
Computational Physics Lectures: Statistical physics
and the Ising Model

Morten Hjorth-Jensen1,2

Department of Physics, University of Oslo1

Department of Physics and Astronomy and National Superconducting Cyclotron
Laboratory, Michigan State University2

Apr 13, 2018
c© 1999-2018, Morten Hjorth-Jensen. Released under CC Attribution-NonCommercial 4.0 license

Ensembles

In statistical physics the concept of an ensemble is one of the
cornerstones in the definition of thermodynamical quantities. An
ensemble is a collection of microphysics systems from which we
derive expectations values and thermodynamical properties related
to experiment. As an example, the specific heat (which is a
measurable quantity in the laboratory) of a system of infinitely
many particles, can be derived from the basic interactions between
the microscopic constituents. The latter can span from electrons to
atoms and molecules or a system of classical spins. All these
microscopic constituents interact via a well-defined interaction. We
say therefore that statistical physics bridges the gap between the
microscopic world and the macroscopic world. Thermodynamical
quantities such as the specific heat or net magnetization of a
system can all be derived from a microscopic theory.

Famous Ensembles
The table lists the most used ensembles in statistical physics
together with frequently arising extensive (depend on the size of
the systems such as the number of particles) and intensive variables
(apply to all components of a system), in addition to associated
potentials.

Microcanonical Canonical Grand Canonical Pressure canonical

Exchange of heat no yes yes yes
with the environment

Exchange of particles no no yes no
with the environemt

Thermodynamical V ,M,D V ,M,D V ,M,D P,H, E
parameters E T T T

N N µ N

Potential Entropy Helmholtz PV Gibbs
N N µ N

Energy Internal Internal Internal Enthalpy
N N µ N

Canonical Ensemble

One of the most used ensembles is the canonical one, which is
related to the microcanonical ensemble via a Legendre
transformation. The temperature is an intensive variable in this
ensemble whereas the energy follows as an expectation value. In
order to calculate expectation values such as the mean energy 〈E 〉
at a given temperature, we need a probability distribution. It is
given by the Boltzmann distribution

Pi (β) =
e−βEi

Z

with β = 1/kBT being the inverse temperature, kB is the
Boltzmann constant, Ei is the energy of a microstate i while Z is
the partition function for the canonical ensemble defined as

The partition function is a normalization constant

In the canonical ensemble the partition function is

Z =
M∑

i=1

e−βEi ,

where the sum extends over all microstates M.

Helmoltz free energy, what does it mean?

The potential of interest in this case is Helmholtz’ free energy. It
relates the expectation value of the energy at a given temperatur T
to the entropy at the same temperature via

F = −kBTlnZ = 〈E 〉 − TS .

Helmholtz’ free energy expresses the struggle between two
important principles in physics, namely the strive towards an energy
minimum and the drive towards higher entropy as the temperature
increases. A higher entropy may be interpreted as a larger degree of
disorder. When equilibrium is reached at a given temperature, we
have a balance between these two principles. The numerical
expression is Helmholtz’ free energy.

Thermodynamical quantities

In the canonical ensemble the entropy is given by

S = kB lnZ + kBT

(
∂lnZ

∂T

)

N,V

,

and the pressure by

p = kBT

(
∂lnZ

∂V

)

N,T

.

Similarly we can compute the chemical potential as

µ = −kBT
(
∂lnZ

∂N

)

V ,T

.

Thermodynamical quantities, the energy in the canonical
ensemble

For a system described by the canonical ensemble, the energy is an
expectation value since we allow energy to be exchanged with the
surroundings (a heat bath with temperature T).

This expectation value, the mean energy, can be calculated using

〈E 〉 = kBT
2
(
∂lnZ

∂T

)

V ,N

or using the probability distribution Pi as

〈E 〉 =
M∑

i=1

EiPi (β) =
1
Z

M∑

i=1

Eie
−βEi .

Energy and specific heat in the canonical ensemble

The energy is proportional to the first derivative of the potential,
Helmholtz’ free energy. The corresponding variance is defined as

σ2
E = 〈E 2〉 − 〈E 〉2 =

1
Z

M∑

i=1

E 2
i e
−βEi −

(
1
Z

M∑

i=1

Eie
−βEi

)2

.

If we divide the latter quantity with kT 2 we obtain the specific heat
at constant volume

CV =
1

kBT 2

(
〈E 2〉 − 〈E 〉2

)
,

which again can be related to the second derivative of Helmholtz’
free energy.

Magnetic moments and susceptibility in the canonical
ensemble

Using the same prescription, we can also evaluate the mean
magnetization through

〈M〉 =
M∑

i

MiPi (β) =
1
Z

M∑

i

Mie
−βEi ,

and the corresponding variance

σ2
M = 〈M2〉 − 〈M〉2 =

1
Z

M∑

i=1

M2
i e
−βEi −

(
1
Z

M∑

i=1

Mie
−βEi

)2

.

This quantity defines also the susceptibility χ

χ =
1

kBT

(
〈M2〉 − 〈M〉2

)
.

Our model, the Ising model in one and two dimensions
The model we will employ in our studies of phase transitions at
finite temperature for magnetic systems is the so-called Ising
model. In its simplest form the energy is expressed as

E = −J
N∑

<kl>

sksl − B
N∑

k

sk ,

with sk = ±1, N is the total number of spins, J is a coupling
constant expressing the strength of the interaction between
neighboring spins and B is an external magnetic field interacting
with the magnetic moment set up by the spins.

