
Computational Physics Lectures:
Random walks, Brownian motion and

the Metropolis algorithm

Morten Hjorth-Jensen1,2

1Department of Physics, University of Oslo
2Department of Physics and Astronomy and National Superconducting Cyclotron Laboratory, Michigan State University

Apr 18, 2018

Why Markov chains, Brownian motion and the Metropolis
algorithm
We want to study a physical system which evolves towards equilibrium, from
som given initial conditions. Recall the simple example of particles in a box. At
an initial time t0 all particles are in the left half of the box. Thereafter they are
allowed to diffuse into the two halves of the box.

#!/usr/bin/env python
from matplotlib import pyplot as plt
from math import exp
import numpy as np
import random

initial number of particles
N0 = 1000
MaxTime = 10*N0
values = np.zeros(MaxTime)
time = np.zeros(MaxTime)
random.seed()
initial number of particles in left half
nleft = N0
for t in range (0, MaxTime, 1):

if N0*random.random() <= nleft:
nleft -= 1

else:
nleft += 1

time[t] = t
values[t] = nleft

Finally we plot the results
plt.plot(time, values,’b-’)
plt.axis([0,MaxTime, N0/4, N0])

c© 1999-2018, Morten Hjorth-Jensen. Released under CC Attribution-NonCommercial 4.0
license

plt.xlabel(’t’)
plt.ylabel(’N’)
plt.title(’Number of particles in left half’)
plt.savefig(’box.pdf’)
plt.show()

Why Markov chains, Brownian motion and the Metropolis
algorithm
• We want to study a physical system which evolves towards equilibrium,

from given initial conditions.

• We start with a PDF w(x0, t0) and we want to understand how the system
evolves with time.

• We want to reach a situation where after a given number of time steps we
obtain a steady state. This means that the system reaches its most likely
state (equilibrium situation)

• Our PDF is normally a multidimensional object whose normalization
constant is impossible to find.

• Analytical calculations from w(x, t) are not possible.

• To sample directly from from w(x, t) is not possible/difficult.

• The transition probability W is also not known.

• How can we establish that we have reached a steady state? Sounds
impossible!

Use Markov chain Monte Carlo

Brownian motion and Markov processes
A Markov process is a random walk with a selected probability for making a
move. The new move is independent of the previous history of the system.

The Markov process is used repeatedly in Monte Carlo simulations in order
to generate new random states.

The reason for choosing a Markov process is that when it is run for a long
enough time starting with a random state, we will eventually reach the most
likely state of the system.

In thermodynamics, this means that after a certain number of Markov
processes we reach an equilibrium distribution.

This mimicks the way a real system reaches its most likely state at a given
temperature of the surroundings.

2

Brownian motion and Markov processes, Ergodicity and
Detailed balance
To reach this distribution, the Markov process needs to obey two important
conditions, that of ergodicity and detailed balance. These conditions impose
then constraints on our algorithms for accepting or rejecting new random states.

The Metropolis algorithm discussed here abides to both these constraints.
The Metropolis algorithm is widely used in Monte Carlo simulations and the

understanding of it rests within the interpretation of random walks and Markov
processes.

Brownian motion and Markov processes, jargon
In a random walk one defines a mathematical entity called a walker, whose
attributes completely define the state of the system in question.

The state of the system can refer to any physical quantities, from the
vibrational state of a molecule specified by a set of quantum numbers, to
the brands of coffee in your favourite supermarket.

The walker moves in an appropriate state space by a combination of deter-
ministic and random displacements from its previous position.

This sequence of steps forms a chain.

Brownian motion and Markov processes, sequence of ingre-
dients
• We want to study a physical system which evolves towards equilibrium,
from given initial conditions.

• Markov chains are intimately linked with the physical process of diffusion.

• From a Markov chain we can then derive the conditions for detailed balance
and ergodicity. These are the conditions needed for obtaining a steady
state.

• The widely used algorithm for doing this is the so-called Metropolis algo-
rithm, in its refined form the Metropolis-Hastings algorithm.

Applications: almost every field in science
• Financial engineering, see for example Patriarca et al, Physica 340, page
334 (2004).

• Neuroscience, see for example Lipinski, Physics Medical Biology 35, page
441 (1990) or Farnell and Gibson, Journal of Computational Physics 208,
page 253 (2005)

• Tons of applications in physics

3

http://www.sciencedirect.com/science/article/pii/S0378437104004327
http://www.sciencedirect.com/science/article/pii/S0378437104004327
http://iopscience.iop.org/article/10.1088/0031-9155/35/3/012/meta;jsessionid=FA91B191036E1F10948F7C42B6A6D295.c1
http://iopscience.iop.org/article/10.1088/0031-9155/35/3/012/meta;jsessionid=FA91B191036E1F10948F7C42B6A6D295.c1
http://www.sciencedirect.com/science/article/pii/S0021999105001087

• and chemistry

• and biology, medicine

• Nobel prize in economy to Black and Scholes

∂V

∂t
+ 1

2σ
2S2 ∂

2V

∂S2 + rS
∂V

∂S
− rV = 0.

The Black and Scholes equation is a partial differential equation, which describes
the price of the option over time. It is a diffusion equation with a random term.

The list of applications is endless

A simple example (close to project 4) and some more jargon
The obvious case is that of a random walker on a one-, or two- or three-dimensional
lattice (dubbed coordinate space hereafter).

Consider a system whose energy is defined by the orientation of single spins.
Consider the state i, with given energy Ei represented by the following N spins

↑ ↑ ↑ . . . ↑ ↓ ↑ . . . ↑ ↓
1 2 3 . . . k − 1 k k + 1 . . . N − 1 N

We may be interested in the transition with one single spinflip to a new state j
with energy Ej

↑ ↑ ↑ . . . ↑ ↑ ↑ . . . ↑ ↓
1 2 3 . . . k − 1 k k + 1 . . . N − 1 N

This change from one microstate i (or spin configuration) to another microstate
j is the configuration space analogue to a random walk on a lattice. Instead
of jumping from one place to another in space, we ’jump’ from one microstate
to another.

