrentVelocity + (2.0*random.random() - 1.0)*VelocityStep
EnergyChange = 0.5*(TrialVelocity*TrialVelocity -CurrentVelocity*CurrentVelocity);
if random.random() <= exp(-beta*EnergyChange):

CurrentVelocity = TrialVelocity
Energy += EnergyChange
VelocityValues[i] = CurrentVelocity

AverageEnergy += Energy
AverageEnergy2 += Energy*Energy

#Final averages
AverageEnergy = AverageEnergy/MCcycles
AverageEnergy2 = AverageEnergy2/MCcycles
Variance = AverageEnergy2 - AverageEnergy*AverageEnergy
print(AverageEnergy, Variance)
n, bins, patches = plt.hist(VelocityValues, 400, facecolor=’green’)

plt.xlabel(’v’)
plt.ylabel(’Velocity distribution P(v)’)
plt.title(r’Velocity histogram at $k_BT=2$’)
plt.axis([-5, 5, 0, 600])
plt.grid(True)
plt.show()

Brief Summary
The Monte Carlo approach, combined with the theory for Markov
chains can be summarized as follows: A Markov chain Monte Carlo
method for the simulation of a distribution w is any method
producing an ergodic Markov chain of events x whose stationary
distribution is w . The Metropolis algorithm can be phrased as

I Generate an initial value x (i).
I Generate a trial value yt with probability T (yt |x (i)). The latter

quantity represents the probability of generating yt given x (i).
I Take a new value

x (i+1) =

{
yt with probability = A(x (i) → yt)

x (i) with probability = 1− A(x (i) → yt)

I We have defined the transition (acceptance) probability as

A(x → y) = min
{
w(y)T (x |y)

w(x)T (y |x)
, 1
}
.

Diffusion

Diffusion and the diffusion equation are central topics in both
Physics and Mathematics, and their ranges of applicability span
from stellar dynamics to the diffusion of particles governed by
Schroedinger’s equation. The latter is, for a free particle, nothing
but the diffusion equation in complex time!
Let us consider the one-dimensional diffusion equation. We study a
large ensemble of particles performing Brownian motion along the
x-axis. There is no interaction between the particles.
We define w(x , t)dx as the probability of finding a given number of
particles in an interval of length dx in x ∈ [x , x + dx] at a time t.
This quantity is our probability distribution function (PDF).

Diffusion Equation

From experiment there are strong indications that the flux of
particles j(x , t), viz., the number of particles passing x at a time t
is proportional to the gradient of w(x , t). This proportionality is
expressed mathematically through

j(x , t) = −D ∂w(x , t)

∂x
,

where D is the so-called diffusion constant, with dimensionality
length2 per time.

Diffusion Equation, continuity equation

If the number of particles is conserved, we have the continuity
equation

∂j(x , t)

∂x
= −∂w(x , t)

∂t
,

which leads to

∂w(x , t)

∂t
= D

∂2w(x , t)

∂x2 , (5)

which is the diffusion equation in one dimension.

Diffusion Equation, expectation values

With the probability distribution function w(x , t)dx we can
evaluate expectation values such as the mean distance

〈x(t)〉 =

∫ ∞
−∞

xw(x , t)dx ,

or

〈x2(t)〉 =

∫ ∞
−∞

x2w(x , t)dx ,

which allows for the computation of the variance
σ2 = 〈x2(t)〉 − 〈x(t)〉2. Note well that these expectation values are
time-dependent.

Diffusion Equation, other expectation values

In a similar way we can also define expectation values of functions
f (x , t) as

〈f (x , t)〉 =

∫ ∞
−∞

f (x , t)w(x , t)dx .

The normalization condition∫ ∞
−∞

w(x , t)dx = 1

imposes significant constraints on w(x , t).

Diffusion Equation, normalization condition

We have

w(x = ±∞, t) = 0
∂nw(x , t)

∂xn
|x=±∞ = 0,

implying that when we study the time-derivative ∂〈x(t)〉/∂t, we
obtain after integration by parts and using Eq. (5)

∂〈x〉
∂t

=

∫ ∞
−∞

x
∂w(x , t)

∂t
dx = D

∫ ∞
−∞

x
∂2w(x , t)

∂x2 dx ,

leading to

∂〈x〉
∂t

= Dx
∂w(x , t)

∂x
|x=±∞ − D

∫ ∞
−∞

∂w(x , t)

∂x
dx .