The symbol < kl > indicates that we sum over nearest neighbors
only. Notice that for J > 0 it is energetically favorable for
neighboring spins to be aligned. This feature leads to, at low
enough temperatures, a cooperative phenomenon called
spontaneous magnetization. That is, through interactions between
nearest neighbors, a given magnetic moment can influence the
alignment of spins that are separated from the given spin by a
macroscopic distance. These long range correlations between spins
are associated with a long-range order in which the lattice has a net
magnetization in the absence of a magnetic field.

Boltzmann distribution

In order to calculate expectation values such as the mean energy
〈E 〉 or magnetization 〈M〉 in statistical physics at a given
temperature, we need a probability distribution

Pi (β) =
e−βEi

Z

with β = 1/kT being the inverse temperature, k the Boltzmann
constant, Ei is the energy of a state i while Z is the partition
function for the canonical ensemble defined as

Z =
M∑

i=1

e−βEi ,

where the sum extends over all microstates M. Pi expresses the
probability of finding the system in a given configuration i .

Energy for a specific configuration

The energy for a specific configuration i is given by

Ei = −J
N∑

<kl>

sksl .

Configurations

To better understand what is meant with a configuration, consider
first the case of the one-dimensional Ising model with B = 0. In
general, a given configuration of N spins in one dimension may look
like

↑ ↑ ↑ . . . ↑ ↓ ↑ . . . ↑ ↓
1 2 3 . . . i − 1 i i + 1 . . . N − 1 N

In order to illustrate these features let us further specialize to just
two spins.

With two spins, since each spin takes two values only, we have
22 = 4 possible arrangements of the two spins. These four
possibilities are

1 =↑↑ 2 =↑↓ 3 =↓↑ 4 =↓↓

Boundary conditions, free ends

What is the energy of each of these configurations?

For small systems, the way we treat the ends matters. Two cases
are often used.

In the first case we employ what is called free ends. This means
that there is no contribution from points to the right or left of the
endpoints. For the one-dimensional case, the energy is then written
as a sum over a single index

Ei = −J
N−1∑

j=1

sjsj+1,

Free ends and the energy

If we label the first spin as s1 and the second as s2 we obtain the
following expression for the energy

E = −Js1s2.
The calculation of the energy for the one-dimensional lattice with
free ends for one specific spin-configuration can easily be
implemented in the following lines

for (j=1; j < N; j++) {
energy += spin[j]*spin[j+1];

}

where the vector spin[] contains the spin value sk = ±1.

Free ends and energy

For the specific state E1, we have chosen all spins up. The energy
of this configuration becomes then

E1 = E↑↑ = −J.
The other configurations give

E2 = E↑↓ = +J,

E3 = E↓↑ = +J,

and

E4 = E↓↓ = −J.

Periodic boundary conditions

We can also choose so-called periodic boundary conditions. This
means that the neighbour to the right of sN is assumed to take the
value of s1. Similarly, the neighbour to the left of s1 takes the value
sN . In this case the energy for the one-dimensional lattice reads

Ei = −J
N∑

j=1

sjsj+1,

and we obtain the following expression for the two-spin case

E = −J(s1s2 + s2s1).

Energy with PBC

In this case the energy for E1 is different, we obtain namely

E1 = E↑↑ = −2J.
The other cases do also differ and we have

E2 = E↑↓ = +2J,

E3 = E↓↑ = +2J,

and

E4 = E↓↓ = −2J.

Simple code for PBC

If we choose to use periodic boundary conditions we can code the
above expression as

jm=N;
for (j=1; j <=N ; j++) {

energy += spin[j]*spin[jm];
jm = j ;

}

The magnetization is however the same, defined as

Mi =
N∑

j=1

sj ,

where we sum over all spins for a given configuration i .

Summing up

The table lists the energy and magnetization for both free ends and
periodic boundary conditions.

State Energy (FE) Energy (PBC) Magnetization
1 =↑↑ −J −2J 2
2 =↑↓ J 2J 0
3 =↓↑ J 2J 0
4 =↓↓ −J −2J -2

Reorganizing

We can reorganize according to the number of spins pointing up, as
shown in the table here
Number spins up Degeneracy Energy (FE) Energy (PBC) Magnetization
2 1 −J −2J 2
1 2 J 2J 0
0 1 −J −2J -2

Our model, the Ising model in one and two dimensions

It is worth noting that for small dimensions of the lattice, the
energy differs depending on whether we use periodic boundary
conditions or free ends. This means also that the partition
functions will be different, as discussed below. In the
thermodynamic limit we have N →∞, and the final results do not
depend on the kind of boundary conditions we choose.

For a one-dimensional lattice with periodic boundary conditions,
each spin sees two neighbors. For a two-dimensional lattice each
spin sees four neighboring spins. How many neighbors does a spin
see in three dimensions?

Ising model in one and two dimensions

In a similar way, we could enumerate the number of states for a
two-dimensional system consisting of two spins, i.e., a 2× 2 Ising
model on a square lattice with periodic boundary conditions. In this
case we have a total of 24 = 16 states. Some examples of
configurations with their respective energies are listed here

E = −8J ↑ ↑
↑ ↑ E = 0

↑ ↑
↑ ↓ E = 0

↓ ↓
↑ ↓ E = −8J ↓ ↓

↓ ↓

List of configurations with energies and magnetic moment

In the table here we group these configurations according to their
total energy and magnetization.