Markov processes
A Markov process allows in principle for a microscopic description of Brownian

motion. As with the random walk studied in the previous section, we consider a
particle which moves along the x-axis in the form of a series of jumps with step
length ∆x = l. Time and space are discretized and the subsequent moves are
statistically independent, i.e., the new move depends only on the previous step
and not on the results from earlier trials. We start at a position x = jl = j∆x
and move to a new position x = i∆x during a step ∆t = ε, where i ≥ 0 and
j ≥ 0 are integers. The original probability distribution function (PDF) of the
particles is given by wi(t = 0) where i refers to a specific position on the grid in

The function wi(t = 0) is now the discretized version of w(x, t). We can
regard the discretized PDF as a vector.

4

Markov processes
For the Markov process we have a transition probability from a position x = jl

to a position x = il given by

Wij(ε) = W (il − jl, ε) =
{ 1

2 |i− j| = 1
0 else ,

where Wij is normally called the transition probability and we can represent
it, see below, as a matrix. Here we have specialized to a case where the
transition probability is known.

Our new PDF wi(t = ε) is now related to the PDF at t = 0 through the
relation

wi(t = ε) =
∑
j

W (j → i)wj(t = 0).

This equation represents the discretized time-development of an original PDF
with equal probability of jumping left or right.

Markov processes, the probabilities
Since both W and w represent probabilities, they have to be normalized, i.e.,

we require that at each time step we have∑
i

wi(t) = 1,

and ∑
j

W (j → i) = 1,

which applies for all j-values. The further constraints are 0 ≤ Wij ≤ 1 and
0 ≤ wj ≤ 1. Note that the probability for remaining at the same place is in
general not necessarily equal zero.

Markov processes
The time development of our initial PDF can now be represented through the

action of the transition probability matrix applied n times. At a time tn = nε
our initial distribution has developed into

wi(tn) =
∑
j

Wij(tn)wj(0),

and defining

W (il − jl, nε) = (Wn(ε))ij

5

we obtain

wi(nε) =
∑
j

(Wn(ε))ijwj(0),

or in matrix form
ŵ(nε) = Ŵn(ε)ŵ(0). (1)

An Illustrative Example
The following simple example may help in understanding the meaning of the

transition matrix Ŵ and the vector ŵ. Consider the 4× 4 matrix Ŵ

Ŵ =


1/4 1/9 3/8 1/3
2/4 2/9 0 1/3
0 1/9 3/8 0

1/4 5/9 2/8 1/3

 ,

and we choose our initial state as

ŵ(t = 0) =


1
0
0
0

 .

An Illustrative Example
We note that both the vector and the matrix are properly normalized. Sum-

ming the vector elements gives one and summing over columns for the matrix
results also in one. Furthermore, the largest eigenvalue is one. We act then on
ŵ with Ŵ . The first iteration is

ŵ(t = ε) = Ŵ ŵ(t = 0),

resulting in

ŵ(t = ε) =


1/4
1/2
0

1/4

 .

An Illustrative Example, next step
The next iteration results in

ŵ(t = 2ε) = Ŵ ŵ(t = ε),

resulting in

6

ŵ(t = 2ε) =


0.201389
0.319444
0.055556
0.423611

 .

Note that the vector ŵ is always normalized to 1.

An Illustrative Example, the steady state
We find the steady state of the system by solving the set of equations

w(t =∞) = Ww(t =∞),

which is an eigenvalue problem with eigenvalue equal to one! This set of
equations reads

W11w1(t =∞) +W12w2(t =∞) +W13w3(t =∞) +W14w4(t =∞) =w1(t =∞)
W21w1(t =∞) +W22w2(t =∞) +W23w3(t =∞) +W24w4(t =∞) =w2(t =∞)
W31w1(t =∞) +W32w2(t =∞) +W33w3(t =∞) +W34w4(t =∞) =w3(t =∞)
W41w1(t =∞) +W42w2(t =∞) +W43w3(t =∞) +W44w4(t =∞) =w4(t =∞)

(2)

with the constraint that ∑
i

wi(t =∞) = 1,

yielding as solution

ŵ(t =∞) =


0.244318
0.319602
0.056818
0.379261

 .

An Illustrative Example, iterative steps
The table here demonstrates the convergence as a function of the number of

iterations or time steps. After twelve iterations we have reached the exact value
with six leading digits.

7

Iteration w1 w2 w3 w4
0 1.000000 0.000000 0.000000 0.000000
1 0.250000 0.500000 0.000000 0.250000
2 0.201389 0.319444 0.055556 0.423611
3 0.247878 0.312886 0.056327 0.382909
4 0.245494 0.321106 0.055888 0.377513
5 0.243847 0.319941 0.056636 0.379575
6 0.244274 0.319547 0.056788 0.379391
7 0.244333 0.319611 0.056801 0.379255
8 0.244314 0.319610 0.056813 0.379264
9 0.244317 0.319603 0.056817 0.379264

10 0.244318 0.319602 0.056818 0.379262
11 0.244318 0.319602 0.056818 0.379261
12 0.244318 0.319602 0.056818 0.379261

ŵ(t =∞) 0.244318 0.319602 0.056818 0.379261

An Illustrative Example, what does it mean?
We have after t-steps

ŵ(t) = Ŵ tŵ(0),

with ŵ(0) the distribution at t = 0 and Ŵ representing the transition probability
matrix.