Diffusion Equation

The result is

∂〈x〉
∂t

= 0.

This means in turn that 〈x〉 is independent of time. If we choose
the initial position x(t = 0) = 0, the average displacement 〈x〉 = 0.
If we link this discussion to a random walk in one dimension with
equal probability of jumping to the left or right and with an initial
position x = 0, then our probability distribution remains centered
around 〈x〉 = 0 as function of time.

Diffusion Equation, the variance

The variance is not necessarily 0. Consider first

∂〈x2〉
∂t

= Dx2∂w(x , t)

∂x
|x=±∞ − 2D

∫ ∞
−∞

x
∂w(x , t)

∂x
dx ,

where we have performed an integration by parts as we did for ∂〈x〉
∂t .

Diffusion Equation, final expression for the variance

Integration by parts results in

∂〈x2〉
∂t

= −Dxw(x , t)|x=±∞ + 2D
∫ ∞
−∞

w(x , t)dx = 2D,

leading to

〈x2〉 = 2Dt,

and the variance as

〈x2〉 − 〈x〉2 = 2Dt. (6)

The root mean square displacement after a time t is then√
〈x2〉 − 〈x〉2 =

√
2Dt.

Diffusion Equation, interpretation

This should be contrasted to the displacement of a free particle
with initial velocity v0. In that case the distance from the initial
position after a time t is x(t) = vt whereas for a diffusion process
the root mean square value is

√
〈x2〉 − 〈x〉2 ∝

√
t. Since diffusion

is strongly linked with random walks, we could say that a random
walker escapes much more slowly from the starting point than
would a free particle.

Diffusion Equation, simple illustration

w(x , t)dx =
1√
4πDt

exp (− x2

4Dt
)dx .

At a time t = 2s the new variance is σ2 = 4Ds, implying that the
root mean square value is

√
〈x2〉 − 〈x〉2 = 2

√
D. At a further time

t = 8 we have
√
〈x2〉 − 〈x〉2 = 4

√
D. While time has elapsed by a

factor of 4, the root mean square has only changed by a factor of 2.

Random Walks

Consider

〈x(n)〉 =
n∑
i

∆xi = 0 ∆xi = ±l ,

since we have an equal probability of jumping either to the left or
to right. The value of 〈x(n)2〉 is

〈x(n)2〉 =

(
n∑
i

∆xi

) n∑
j

∆xj

 =
n∑
i

∆x2
i +

n∑
i 6=j

∆xi∆xj = l2n.

Random Walks

For many enough steps the non-diagonal contribution is

N∑
i 6=j

∆xi∆xj = 0,

since ∆xi ,j = ±l . The variance is then

〈x(n)2〉 − 〈x(n)〉2 = l2n. (7)

It is also rather straightforward to compute the variance for L 6= R .
The result is

〈x(n)2〉 − 〈x(n)〉2 = 4LRl2n.

Random Walks

In Eq. (7) the variable n represents the number of time steps. If we
define n = t/∆t, we can then couple the variance result from a
random walk in one dimension with the variance from the diffusion
equation of Eq. (6) by defining the diffusion constant as

D =
l2

∆t
.

Random Walks, simple program
The main program reads the name of the output file from screen
and sets up the arrays containing the walker’s position after a given
number of steps. The corresponding program for a two-dimensional
random walk (not listed in the main text) is found under
programs/chapter12/program2.cpp
/*

1-dim random walk program.
A walker makes several trials steps with
a given number of walks per trial

*/
#include <iostream>
#include <fstream>
#include <iomanip>
#include "lib.h"
using namespace std;

// Function to read in data from screen, note call by reference
void initialise(int&, int&, double&) ;
// The Mc sampling for random walks
void mc_sampling(int, int, double, int *, int *);
// prints to screen the results of the calculations
void output(int, int, int *, int *);

int main()
{

int max_trials, number_walks;
double move_probability;
// Read in data
initialise(max_trials, number_walks, move_probability) ;
int *walk_cumulative = new int [number_walks+1];
int *walk2_cumulative = new int [number_walks+1];
for (int walks = 1; walks <= number_walks; walks++){

walk_cumulative[walks] = walk2_cumulative[walks] = 0;
} // end initialization of vectors
// Do the mc sampling
mc_sampling(max_trials, number_walks, move_probability,

walk_cumulative, walk2_cumulative);
// Print out results
output(max_trials, number_walks, walk_cumulative,

walk2_cumulative);
delete [] walk_cumulative; // free memory
delete [] walk2_cumulative;
return 0;