Number spins up Degeneracy Energy Magnetization
4 1 −8J 4
3 4 0 2
2 4 0 0
2 2 8J 0
1 4 0 -2
0 1 −8J -4

Phase Transitions and Critical Phenomena

A phase transition is marked by abrupt macroscopic changes as
external parameters are changed, such as an increase of
temperature. The point where a phase transition takes place is
called a critical point.

We distinguish normally between two types of phase transitions;
first-order transitions and second-order transitions. An important
quantity in studies of phase transitions is the so-called correlation
length ξ and various correlations functions like spin-spin
correlations. For the Ising model we shall show below that the
correlation length is related to the spin-correlation function, which
again defines the magnetic susceptibility. The spin-correlation
function is nothing but the covariance and expresses the degree of
correlation between spins.

Phase Transitions and Critical Phenomena, correlation
length

The correlation length defines the length scale at which the overall
properties of a material start to differ from its bulk properties. It is
the distance over which the fluctuations of the microscopic degrees
of freedom (for example the position of atoms) are significantly
correlated with each other. Usually it is of the order of few
interatomic spacings for a solid. The correlation length ξ depends
however on external conditions such as pressure and temperature.

Classification of phase transitions

First order/discontinuous phase transitions are characterized by two
or more states on either side of the critical point that can coexist at
the critical point. As we pass through the critical point we observe
a discontinuous behavior of thermodynamical functions. The
correlation length is normally finite at the critical point.
Phenomena such as hysteris occur, viz. there is a continuation of
state below the critical point into one above the critical point. This
continuation is metastable so that the system may take a
macroscopically long time to readjust. A classical example is the
melting of ice. It takes a specific amount of time before all the ice
has melted. The temperature remains constant and water and ice
can coexist for a macroscopic time. The energy shows a
discontinuity at the critical point, reflecting the fact that a certain
amount of heat is needed in order to melt all the ice

Second-order phase Transitions

Second order or continuous transitions are different and in general
much difficult to understand and model. The correlation length
diverges at the critical point, fluctuations are correlated over all
distance scales, which forces the system to be in a unique critical
phase. The two phases on either side of the critical point become
identical. The disappearance of a spontaneous magnetization is a
classical example of a second-order phase transitions. Structural
transitions in solids are other types of second-order phase
transitions.

Phase Transitions and Critical Phenomena

System Transition Order Parameter

Liquid-gas Condensation/evaporation Density difference ∆ρ = ρliquid − ρgas
Binary liquid mixture/Unmixing Composition difference

Quantum liquid Normal fluid/superfluid < φ >, ψ = wavefunction
Liquid-solid Melting/crystallisation Reciprocal lattice vector

Magnetic solid Ferromagnetic Spontaneous magnetisation M
Antiferromagnetic Sublattice magnetisation M

Dielectric solid Ferroelectric Polarization P
Antiferroelectric Sublattice polarisation P

Eherenfest definition of phase Transitions
Using Ehrenfest’s definition of the order of a phase transition we
can relate the behavior around the critical point to various
derivatives of the thermodynamical potential. In the canonical
ensemble we are using, the thermodynamical potential is
Helmholtz’ free energy

F = 〈E 〉 − TS = −kTlnZ
meaning lnZ = −F/kT = −Fβ. The energy is given as the first
derivative of F

〈E 〉 = −∂lnZ
∂β

=
∂(βF)

∂β
.

and the specific heat is defined via the second derivative of F

CV = − 1
kT 2

∂2(βF)

∂β2 .

Phase Transitions and Critical Phenomena

We can relate observables to various derivatives of the partition
function and the free energy. When a given derivative of the free
energy or the partition function is discontinuous or diverges
(logarithmic divergence for the heat capacity from the Ising model)
we talk of a phase transition of order of the derivative. A first-order
phase transition is recognized in a discontinuity of the energy, or
the first derivative of F . The Ising model exhibits a second-order
phase transition since the heat capacity diverges. The susceptibility
is given by the second derivative of F with respect to external
magnetic field. Both these quantities diverge.

The Ising Model and Phase Transitions

The Ising model in two dimensions with B = 0 undergoes a phase
transition of second order. What it actually means is that below a
given critical temperature TC , the Ising model exhibits a
spontaneous magnetization with 〈M〉 6= 0. Above TC the average
magnetization is zero. The mean magnetization approaches zero at
TC with an infinite slope. Such a behavior is an example of what
are called critical phenomena. A critical phenomenon is normally
marked by one or more thermodynamical variables which vanish
above a critical point. In our case this is the mean magnetization
〈M〉 6= 0. Such a parameter is normally called the order parameter.

The Ising Model and Phase Transitions, mean magnetization

It is possible to show that the mean magnetization is given by (for
temperature below TC)

〈M(T)〉 ∼ (T − TC)β ,

where β = 1/8 is a so-called critical exponent. A similar relation
applies to the heat capacity

CV (T) ∼ |TC − T |−α ,
and the susceptibility

χ(T) ∼ |TC − T |−γ ,
with α = 0 and γ = −7/4.