An Illustrative Example, understanding the basics
We can always expand ŵ(0) in terms of the right eigenvectors v̂ of Ŵ as

ŵ(0) =
∑
i

αiv̂i,

resulting in

ŵ(t) = Ŵ tŵ(0) = Ŵ t
∑
i

αiv̂i =
∑
i

λtiαiv̂i,

with λi the ith eigenvalue corresponding to the eigenvector v̂i.
If we assume that λ0 is the largest eigenvector we see that in the limit t→∞,

ŵ(t) becomes proportional to the corresponding eigenvector v̂0. This is our
steady state or final distribution.

Simple c++ program to perform the above calculations
The c++ program we have included here (using Armadillo) performs the above
operations for, in this case, a 5× 5 matrix. The largest eigenvalue is 1.

8

#include <iostream>
#include "armadillo"
using namespace arma;
using namespace std;

int main()
{

int dim = 5;
mat W = zeros<mat>(dim,dim);
vec wold = zeros<mat>(dim);
vec wnew = zeros<mat>(dim);
vec eigenvector = zeros<mat>(dim);
// Initializing the first vector
wold(0) = 1.0;
// Setting up the stochastic matrix W
W(0,0) = 0.; W(0,1) = 0.; W(0,2) = 0.25; W(0,3) = 0.0; W(0,4) = 0.;
W(1,0) = 0.; W(1,1) = 0.; W(1,2) = 0.25; W(1,3) = 0.; W(1,4) = 0.0;
W(2,0) = 0.5; W(2,1) = 1.0; W(2,2) = 0.; W(2,3) = 0.5; W(2,4) = 0.;
W(3,0) = 0.0; W(3,1) = 0.; W(3,2) = 0.25; W(3,3) = 0.; W(3,4) = 0.;
W(4,0) = 0.5; W(4,1) = 0.; W(4,2) = 0.25; W(4,3) = 0.5; W(4,4) = 1.0;
double eps = 1.0E-10;
W.print("W =");
double difference = norm(wold-wnew, 2);
int count = 0;
do{

// Multiplying the old vector with the transition probability
count += 1;
wnew = W*wold;
difference = norm(wold-wnew, 2);
wold = wnew;
cout << "Iteration number = " << count << endl;
wnew.print("New vector =");

} while(difference > eps);

// Getting the eigenvectors and eigenvalues of the stochastic matrix
cx_vec eigval;
eig_gen(eigval, W);
eigval.print("Eigenvalues=");
return 0;

}

Entropy and the most likely state
1D-randomwalk: A walker makes several steps,
with a given number of walks pr. trial.
It computes the entropy by filling in bins with counts

import numpy, sys, math

def mc_trial(number_walks,move_probability,walk_cum,walk2_cum, probability):
"""
Do a MonteCarlo trial, that is,
random-walk one particle.

Input:
- number_walks: Number of steps to walk the particle
- move_probability: Probability that the particle

will step right when doing a step
- walk_cum: Numpy-array of length number_walks + 1,

containing the sum of the position

9

of the particles as a function of time
(usefull to calculate mean pos. as a function
of time)

- walk2_cum: Same as walk_cum, but with the sum of the
positions squared

- probability: Number of times each gridpoint is hit

Output: As walk_cum, walk2_cum, and probability are (pointers to)
numpy arrays, they are altered also in the calling function.
"""
#Initial pos. As walk_cum[0]=walk2_cum[0] = 0.0
#by initialization, it is uneccessary to add this step to
#the arrays...
pos = 0;

for walk in xrange(number_walks+1):
if numpy.random.random() <= move_probability:

pos += 1
else:

pos -= 1
walk_cum[walk] += pos
walk2_cum[walk] += pos**2
#Zero-position of the array is the leftmost
#end of the grid
probability[pos+number_walks] += 1

def mc_sample(length,trials, number_walks, move_probability):
"""
Generate the probability distribution for finding
a walker at a gridpoint, after a number of walks on a
1d lattice with wrap-around boundary conditions

Input:
- length: Lattice-points away from x=0
- trials: Number of MonteCarlo trials (number of walkers)
- move_probability: Probability of moving right

Output:
Normalized probability of finding a walker on a
specific grid position
"""

#Grid position of every walker
x = numpy.zeros(trials,numpy.int)

#Loop over timesteps and walkers,
#and find the walkers "ending positions"
for t in xrange(number_walks):

for i in xrange(trials):
if numpy.random.random() <= move_probability:

x[i] += 1
#Wraparound?
if x[i] > length:

x[i] = -length
else:

x[i] -= 1
if x[i] < -length:

x[i] = +length

#Calculate the probability of finding a walker
#each grid-position

10

probability = numpy.zeros(2*length+1)
for i in xrange(len(probability)):

pos = i-length
#count number of occurences of this pos i x array
count = 0
for j in xrange(len(x)):

if x[j] == pos:
count += 1

#Normalize and save
probability[i] = count/float(trials)

return probability

#Main program

length = 10
trials = 100000
number_walks = 100
move_probability = 0.5

#Do the MC
probability = mc_sample(length,trials,number_walks,move_probability);

#Not reliable: ln(0)
#entropy = - numpy.sum(probability*numpy.log(probability))

entropy = 0.0
for i in xrange(len(probability)):

if probability[i] > 0.0:
entropy -= probability[i]*math.log(probability[i])

print "Timesteps =",number_walks
print "Walkers (num. trials) =",trials
print "Entropy =",entropy
print
if len(probability) <= 101:

print "Probability distribution (Flat => high entropy):"
print probability

else:
print "Probability distribution to big to print"

The Metropolis Algorithm and Detailed Balance
Let us recapitulate some of our results about Markov chains and random

walks.

• The time development of our PDF w(t), after

one time-step from t = 0 is given by

wi(t = ε) = W (j → i)wj(t = 0).