} // end main function
\end{lstlisting}
The input and output functions are
\begin{lstlisting}
void initialise(int& max_trials, int& number_walks, double& move_probability)
{

cout << "Number of Monte Carlo trials =";
cin >> max_trials;
cout << "Number of attempted walks=";
cin >> number_walks;
cout << "Move probability=";
cin >> move_probability;

} // end of function initialise

Random walk

The algorithm tests the probability of moving to the left or to the
right by generating a random number.
void mc_sampling(int max_trials, int number_walks,

double move_probability, int *walk_cumulative,
int *walk2_cumulative)

{
long idum;
idum=-1; // initialise random number generator
for (int trial=1; trial <= max_trials; trial++){

int position = 0;
for (int walks = 1; walks <= number_walks; walks++){

if (ran0(&idum) <= move_probability) {
position += 1;

}
else {

position -= 1;
}
walk_cumulative[walks] += position;
walk2_cumulative[walks] += position*position;

} // end of loop over walks
} // end of loop over trials

} // end mc_sampling function

Simple python code with visualization of one-dimensional
random walk

The python code here is just a mere rewriting of the above c++
code, with the difference that it employs matplotlib and gives the
final plot.
#
1D-randomwalk: A walker makes several steps,
with a given number of walks pr. trial
#
import numpy, sys
from matplotlib import pyplot as plt
import numpy as np

def mc_trial(number_walks,move_probability,walk_cum,walk2_cum):
"""
Do a MonteCarlo trial, that is,
random-walk one particle.

Input:
- number_walks: Number of steps to walk the particle
- move_probability: Probability that the particle

will step right when doing a step
- walk_cum: Numpy-array of length number_walks + 1,

containing the sum of the position
of the particles as a function of time
(usefull to calculate mean pos. as a function
of time)

- walk2_cum: Same as walk_cum, but with the sum of the
positions squared

Output: As walk_cum and walk2_cum are numpy arrays, they are altered.
"""
#Initial pos. As walk_cum[0]=walk2_cum[0] = 0.0
#by initialization, it is uneccessary to add this step to
#the arrays...
pos = 0;

for walk in range(number_walks+1):
if numpy.random.random() <= move_probability:

pos += 1
else:

pos -= 1
walk_cum[walk] += pos
walk2_cum[walk] += pos**2

def mc_sample(trials, number_walks, move_probability):
"""
Run as many trials as asked for by input variable trials.
Wrapper to mc_trial, split out for easier paralellization

Output: NumPy arrays walk_cum and walk2_cum, length number_walks + 1
"""

walk_cum = numpy.zeros(number_walks+1)
walk2_cum = numpy.zeros(number_walks+1)
for trial in range(trials):

mc_trial(number_walks,move_probability,walk_cum,walk2_cum)

return (walk_cum,walk2_cum)

#Main program

initialize, values can easily be changed
trials = 10000
number_walks = 100
move_probability = 0.5

#Do the MC
(walk_cum,walk2_cum) = mc_sample(trials,number_walks, move_probability);
Dim = len(walk_cum)
x = np.zeros(Dim)
xaverage = np.zeros(Dim)
variance = np.zeros(Dim)
#Output
for i in range(Dim):

x[i] = i
#Normalize to number of trials (= number of walkers)
xaverage[i] = walk_cum[i]/float(trials)
x2average = walk2_cum[i]/float(trials)
variance[i] = x2average - xaverage[i]**2

plt.figure(1)
plt.subplot(211)
plt.xlabel(r’Steps’)
plt.ylabel(r’Average displacement Δx’)
plt.plot(x, xaverage, ’b-’)
plt.subplot(212)
plt.plot(x, variance, ’r-’)
plt.ylabel(r’Variance $\langle\Delta x)^2\rangle-\langle x\rangle^2$’)
plt.savefig(’rw.pdf’)
plt.show()