The Ising Model and Phase Transitions, correlation length

Another important quantity is the correlation length, which is
expected to be of the order of the lattice spacing for T is close to
TC . Because the spins become more and more correlated as T
approaches TC , the correlation length increases as we get closer to
the critical temperature. The discontinuous behavior of the
correlation ξ near TC is

ξ(T) ∼ |TC − T |−ν . (1)

The Ising Model and Phase Transitions, critical behavior

A second-order phase transition is characterized by a correlation
length which spans the whole system. The correlation length is
typically of the order of some few interatomic distances. The fact
that a system like the Ising model, whose energy is described by the
interaction between neighboring spins only, can yield correlation
lengths of macroscopic size at a critical point is still a feature which
is not properly understood.

The Ising Model and Phase Transitions, critical temperature

In our actual calculations of the two-dimensional Ising model, we
are however always limited to a finite lattice and ξ will be
proportional with the size of the lattice at the critical point.
Through finite size scaling relations it is possible to relate the
behavior at finite lattices with the results for an infinitely large
lattice. The critical temperature scales then as

TC (L)− TC (L =∞) ∝ aL−1/ν , (2)

with a a constant and ν defined in Eq. (1).

The Ising Model and Phase Transitions, correlation length

The correlation length for a finite lattice size can then be shown to
be proportional to

ξ(T) ∝ L ∼ |TC − T |−ν .
and if we set T = TC one can obtain the following relations for the
magnetization, energy and susceptibility for T ≤ TC

〈M(T)〉 ∼ (T − TC)β ∝ L−β/ν ,

CV (T) ∼ |TC − T |−γ ∝ Lα/ν ,

and

χ(T) ∼ |TC − T |−α ∝ Lγ/ν .

The Metropolis Algorithm and the Two-dimensional Ising
Model

In our case we have as the Monte Carlo sampling function the
probability for finding the system in a state s given by

Ps =
e−(βEs)

Z
,

with energy Es , β = 1/kT and Z is a normalization constant which
defines the partition function in the canonical ensemble. As
discussed above

Z (β) =
∑

s

e−(βEs)

is difficult to compute since we need all states.

The Metropolis Algorithm and the Two-dimensional Ising
Model

In a calculation of the Ising model in two dimensions, the number
of configurations is given by 2N with N = L× L the number of
spins for a lattice of length L. Fortunately, the Metropolis algorithm
considers only ratios between probabilities and we do not need to
compute the partition function at all. The algorithm goes as follows

1 Establish an initial state with energy Eb by positioning yourself
at a random configuration in the lattice

2 Change the initial configuration by flipping e.g., one spin only.
Compute the energy of this trial state Et .

3 Calculate ∆E = Et − Eb. The number of values ∆E is limited
to five for the Ising model in two dimensions, see the
discussion below.

4 If ∆E ≤ 0 we accept the new configuration, meaning that the
energy is lowered and we are hopefully moving towards the
energy minimum at a given temperature. Go to step 7.

5 If ∆E > 0, calculate w = e−(β∆E).
6 Compare w with a random number r . If r ≤ w , then accept

the new configuration, else we keep the old configuration.
7 The next step is to update various expectations values.
8 The steps (2)-(7) are then repeated in order to obtain a

sufficently good representation of states.
9 Each time you sweep through the lattice, i.e., when you have

summed over all spins, constitutes what is called a Monte
Carlo cycle. You could think of one such cycle as a
measurement. At the end, you should divide the various
expectation values with the total number of cycles. You can
choose whether you wish to divide by the number of spins or
not. If you divide with the number of spins as well, your result
for e.g., the energy is now the energy per spin.

The Metropolis Algorithm and the Two-dimensional Ising
Model, practical issues

The crucial step is the calculation of the energy difference and the
change in magnetization. This part needs to be coded in an as
efficient as possible way since the change in energy is computed
many times. In the calculation of the energy difference from one
spin configuration to the other, we will limit the change to the
flipping of one spin only. For the Ising model in two dimensions it
means that there will only be a limited set of values for ∆E .
Actually, there are only five possible values.

Five possible energy differences
To see this, select first a random spin position x , y and assume that
this spin and its nearest neighbors are all pointing up. The energy
for this configuration is E = −4J. Now we flip this spin as shown
below. The energy of the new configuration is E = 4J, yielding
∆E = 8J.

E = −4J
↑

↑ ↑ ↑
↑

=⇒ E = 4J
↑

↑ ↓ ↑
↑

The four other possibilities are as follows

E = −2J
↑

↓ ↑ ↑
↑

=⇒ E = 2J
↑

↓ ↓ ↑
↑

with ∆E = 4J,

E = 0
↑

↓ ↑ ↑
↓

=⇒ E = 0
↑

↓ ↓ ↑
↓

with ∆E = 0,

E = 2J
↓

↓ ↑ ↑
↓

=⇒ E = −2J
↓

↓ ↓ ↑
↓

with ∆E = −4J and finally

E = 4J
↓

↓ ↑ ↓
↓

=⇒ E = −4J
↓

↓ ↓ ↓
↓

with ∆E = −8J.

The Metropolis Algorithm and the Two-dimensional Ising
Model, elements of program

This means in turn that we could construct an array which contains
all values of eβ∆E before doing the Metropolis sampling. Else, we
would have to evaluate the exponential at each Monte Carlo
sampling. For the two-dimensional Ising model there are only five
possible values. It is rather easy to convice oneself that for the
one-dimensional Ising model we have only three possible values.
The main part of the Ising model program is shown here

/*
Program to solve the two-dimensional Ising model
The coupling constant J = 1
Boltzmann’s constant = 1, temperature has thus dimension energy
Metropolis sampling is used. Periodic boundary conditions.