This equation represents the discretized time-development of an original PDF.
We can rewrite this as a

wi(t = ε) = Wijwj(t = 0).

with the transition matrix W for a random walk given by

11

Wij(ε) = W (il − jl, ε) =
{ 1

2 |i− j| = 1
0 else

The Metropolis Algorithm and Detailed Balance
We call Wij for the transition probability and we represent it as a matrix.

• Both W and w represent probabilities and they have to be normalized,
meaning that at each time step we have∑

i

wi(t) = 1,

and ∑
j

W (j → i) = 1.

Here we have written the previous matrix Wij = W (j → i).

The Metropolis Algorithm and Detailed Balance
The further constraints are 0 ≤Wij ≤ 1 and 0 ≤ wj ≤ 1.

• We can thus write the action of W as

wi(t+ 1) =
∑
j

Wijwj(t),

or as vector-matrix relation

ŵ(t+ 1) = Ŵ ŵ(t),

and if we have that ||ŵ(t + 1) − ŵ(t)|| → 0, we say that we have reached the
most likely state of the system, the so-called steady state or equilibrium state.

The Metropolis Algorithm and Detailed Balance
Another way of phrasing this is

w(t =∞) = Ww(t =∞). (3)

The Metropolis Algorithm and Detailed Balance
The question then is how can we model anything under such a severe lack

of knowledge? The Metropolis algorithm comes to our rescue here. Since
W (j → i) is unknown, we model it as the product of two probabilities, a
probability for accepting the proposed move from the state j to the state j,
and a probability for making the transition to the state i being in the state j.

12

We label these probabilities A(j → i) and T (j → i), respectively. Our total
transition probability is then

W (j → i) = T (j → i)A(j → i).

The algorithm can then be expressed as

• We make a suggested move to the new state i with some transition or
moving probability Tj→i.

• We accept this move to the new state with an acceptance probability Aj→i.
The new state i is in turn used as our new starting point for the next move.
We reject this proposed moved with a 1−Aj→i and the original state j is
used again as a sample.

The Metropolis Algorithm and Detailed Balance
We wish to derive the required properties of the probabilities T and A such

that w(t→∞)
i → wi, starting from any distribution, will lead us to the correct

distribution.
We can now derive the dynamical process towards equilibrium. To obtain

this equation we note that after t time steps the probability for being in a state
i is related to the probability of being in a state j and performing a transition
to the new state together with the probability of actually being in the state i
and making a move to any of the possible states j from the previous time step.

The Metropolis Algorithm and Detailed Balance
We can express this as, assuming that T and A are time-independent,

wi(t+ 1) =
∑
j

[wj(t)Tj→iAj→i + wi(t)Ti→j (1−Ai→j)] .

The Metropolis Algorithm and Detailed Balance
All probabilities are normalized, meaning that

∑
j Ti→j = 1. Using the latter,

we can rewrite the previous equation as

wi(t+ 1) = wi(t) +
∑
j

[wj(t)Tj→iAj→i − wi(t)Ti→jAi→j] ,

which can be rewritten as

wi(t+ 1)− wi(t) =
∑
j

[wj(t)Tj→iAj→i − wi(t)Ti→jAi→j] .

13

The Metropolis Algorithm and Detailed Balance
The last equation is very similar to the so-called Master equation, which

relates the temporal dependence of a PDF wi(t) to various transition rates.
The equation can be derived from the so-called Chapman-Einstein-Enskog-
Kolmogorov equation. The equation is given as

dwi(t)
dt

=
∑
j

[W (j → i)wj −W (i→ j)wi] , (4)

which simply states that the rate at which the systems moves from a state j
to a final state i (the first term on the right-hand side of the last equation) is
balanced by the rate at which the system undergoes transitions from the state
i to a state j (the second term). If we have reached the so-called steady state,
then the temporal development is zero. This means that in equilibrium we have

dwi(t)
dt

= 0.

The Metropolis Algorithm and Detailed Balance
In the limit t→∞ we require that the two distributions wi(t+ 1) = wi and

wi(t) = wi and we have∑
j

wjTj→iAj→i =
∑
j

wiTi→jAi→j ,

which is the condition for balance when the most likely state (or steady state)
has been reached. We see also that the right-hand side can be rewritten as∑

j

wiTi→jAi→j =
∑
j

wiWi→j ,

and using the property that
∑
jWi→j = 1, we can rewrite our equation as

wi =
∑
j

wjTj→iAj→i =
∑
j

wjWj→i,

which is nothing but the standard equation for a Markov chain when the steady
state has been reached.

The Metropolis Algorithm and Detailed Balance
However, the condition that the rates should equal each other is in general

not sufficient to guarantee that we, after many simulations, generate the correct
distribution. We may risk to end up with so-called cyclic solutions. To avoid this
we therefore introduce an additional condition, namely that of detailed balance

W (j → i)wj = W (i→ j)wi.

14

These equations were derived by Lars Onsager when studying irreversible pro-
cesses. At equilibrium detailed balance gives thus

W (j → i)
W (i→ j) = wi

wj
.

Rewriting the last equation in terms of our transition probabilities T and
acceptance probobalities A we obtain

wj(t)Tj→iAj→i = wi(t)Ti→jAi→j .

The Metropolis Algorithm and Detailed Balance
Since we normally have an expression for the probability distribution functions

wi, we can rewrite the last equation as

Tj→iAj→i
Ti→jAi→j

= wi
wj
.

The Metropolis Algorithm and Detailed Balance
In statistical physics this condition ensures that it is e.g., the Boltzmann

distribution which is generated when equilibrium is reached.
We introduce now the Boltzmann distribution

wi = exp (−β(Ei))
Z

,

which states that the probability of finding the system in a state i with energy Ei
at an inverse temperature β = 1/kBT is wi ∝ exp (−β(Ei)). The denominator
Z is a normalization constant which ensures that the sum of all probabilities is
normalized to one. It is defined as the sum of probabilities over all microstates j
of the system

Z =
∑
j

exp (−β(Ei)).