*/
#include <iostream>
#include <fstream>
#include <iomanip>
#include "lib.h"
using namespace std;
ofstream ofile;
// inline function for periodic boundary conditions
inline int periodic(int i, int limit, int add) {

return (i+limit+add) % (limit);
}
// Function to read in data from screen
void read_input(int&, int&, double&, double&, double&);
// Function to initialise energy and magnetization
void initialize(int, double, int **, double&, double&);
// The metropolis algorithm
void Metropolis(int, long&, int **, double&, double&, double *);
// prints to file the results of the calculations
void output(int, int, double, double *);

// main program
int main(int argc, char* argv[])
{

char *outfilename;
long idum;
int **spin_matrix, n_spins, mcs;
double w[17], average[5], initial_temp, final_temp, E, M, temp_step;

// Read in output file, abort if there are too few command-line arguments
if(argc <= 1){

cout << "Bad Usage: " << argv[0] <<
" read also output file on same line" << endl;

exit(1);
}
else{

outfilename=argv[1];
}
ofile.open(outfilename);
// Read in initial values such as size of lattice, temp and cycles
read_input(n_spins, mcs, initial_temp, final_temp, temp_step);
spin_matrix = (int**) matrix(n_spins, n_spins, sizeof(int));
idum = -1; // random starting point
for (double temp = initial_temp; temp <= final_temp; temp+=temp_step){

// initialise energy and magnetization
E = M = 0.;
// setup array for possible energy changes
for(int de =-8; de <= 8; de++) w[de+8] = 0;
for(int de =-8; de <= 8; de+=4) w[de+8] = exp(-de/temp);
// initialise array for expectation values
for(int i = 0; i < 5; i++) average[i] = 0.;
initialize(n_spins, double temp, spin_matrix, E, M);
// start Monte Carlo computation
for (int cycles = 1; cycles <= mcs; cycles++){

Metropolis(n_spins, idum, spin_matrix, E, M, w);
// update expectation values
average[0] += E; average[1] += E*E;
average[2] += M; average[3] += M*M; average[4] += fabs(M);

}
// print results
output(n_spins, mcs, temp, average);

}
free_matrix((void **) spin_matrix); // free memory
ofile.close(); // close output file
return 0;

}

Coding energy differences

The array w [17] contains values of ∆E spanning from −8J to 8J
and it is precalculated in the main part for every new temperature.
The program takes as input the initial temperature, final
temperature, a temperature step, the number of spins in one
direction (we force the lattice to be a square lattice, meaning that
we have the same number of spins in the x and the y directions)
and the number of Monte Carlo cycles.

Efficient expression for energy differences
For every Monte Carlo cycle we run through all spins in the lattice
in the function metropolis and flip one spin at the time and perform
the Metropolis test. However, every time we flip a spin we need to
compute the actual energy difference ∆E in order to access the
right element of the array which stores eβ∆E . This is easily done in
the Ising model since we can exploit the fact that only one spin is
flipped, meaning in turn that all the remaining spins keep their
values fixed. The energy difference between a state E1 and a state
E2 with zero external magnetic field is

∆E = E2 − E1 = J
N∑

<kl>

s1
k s

1
l − J

N∑

<kl>

s2
k s

2
l ,

which we can rewrite as

∆E = −J
N∑

<kl>

s2
k (s2

l − s1
l),

where the sum now runs only over the nearest neighbors k .

Final energy difference

Since the spin to be flipped takes only two values, s1
l = ±1 and

s2
l = ±1, it means that if s1

l = 1, then s2
l = −1 and if s1

l = −1,
then s2

l = 1. The other spins keep their values, meaning that
s1
k = s2

k . If s
1
l = 1 we must have s1

l − s2
l = 2, and if s1

l = −1 we
must have s1

l − s2
l = −2. From these results we see that the energy

difference can be coded efficiently as

∆E = 2Js1
l

N∑

<k>

sk , (3)

where the sum runs only over the nearest neighbors k of spin l . We
can compute the change in magnetisation by flipping one spin as
well. Since only spin l is flipped, all the surrounding spins remain
unchanged.

Change in magnetization
The difference in magnetisation is therefore only given by the
difference s1

l − s2
l = ±2, or in a more compact way as

M2 = M1 + 2s2
l , (4)

where M1 and M2 are the magnetizations before and after the spin
flip, respectively. Eqs. (3) and (4) are implemented in the function
metropolis shown here

void Metropolis(int n_spins, long& idum, int **spin_matrix, double& E, double&M, double *w)
{

// loop over all spins
for(int y =0; y < n_spins; y++) {

for (int x= 0; x < n_spins; x++){
// Find random position
int ix = (int) (ran1(&idum)*(double)n_spins);
int iy = (int) (ran1(&idum)*(double)n_spins);
int deltaE = 2*spin_matrix[iy][ix]*

(spin_matrix[iy][periodic(ix,n_spins,-1)]+
spin_matrix[periodic(iy,n_spins,-1)][ix] +
spin_matrix[iy][periodic(ix,n_spins,1)] +
spin_matrix[periodic(iy,n_spins,1)][ix]);

// Here we perform the Metropolis test
if (ran1(&idum) <= w[deltaE+8]) {

spin_matrix[iy][ix] *= -1; // flip one spin and accept new spin config
// update energy and magnetization
M += (double) 2*spin_matrix[iy][ix];
E += (double) deltaE;

}
}

}
} // end of Metropolis sampling over spins

A small note

Note that we loop over all spins but that we choose the lattice
positions x and y randomly. If the move is accepted after
performing the Metropolis test, we update the energy and the
magnetisation. The new values are used to update the averages
computed in the main function.

Initialization

We need also to initialize various variables. This is done in the
function here.

// function to initialise energy, spin matrix and magnetization
void initialize(int n_spins, double temp, int **spin_matrix,

double& E, double& M)
{

// setup spin matrix and intial magnetization
for(int y =0; y < n_spins; y++) {

for (int x= 0; x < n_spins; x++){
if (temp < 1.5) spin_matrix[y][x] = 1; // spin orientation for the ground state
M += (double) spin_matrix[y][x];

}
}
// setup initial energy
for(int y =0; y < n_spins; y++) {

for (int x= 0; x < n_spins; x++){
E -= (double) spin_matrix[y][x]*

(spin_matrix[periodic(y,n_spins,-1)][x] +
spin_matrix[y][periodic(x,n_spins,-1)]);

}
}

}// end function initialise

The Metropolis Algorithm and the Two-dimensional Ising
Model, elements of program

Here follows an alternative Ising model code using the Mersenne
twister engine as described in the c++ "random class":" ".

/*
Program to solve the two-dimensional Ising model
with zero external field and no parallelization using the Mersenne twister engine for generating random
numbers.
The coupling constant J = 1
Boltzmann’s constant = 1, temperature has thus dimension energy
Metropolis sampling is used. Periodic boundary conditions.
The code needs an output file on the command line and the variables mcs, nspins,
initial temp, final temp and temp step.
Run as
./executable Outputfile numberof spins number of MC cycles initial temp final temp tempstep
./test.x Lattice 100 10000000 2.1 2.4 0.01
Compile and link as
c++ -O3 -std=c++11 -Rpass=loop-vectorize -o Ising.x IsingModel.cpp -larmadillo

*/

#include <cmath>
#include <iostream>
#include <fstream>
#include <iomanip>
#include <cstdlib>
#include <random>
#include <armadillo>
#include <string>
using namespace std;
using namespace arma;
// output file
ofstream ofile;

// inline function for periodic boundary conditions
inline int periodic(int i, int limit, int add) {

return (i+limit+add) % (limit);
}
// Function to initialise energy and magnetization
void InitializeLattice(int, mat &, double&, double&);
// The metropolis algorithm including the loop over Monte Carlo cycles
void MetropolisSampling(int, int, double, vec &);
// prints to file the results of the calculations
void output(int, int, double, vec);

// Main program begins here

int main(int argc, char* argv[])
{

string filename;
int NSpins, MCcycles;
double InitialTemp, FinalTemp, TempStep;
if (argc <= 5) {

cout << "Bad Usage: " << argv[0] <<
" read output file, Number of spins, MC cycles, initial and final temperature and tempurate step" << endl;

exit(1);
}
if (argc > 1) {

filename=argv[1];
NSpins = atoi(argv[2]);
MCcycles = atoi(argv[3]);
InitialTemp = atof(argv[4]);
FinalTemp = atof(argv[5]);
TempStep = atof(argv[6]);

}
// Declare new file name and add lattice size to file name
string fileout = filename;
string argument = to_string(NSpins);
fileout.append(argument);
ofile.open(fileout);
// Start Monte Carlo sampling by looping over T first
for (double Temperature = InitialTemp; Temperature <= FinalTemp; Temperature+=TempStep){

vec ExpectationValues = zeros<mat>(5);
// start Monte Carlo computation
MetropolisSampling(NSpins, MCcycles, Temperature, ExpectationValues);
output(NSpins, MCcycles, Temperature, ExpectationValues);

}
ofile.close(); // close output file
return 0;

}

// function to initialise energy, spin matrix and magnetization
void InitializeLattice(int NSpins, mat &SpinMatrix, double& Energy, double& MagneticMoment)
{

// setup spin matrix and initial magnetization
for(int x =0; x < NSpins; x++) {

for (int y= 0; y < NSpins; y++){
SpinMatrix(x,y) = 1.0; // spin orientation for the ground state
MagneticMoment += (double) SpinMatrix(x,y);

}
}
// setup initial energy
for(int x =0; x < NSpins; x++) {

for (int y= 0; y < NSpins; y++){
Energy -= (double) SpinMatrix(x,y)*

(SpinMatrix(periodic(x,NSpins,-1),y) +
SpinMatrix(x,periodic(y,NSpins,-1)));

}
}

}// end function initialise

// The Monte Carlo part with the Metropolis algo with sweeps over the lattice
void MetropolisSampling(int NSpins, int MCcycles, double Temperature, vec &ExpectationValues)
{

// Initialize the seed and call the Mersenne algo
std::random_device rd;
std::mt19937_64 gen(rd());
// Then set up the uniform distribution for x \in [[0, 1]
std::uniform_real_distribution<double> distribution(0.0,1.0);
// Allocate memory for spin matrix
mat SpinMatrix = zeros<mat>(NSpins,NSpins);
// initialise energy and magnetization
double Energy = 0.; double MagneticMoment = 0.;
// initialize array for expectation values
InitializeLattice(NSpins, SpinMatrix, Energy, MagneticMoment);
// setup array for possible energy changes
vec EnergyDifference = zeros<mat>(17);
for(int de =-8; de <= 8; de+=4) EnergyDifference(de+8) = exp(-de/Temperature);
for (int cycles = 1; cycles <= MCcycles; cycles++){