The Metropolis Algorithm and Detailed Balance
From the partition function we can in principle generate all interesting quanti-

ties for a given system in equilibrium with its surroundings at a temperature
T .

With the probability distribution given by the Boltzmann distribution we are
now in a position where we can generate expectation values for a given variable
A through the definition

〈A〉 =
∑
j

Ajwj =
∑
j Aj exp (−β(Ej)

Z
.

15

In general, most systems have an infinity of microstates making thereby the
computation of Z practically impossible and a brute force Monte Carlo calculation
over a given number of randomly selected microstates may therefore not yield
those microstates which are important at equilibrium. To select the most
important contributions we need to use the condition for detailed balance. Since
this is just given by the ratios of probabilities, we never need to evaluate the
partition function Z.

The Metropolis Algorithm and Detailed Balance
For the Boltzmann distribution, detailed balance results in

wi
wj

= exp (−β(Ei − Ej)).

Let us now specialize to a system whose energy is defined by the orientation
of single spins. Consider the state i, with given energy Ei represented by the
following N spins

↑ ↑ ↑ . . . ↑ ↓ ↑ . . . ↑ ↓
1 2 3 . . . k − 1 k k + 1 . . . N − 1 N

The Metropolis Algorithm and Detailed Balance
We are interested in the transition with one single spinflip to a new state j

with energy Ej

↑ ↑ ↑ . . . ↑ ↑ ↑ . . . ↑ ↓
1 2 3 . . . k − 1 k k + 1 . . . N − 1 N

This change from one microstate i (or spin configuration) to another microstate
j is the configuration space analogue to a random walk on a lattice. Instead of
jumping from one place to another in space, we ’jump’ from one microstate to
another.

The Metropolis Algorithm and Detailed Balance
However, the selection of states has to generate a final distribution which is

the Boltzmann distribution. This is again the same we saw for a random walker,
for the discrete case we had always a binomial distribution, whereas for the
continuous case we had a normal distribution. The way we sample configurations
should result, when equilibrium is established, in the Boltzmann distribution.
Else, our algorithm for selecting microstates is wrong.

As stated above, we do in general not know the closed-form expression of the
transition rate and we are free to model it as W (i → j) = T (i → j)A(i → j).
Our ratio between probabilities gives us

Aj→i
Ai→j

= wiTi→j
wjTj→i

.

16

The simplest form of the Metropolis algorithm (sometimes called for brute force
Metropolis) assumes that the transition probability T (i → j) is symmetric,
implying that T (i→ j) = T (j → i).

The Metropolis Algorithm and Detailed Balance
We obtain then (using the Boltzmann distribution)

A(j → i)
A(i→ j) = exp (−β(Ei − Ej)).

We are in this case interested in a new state Ej whose energy is lower than Ei,
viz., ∆E = Ej − Ei ≤ 0. A simple test would then be to accept only those
microstates which lower the energy. Suppose we have ten microstates with energy
E0 ≤ E1 ≤ E2 ≤ E3 ≤ · · · ≤ E9. Our desired energy is E0.

The Metropolis Algorithm and Detailed Balance
At a given temperature T we start our simulation by randomly choosing state

E9. Flipping spins we may then find a path from E9 → E8 → E7 · · · → E1 → E0.
This would however lead to biased statistical averages since it would violate the
ergodic hypothesis discussed in the previous section. This principle states that
it should be possible for any Markov process to reach every possible state of
the system from any starting point if the simulations is carried out for a long
enough time.

Any state in a Boltzmann distribution has a probability different from zero
and if such a state cannot be reached from a given starting point, then the
system is not ergodic. This means that another possible path to E0 could be
E9 → E7 → E8 · · · → E9 → E5 → E0 and so forth. Even though such a path
could have a negligible probability it is still a possibility, and if we simulate long
enough it should be included in our computation of an expectation value.

The Metropolis Algorithm and Detailed Balance
Thus, we require that our algorithm should satisfy the principle of detailed

balance and be ergodic. The problem with our ratio

A(j → i)
A(i→ j) = exp (−β(Ei − Ej)),

is that we do not know the acceptance probability. This equation only specifies
the ratio of pairs of probabilities. Normally we want an algorithm which is as
efficient as possible and maximizes the number of accepted moves. Moreover,
we know that the acceptance probability has 0 as its smallest value and 1 as its
largest. If we assume that the largest possible acceptance probability is 1, we
adjust thereafter the other acceptance probability to this constraint.

17

The Metropolis Algorithm and Detailed Balance
To understand this better, assume that we have two energies, Ei and Ej ,

with Ei < Ej . This means that the largest acceptance value must be A(j → i)
since we move to a state with lower energy. It follows from also from the fact
that the probability wi is larger than wj . The trick then is to fix this value to
A(j → i) = 1. It means that the other acceptance probability has to be

A(i→ j) = exp (−β(Ej − Ei)).

The Metropolis Algorithm and Detailed Balance
One possible way to encode this equation reads

A(j → i) =
{

exp (−β(Ei − Ej)) Ei − Ej > 0
1 else

,

implying that if we move to a state with a lower energy, we always accept this
move with acceptance probability A(j → i) = 1. If the energy is higher, we need
to check this acceptance probability with the ratio between the probabilities
from our PDF. From a practical point of view, the above ratio is compared with
a random number. If the ratio is smaller than a given random number we accept
the move to a higher energy, else we stay in the same state.

The Metropolis Algorithm and Detailed Balance
Nothing hinders us obviously in choosing another acceptance ratio, like a

weighting of the two energies via

A(j → i) = exp (−1
2β(Ei − Ej)).

However, it is easy to see that such an acceptance ratio would result in fewer
accepted moves.

Two examples that illustrate the Metropolis algorithm
Let us look at two simple examples that illustrate the Metropolis algorithm.

We have the ratio

wjTj→iAj→i = wiTi→jAi→j .

Let us assume for the first example that we have two states only and that
we know the likelihoods w1 = 1/3 and w2 = 2/3. Can we find A and T using
the ratios

w2

w1
= 2 w1

w2
= 1

2?

18

Two examples that illustrate the Metropolis algorithm
We have the first case

w2

w1
= 2 = T1→2A1→2

T2→1A2→1
,

and using the Metropolis algorithm we have then that since the likelihood for
moving to state 2 is larger than one, then we have

T1→2A1→2 = 1,

and assuming in a very democratic way that T1→2 = T2→1 = 1/2, we have then
that the transition matrix takes the values

W1→2 = T1→2A1→2 = 1
2 .

The other value
For the second case

w1

w2
= 1

2 = T2→1A2→1

T1→2A1→2
,

we have then
T2→1A2→1 = 1

2 ×
1
2 ,

since we have T1→2 = T2→1 = 1/2 we end with

W2→1 = T2→1A2→1 = 1
4 .

The transition matrix
Summing up, our total transition likelihood written in terms of a matrix reads

Ŵ =
[
W11 W12
W21 W22

]
=
[

? 1
21

4 ?

]
,

and using the normalization requirement for the column elements we obtain

Ŵ =
[3

4
1
21

4
1
2

]
,

and this matrix has eigenvalues λ0 = 1 and λ1 = 1/4. The most likely state is
the one with the largest eigenvalue.

And the code which finds the most likely state
int main()
{

int dim = 2;
mat W = zeros<mat>(dim,dim);
vec wold = zeros<mat>(dim);

19

https://github.com/CompPhysics/ComputationalPhysics/blob/master/doc/Programs/LecturePrograms/programs/RandomWalks/cpp/MetropolisTest.cpp

vec wnew = zeros<mat>(dim);
vec eigenvector = zeros<mat>(dim);
// Initializing the first vector
wold(0) = 1.0;
// Setting up the stochastic matrix W
W(0,0) = 0.75; W(0,1) = 0.5;
W(1,0) = 0.25; W(1,1) = 0.5;
double eps = 1.0E-10;
W.print("W =");
double difference = norm(wold-wnew, 2);
int count = 0;
do{

// Multiplying the old vector with the transition probability
count += 1;
wnew = W*wold;
difference = norm(wold-wnew, 2);
wold = wnew;
cout << "Iteration number = " << count << endl;
wnew.print("New vector =");

} while(difference > eps);
return 0;

}

And the output
W =

0.7500 0.5000
0.2500 0.5000

Iteration number = 1
New vector =

0.7500
0.2500

...
Iteration number = 16
New vector =

0.6667
0.3333

Iteration number = 17
New vector =

0.6667
0.3333

We obtain the likelihoods we started with for the states w1 and w2!! We
have thus shown that the Metropolis algorithm gives the correct likelihoods for
this simple example!

The next example
We are going to study one single particle in equilibrium with its surroundings,
the latter modelled via a large heat bath with temperature T .

The model used to describe this particle is that of an ideal gas in one
dimension and with velocity −v or v. We are interested in finding P (v)dv,
which expresses the probability for finding the system with a given velocity
v ∈ [v, v + dv]. The energy for this one-dimensional system is

E = 1
2kT = 1

2v
2,

20

with mass m = 1.
We will use the Boltzmann distribution

P (β) = e−βE

Z
,

with β = 1/kT being the inverse temperature, E is the energy of the system and
Z is the partition function.

The python code
Program to test the Metropolis algorithm with one particle at given temp in
one dimension
#!/usr/bin/env python
import numpy as np
import matplotlib.mlab as mlab
import matplotlib.pyplot as plt
import random
from math import sqrt, exp, log
initialize the rng with a seed
random.seed()
Hard coding of input parameters
MCcycles = 100000
Temperature = 2.0
beta = 1./Temperature
InitialVelocity = -2.0
CurrentVelocity = InitialVelocity
Energy = 0.5*InitialVelocity*InitialVelocity
VelocityRange = 10*sqrt(Temperature)
VelocityStep = 2*VelocityRange/10.
AverageEnergy = Energy
AverageEnergy2 = Energy*Energy
VelocityValues = np.zeros(MCcycles)
The Monte Carlo sampling with Metropolis starts here
for i in range (1, MCcycles, 1):

TrialVelocity = CurrentVelocity + (2.0*random.random() - 1.0)*VelocityStep
EnergyChange = 0.5*(TrialVelocity*TrialVelocity -CurrentVelocity*CurrentVelocity);
if random.random() <= exp(-beta*EnergyChange):

CurrentVelocity = TrialVelocity
Energy += EnergyChange
VelocityValues[i] = CurrentVelocity

AverageEnergy += Energy
AverageEnergy2 += Energy*Energy

#Final averages
AverageEnergy = AverageEnergy/MCcycles
AverageEnergy2 = AverageEnergy2/MCcycles
Variance = AverageEnergy2 - AverageEnergy*AverageEnergy
print(AverageEnergy, Variance)
n, bins, patches = plt.hist(VelocityValues, 400, facecolor=’green’)

plt.xlabel(’v’)
plt.ylabel(’Velocity distribution P(v)’)
plt.title(r’Velocity histogram at $k_BT=2$’)
plt.axis([-5, 5, 0, 600])
plt.grid(True)
plt.show()

21

Brief Summary
The Monte Carlo approach, combined with the theory for Markov chains can be
summarized as follows: A Markov chain Monte Carlo method for the simulation
of a distribution w is any method producing an ergodic Markov chain of events x
whose stationary distribution is w. The Metropolis algorithm can be phrased as

• Generate an initial value x(i).