// The sweep over the lattice, looping over all spin sites
for(int x =0; x < NSpins; x++) {

for (int y= 0; y < NSpins; y++){
int ix = (int) (distribution(gen)*(double)NSpins);
int iy = (int) (distribution(gen)*(double)NSpins);
int deltaE = 2*SpinMatrix(ix,iy)*

(SpinMatrix(ix,periodic(iy,NSpins,-1))+
SpinMatrix(periodic(ix,NSpins,-1),iy) +
SpinMatrix(ix,periodic(iy,NSpins,1)) +
SpinMatrix(periodic(ix,NSpins,1),iy));

if (distribution(gen) <= EnergyDifference(deltaE+8)) {
SpinMatrix(ix,iy) *= -1.0; // flip one spin and accept new spin config
MagneticMoment += (double) 2*SpinMatrix(ix,iy);
Energy += (double) deltaE;

}
}

}
// update expectation values for local node
ExpectationValues(0) += Energy; ExpectationValues(1) += Energy*Energy;
ExpectationValues(2) += MagneticMoment;
ExpectationValues(3) += MagneticMoment*MagneticMoment;
ExpectationValues(4) += fabs(MagneticMoment);

}

} // end of Metropolis sampling over spins

void output(int NSpins, int MCcycles, double temperature, vec ExpectationValues)
{

double norm = 1.0/((double) (MCcycles)); // divided by number of cycles
double E_ExpectationValues = ExpectationValues(0)*norm;
double E2_ExpectationValues = ExpectationValues(1)*norm;
double M_ExpectationValues = ExpectationValues(2)*norm;
double M2_ExpectationValues = ExpectationValues(3)*norm;
double Mabs_ExpectationValues = ExpectationValues(4)*norm;
// all expectation values are per spin, divide by 1/NSpins/NSpins
double Evariance = (E2_ExpectationValues- E_ExpectationValues*E_ExpectationValues)/NSpins/NSpins;
double Mvariance = (M2_ExpectationValues - Mabs_ExpectationValues*Mabs_ExpectationValues)/NSpins/NSpins;
ofile << setiosflags(ios::showpoint | ios::uppercase);
ofile << setw(15) << setprecision(8) << temperature;
ofile << setw(15) << setprecision(8) << E_ExpectationValues/NSpins/NSpins;
ofile << setw(15) << setprecision(8) << Evariance/temperature/temperature;
ofile << setw(15) << setprecision(8) << M_ExpectationValues/NSpins/NSpins;
ofile << setw(15) << setprecision(8) << Mvariance/temperature;
ofile << setw(15) << setprecision(8) << Mabs_ExpectationValues/NSpins/NSpins << endl;

} // end output function

Two-dimensional Ising Model, energy per spin and specific
heat

The following Python program, based on the above C++ codes,
plots the expectation value of the energy and its fluctuation, that is
the specific heat. Both quantities are plotted per spin and
genererated for a 20× 20 lattice.

from __future__ import division
import matplotlib.pyplot as plt
import numpy as np
import math, sys

def periodic (i, limit, add):
"""
Choose correct matrix index with periodic
boundary conditions

Input:
- i: Base index
- limit: Highest \"legal\" index
- add: Number to add or subtract from i
"""
return (i+limit+add) % limit

def monteCarlo(temp, NSpins, MCcycles):
"""
Calculate the energy and magnetization
(\"straight\" and squared) for a given temperature

Input:
- temp: Temperature to calculate for
- NSpins: dimension of square matrix
- MCcycles: Monte-carlo MCcycles (how many times do we

flip the matrix?)

Output:
- E_av: Energy of matrix averaged over MCcycles, normalized to spins**2
- E_variance: Variance of energy, same normalization * temp**2
- M_av: Magnetic field of matrix, averaged over MCcycles, normalized to spins**2
- M_variance: Variance of magnetic field, same normalization * temp
- Mabs: Absolute value of magnetic field, averaged over MCcycles
"""

#Setup spin matrix, initialize to ground state
spin_matrix = np.zeros((NSpins,NSpins), np.int8) + 1

#Create and initialize variables
E = M = 0
E_av = E2_av = M_av = M2_av = Mabs_av = 0

#Setup array for possible energy changes
w = np.zeros(17,np.float64)
for de in range(-8,9,4): #include +8

w[de+8] = math.exp(-de/temp)

#Calculate initial magnetization:
M = spin_matrix.sum()
#Calculate initial energy
for j in range(NSpins):

for i in range(NSpins):
E -= spin_matrix.item(i,j)*\

(spin_matrix.item(periodic(i,NSpins,-1),j) + spin_matrix.item(i,periodic(j,NSpins,1)))

#Start metropolis MonteCarlo computation
for i in range(MCcycles):

#Metropolis
#Loop over all spins, pick a random spin each time
for s in range(NSpins**2):

x = int(np.random.random()*NSpins)
y = int(np.random.random()*NSpins)
deltaE = 2*spin_matrix.item(x,y)*\

(spin_matrix.item(periodic(x,NSpins,-1), y) +\
spin_matrix.item(periodic(x,NSpins,1), y) +\
spin_matrix.item(x, periodic(y,NSpins,-1)) +\
spin_matrix.item(x, periodic(y,NSpins,1)))

if np.random.random() <= w[deltaE+8]:
#Accept!
spin_matrix[x,y] *= -1
M += 2*spin_matrix[x,y]
E += deltaE

#Update expectation values
E_av += E
E2_av += E**2
M_av += M
M2_av += M**2
Mabs_av += int(math.fabs(M))

#Normalize average values
E_av /= float(MCcycles);
E2_av /= float(MCcycles);
M_av /= float(MCcycles);
M2_av /= float(MCcycles);
Mabs_av /= float(MCcycles);
#Calculate variance and normalize to per-point and temp
E_variance = (E2_av-E_av*E_av)/float(NSpins*NSpins*temp*temp);
M_variance = (M2_av-M_av*M_av)/float(NSpins*NSpins*temp);
#Normalize returned averages to per-point
E_av /= float(NSpins*NSpins);
M_av /= float(NSpins*NSpins);
Mabs_av /= float(NSpins*NSpins);

return (E_av, E_variance, M_av, M_variance, Mabs_av)

Main program
temperature steps, initial temperature, final temperature
NumberTsteps = 20
InitialT = 1.5
FinalT = 2.5
Tsteps = (FinalT-InitialT)/NumberTsteps
Temp = np.zeros(NumberTsteps)
for T in range(NumberTsteps):

Temp[T] = InitialT+T*Tsteps
Declare arrays that hold averages
Energy = np.zeros(NumberTsteps); Magnetization = np.zeros(NumberTsteps)
SpecificHeat = np.zeros(NumberTsteps); Susceptibility = np.zeros(NumberTsteps)
MagnetizationAbs = np.zeros(NumberTsteps)
Define number of spins
NSpins = 20
Define number of Monte Carlo cycles
MCcycles = 100000
Perform the simulations over a range of temperatures
for T in range(NumberTsteps):

(Energy[T], SpecificHeat[T], Magnetization[T], Susceptibility[T], MagnetizationAbs[T]) = monteCarlo(Temp[T],NSpins,MCcycles)
And finally plot
f = plt.figure(figsize=(18, 10)); # plot the calculated values

sp = f.add_subplot(2, 2, 1);
plt.plot(Temp, Energy, ’o’, color="green");
plt.xlabel("Temperature (T)", fontsize=20);
plt.ylabel("Energy ", fontsize=20);

sp = f.add_subplot(2, 2, 2);
plt.plot(Temp, abs(Magnetization), ’o’, color="red");
plt.xlabel("Temperature (T)", fontsize=20);
plt.ylabel("Magnetization ", fontsize=20);

sp = f.add_subplot(2, 2, 3);
plt.plot(Temp, SpecificHeat, ’o’, color="blue");
plt.xlabel("Temperature (T)", fontsize=20);
plt.ylabel("Specific Heat ", fontsize=20);

sp = f.add_subplot(2, 2, 4);
plt.plot(Temp, Susceptibility, ’o’, color="black");
plt.xlabel("Temperature (T)", fontsize=20);
plt.ylabel("Susceptibility", fontsize=20);

plt.show()

Two-dimensional Ising Model, finding the distribution of
energies

Here we compute the distribution of energies, of relevance for the
final project.

from __future__ import division
import matplotlib.pyplot as plt
import numpy as np
import math, sys

def periodic (i, limit, add):
return (i+limit+add) % limit

def monteCarlo(Energies, temp, NSpins, MCcycles):

#Setup spin matrix, initialize to ground state
spin_matrix = np.zeros((NSpins,NSpins), np.int8) + 1

E = M = 0.0
#Setup array for possible energy changes
w = np.zeros(17,np.float64)
for de in range(-8,9,4): #include +8

w[de+8] = math.exp(-de/temp)

#Calculate initial magnetization:
M = spin_matrix.sum()
#Calculate initial energy
for j in range(NSpins):

for i in range(NSpins):
E -= spin_matrix.item(i,j)*\

(spin_matrix.item(periodic(i,NSpins,-1),j) + spin_matrix.item(i,periodic(j,NSpins,1)))

#Start metropolis MonteCarlo computation
for i in range(MCcycles):

#Metropolis
#Loop over all spins, pick a random spin each time
for s in range(NSpins**2):

x = int(np.random.random()*NSpins)
y = int(np.random.random()*NSpins)
deltaE = 2*spin_matrix.item(x,y)*\

(spin_matrix.item(periodic(x,NSpins,-1), y) +\
spin_matrix.item(periodic(x,NSpins,1), y) +\
spin_matrix.item(x, periodic(y,NSpins,-1)) +\
spin_matrix.item(x, periodic(y,NSpins,1)))

if np.random.random() <= w[deltaE+8]:
#Accept!
spin_matrix[x,y] *= -1
E += deltaE

#Update expectation values
Energies[i] += E

Main program

Define number of spins
NSpins = 20
Define number of Monte Carlo cycles
MCcycles = 10000
temperature steps, initial temperature, final temperature
Temp = 2.5
Declare arrays that hold averages
Energies = np.zeros(MCcycles)
Obtain the energies to construct the diagram
monteCarlo(Energies,Temp,NSpins,MCcycles)

n, bins, patches = plt.hist(Energies, 100, facecolor=’green’)

plt.xlabel(’E’)
plt.ylabel(’Energy distribution P(E)’)
plt.title(r’Energy distribution at $k_BT=2.5$’)
plt.axis([-800, -300, 0, 500])
plt.grid(True)
plt.show()