• Generate a trial value yt with probability T (yt|x(i)). The latter quantity
represents the probability of generating yt given x(i).

• Take a new value

x(i+1) =
{

yt with probability = A(x(i) → yt)
x(i) with probability = 1−A(x(i) → yt)

• We have defined the transition (acceptance) probability as

A(x→ y) = min
{
w(y)T (x|y)
w(x)T (y|x) , 1

}
.

Diffusion
Diffusion and the diffusion equation are central topics in both Physics and
Mathematics, and their ranges of applicability span from stellar dynamics to the
diffusion of particles governed by Schroedinger’s equation. The latter is, for a
free particle, nothing but the diffusion equation in complex time!

Let us consider the one-dimensional diffusion equation. We study a large
ensemble of particles performing Brownian motion along the x-axis. There is no
interaction between the particles.

We define w(x, t)dx as the probability of finding a given number of particles
in an interval of length dx in x ∈ [x, x+ dx] at a time t. This quantity is our
probability distribution function (PDF).

Diffusion Equation
From experiment there are strong indications that the flux of particles j(x, t),

viz., the number of particles passing x at a time t is proportional to the gradient
of w(x, t). This proportionality is expressed mathematically through

j(x, t) = −D∂w(x, t)
∂x

,

where D is the so-called diffusion constant, with dimensionality length2 per time.

22

Diffusion Equation, continuity equation
If the number of particles is conserved, we have the continuity equation

∂j(x, t)
∂x

= −∂w(x, t)
∂t

,

which leads to

∂w(x, t)
∂t

= D
∂2w(x, t)
∂x2 , (5)

which is the diffusion equation in one dimension.

Diffusion Equation, expectation values
With the probability distribution function w(x, t)dx we can evaluate expecta-

tion values such as the mean distance

〈x(t)〉 =
∫ ∞
−∞

xw(x, t)dx,

or

〈x2(t)〉 =
∫ ∞
−∞

x2w(x, t)dx,

which allows for the computation of the variance σ2 = 〈x2(t)〉 − 〈x(t)〉2. Note
well that these expectation values are time-dependent.

Diffusion Equation, other expectation values
In a similar way we can also define expectation values of functions f(x, t) as

〈f(x, t)〉 =
∫ ∞
−∞

f(x, t)w(x, t)dx.

The normalization condition ∫ ∞
−∞

w(x, t)dx = 1

imposes significant constraints on w(x, t).

Diffusion Equation, normalization condition
We have

w(x = ±∞, t) = 0 ∂nw(x, t)
∂xn

|x=±∞ = 0,

implying that when we study the time-derivative ∂〈x(t)〉/∂t, we obtain after
integration by parts and using Eq. (5)

23

∂〈x〉
∂t

=
∫ ∞
−∞

x
∂w(x, t)
∂t

dx = D

∫ ∞
−∞

x
∂2w(x, t)
∂x2 dx,

leading to
∂〈x〉
∂t

= Dx
∂w(x, t)
∂x

|x=±∞ −D
∫ ∞
−∞

∂w(x, t)
∂x

dx.

Diffusion Equation
The result is

∂〈x〉
∂t

= 0.

This means in turn that 〈x〉 is independent of time. If we choose the initial
position x(t = 0) = 0, the average displacement 〈x〉 = 0. If we link this discussion
to a random walk in one dimension with equal probability of jumping to the
left or right and with an initial position x = 0, then our probability distribution
remains centered around 〈x〉 = 0 as function of time.

Diffusion Equation, the variance
The variance is not necessarily 0. Consider first

∂〈x2〉
∂t

= Dx2 ∂w(x, t)
∂x

|x=±∞ − 2D
∫ ∞
−∞

x
∂w(x, t)
∂x

dx,

where we have performed an integration by parts as we did for ∂〈x〉
∂t .

Diffusion Equation, final expression for the variance
Integration by parts results in

∂〈x2〉
∂t

= −Dxw(x, t)|x=±∞ + 2D
∫ ∞
−∞

w(x, t)dx = 2D,

leading to

〈x2〉 = 2Dt,

and the variance as

〈x2〉 − 〈x〉2 = 2Dt. (6)

The root mean square displacement after a time t is then√
〈x2〉 − 〈x〉2 =

√
2Dt.

24

Diffusion Equation, interpretation
This should be contrasted to the displacement of a free particle with initial

velocity v0. In that case the distance from the initial position after a time
t is x(t) = vt whereas for a diffusion process the root mean square value is√
〈x2〉 − 〈x〉2 ∝

√
t. Since diffusion is strongly linked with random walks, we

could say that a random walker escapes much more slowly from the starting
point than would a free particle.

Diffusion Equation, simple illustration

w(x, t)dx = 1√
4πDt

exp (− x2

4Dt)dx.

At a time t = 2s the new variance is σ2 = 4Ds, implying that the root mean square
value is

√
〈x2〉 − 〈x〉2 = 2

√
D. At a further time t = 8 we have

√
〈x2〉 − 〈x〉2 =

4
√
D. While time has elapsed by a factor of 4, the root mean square has only

changed by a factor of 2.

Random Walks
Consider

〈x(n)〉 =
n∑
i

∆xi = 0 ∆xi = ±l,

since we have an equal probability of jumping either to the left or to right. The
value of 〈x(n)2〉 is

〈x(n)2〉 =
(

n∑
i

∆xi

) n∑
j

∆xj

 =
n∑
i

∆x2
i +

n∑
i 6=j

∆xi∆xj = l2n.

Random Walks
For many enough steps the non-diagonal contribution is

N∑
i 6=j

∆xi∆xj = 0,

since ∆xi,j = ±l. The variance is then

〈x(n)2〉 − 〈x(n)〉2 = l2n. (7)

It is also rather straightforward to compute the variance for L 6= R. The result
is

〈x(n)2〉 − 〈x(n)〉2 = 4LRl2n.

25

Random Walks
In Eq. (7) the variable n represents the number of time steps. If we define

n = t/∆t, we can then couple the variance result from a random walk in one
dimension with the variance from the diffusion equation of Eq. (6) by defining
the diffusion constant as

D = l2

∆t .

Random Walks, simple program
The main program reads the name of the output file from screen and sets up

the arrays containing the walker’s position after a given number of steps. The
corresponding program for a two-dimensional random walk (not listed in the
main text) is found under programs/chapter12/program2.cpp

/*
1-dim random walk program.
A walker makes several trials steps with
a given number of walks per trial

*/
#include <iostream>
#include <fstream>
#include <iomanip>
#include "lib.h"
using namespace std;

// Function to read in data from screen, note call by reference
void initialise(int&, int&, double&) ;
// The Mc sampling for random walks
void mc_sampling(int, int, double, int *, int *);
// prints to screen the results of the calculations
void output(int, int, int *, int *);

int main()
{

int max_trials, number_walks;
double move_probability;
// Read in data
initialise(max_trials, number_walks, move_probability) ;
int *walk_cumulative = new int [number_walks+1];
int *walk2_cumulative = new int [number_walks+1];
for (int walks = 1; walks <= number_walks; walks++){

walk_cumulative[walks] = walk2_cumulative[walks] = 0;
} // end initialization of vectors
// Do the mc sampling
mc_sampling(max_trials, number_walks, move_probability,

walk_cumulative, walk2_cumulative);
// Print out results
output(max_trials, number_walks, walk_cumulative,

walk2_cumulative);
delete [] walk_cumulative; // free memory
delete [] walk2_cumulative;
return 0;

} // end main function
\end{lstlisting}

26

The input and output functions are
\begin{lstlisting}
void initialise(int& max_trials, int& number_walks, double& move_probability)
{

cout << "Number of Monte Carlo trials =";
cin >> max_trials;
cout << "Number of attempted walks=";
cin >> number_walks;
cout << "Move probability=";
cin >> move_probability;

} // end of function initialise

Random walk
The algorithm tests the probability of moving to the left or to the right by

generating a random number.
void mc_sampling(int max_trials, int number_walks,

double move_probability, int *walk_cumulative,
int *walk2_cumulative)

{
long idum;
idum=-1; // initialise random number generator
for (int trial=1; trial <= max_trials; trial++){

int position = 0;
for (int walks = 1; walks <= number_walks; walks++){

if (ran0(&idum) <= move_probability) {
position += 1;

}
else {

position -= 1;
}
walk_cumulative[walks] += position;
walk2_cumulative[walks] += position*position;

} // end of loop over walks
} // end of loop over trials

} // end mc_sampling function

Simple python code with visualization of one-dimensional
random walk
The python code here is just a mere rewriting of the above c++ code, with the
difference that it employs matplotlib and gives the final plot.

#
1D-randomwalk: A walker makes several steps,
with a given number of walks pr. trial
#
import numpy, sys
from matplotlib import pyplot as plt
import numpy as np

def mc_trial(number_walks,move_probability,walk_cum,walk2_cum):
"""
Do a MonteCarlo trial, that is,
random-walk one particle.

27

Input:
- number_walks: Number of steps to walk the particle
- move_probability: Probability that the particle

will step right when doing a step
- walk_cum: Numpy-array of length number_walks + 1,

containing the sum of the position
of the particles as a function of time
(usefull to calculate mean pos. as a function
of time)

- walk2_cum: Same as walk_cum, but with the sum of the
positions squared

Output: As walk_cum and walk2_cum are numpy arrays, they are altered.
"""
#Initial pos. As walk_cum[0]=walk2_cum[0] = 0.0
#by initialization, it is uneccessary to add this step to
#the arrays...
pos = 0;

for walk in range(number_walks+1):
if numpy.random.random() <= move_probability:

pos += 1
else:

pos -= 1
walk_cum[walk] += pos
walk2_cum[walk] += pos**2

def mc_sample(trials, number_walks, move_probability):
"""
Run as many trials as asked for by input variable trials.
Wrapper to mc_trial, split out for easier paralellization

Output: NumPy arrays walk_cum and walk2_cum, length number_walks + 1
"""

walk_cum = numpy.zeros(number_walks+1)
walk2_cum = numpy.zeros(number_walks+1)
for trial in range(trials):

mc_trial(number_walks,move_probability,walk_cum,walk2_cum)

return (walk_cum,walk2_cum)

#Main program

initialize, values can easily be changed
trials = 10000
number_walks = 100
move_probability = 0.5

#Do the MC
(walk_cum,walk2_cum) = mc_sample(trials,number_walks, move_probability);
Dim = len(walk_cum)
x = np.zeros(Dim)
xaverage = np.zeros(Dim)
variance = np.zeros(Dim)
#Output
for i in range(Dim):

x[i] = i
#Normalize to number of trials (= number of walkers)
xaverage[i] = walk_cum[i]/float(trials)

28

x2average = walk2_cum[i]/float(trials)
variance[i] = x2average - xaverage[i]**2

plt.figure(1)
plt.subplot(211)
plt.xlabel(r’Steps’)
plt.ylabel(r’Average displacement Δx’)
plt.plot(x, xaverage, ’b-’)
plt.subplot(212)
plt.plot(x, variance, ’r-’)
plt.ylabel(r’Variance $\langle\Delta x)^2\rangle-\langle x\rangle^2$’)
plt.savefig(’rw.pdf’)
plt.show()

29

