
Computational Physics Lectures:
Statistical physics and the Ising Model

Morten Hjorth-Jensen1,2

1Department of Physics, University of Oslo
2Department of Physics and Astronomy and National Superconducting Cyclotron Laboratory, Michigan State University

Apr 13, 2018

Ensembles
In statistical physics the concept of an ensemble is one of the cornerstones in
the definition of thermodynamical quantities. An ensemble is a collection of
microphysics systems from which we derive expectations values and thermo-
dynamical properties related to experiment. As an example, the specific heat
(which is a measurable quantity in the laboratory) of a system of infinitely many
particles, can be derived from the basic interactions between the microscopic
constituents. The latter can span from electrons to atoms and molecules or
a system of classical spins. All these microscopic constituents interact via a
well-defined interaction. We say therefore that statistical physics bridges the gap
between the microscopic world and the macroscopic world. Thermodynamical
quantities such as the specific heat or net magnetization of a system can all be
derived from a microscopic theory.

Famous Ensembles
The table lists the most used ensembles in statistical physics together with
frequently arising extensive (depend on the size of the systems such as the
number of particles) and intensive variables (apply to all components of a
system), in addition to associated potentials.

c© 1999-2018, Morten Hjorth-Jensen. Released under CC Attribution-NonCommercial 4.0
license

Microcanonical Canonical Grand Canonical Pressure canonical

Exchange of heat no yes yes yes
with the environment

Exchange of particles no no yes no
with the environemt

Thermodynamical V,M,D V,M,D V,M,D P,H, E
parameters E T T T

N N µ N

Potential Entropy Helmholtz PV Gibbs
N N µ N

Energy Internal Internal Internal Enthalpy
N N µ N

Canonical Ensemble
One of the most used ensembles is the canonical one, which is related to the
microcanonical ensemble via a Legendre transformation. The temperature is an
intensive variable in this ensemble whereas the energy follows as an expectation
value. In order to calculate expectation values such as the mean energy 〈E〉
at a given temperature, we need a probability distribution. It is given by the
Boltzmann distribution

Pi(β) = e−βEi

Z

with β = 1/kBT being the inverse temperature, kB is the Boltzmann constant,
Ei is the energy of a microstate i while Z is the partition function for the
canonical ensemble defined as

The partition function is a normalization constant
In the canonical ensemble the partition function is

Z =
M∑
i=1

e−βEi ,

where the sum extends over all microstates M .

2

Helmoltz free energy, what does it mean?
The potential of interest in this case is Helmholtz’ free energy. It relates the
expectation value of the energy at a given temperatur T to the entropy at the
same temperature via

F = −kBT lnZ = 〈E〉 − TS.

Helmholtz’ free energy expresses the struggle between two important prin-
ciples in physics, namely the strive towards an energy minimum and the drive
towards higher entropy as the temperature increases. A higher entropy may be
interpreted as a larger degree of disorder. When equilibrium is reached at a given
temperature, we have a balance between these two principles. The numerical
expression is Helmholtz’ free energy.

Thermodynamical quantities
In the canonical ensemble the entropy is given by

S = kBlnZ + kBT

(
∂lnZ

∂T

)
N,V

,

and the pressure by

p = kBT

(
∂lnZ

∂V

)
N,T

.

Similarly we can compute the chemical potential as

µ = −kBT
(
∂lnZ

∂N

)
V,T

.

Thermodynamical quantities, the energy in the canonical
ensemble
For a system described by the canonical ensemble, the energy is an expectation
value since we allow energy to be exchanged with the surroundings (a heat bath
with temperature T).

This expectation value, the mean energy, can be calculated using

〈E〉 = kBT
2
(
∂lnZ

∂T

)
V,N

or using the probability distribution Pi as

〈E〉 =
M∑
i=1

EiPi(β) = 1
Z

M∑
i=1

Eie
−βEi .

3

Energy and specific heat in the canonical ensemble
The energy is proportional to the first derivative of the potential, Helmholtz’
free energy. The corresponding variance is defined as

σ2
E = 〈E2〉 − 〈E〉2 = 1

Z

M∑
i=1

E2
i e
−βEi −

(
1
Z

M∑
i=1

Eie
−βEi

)2

.

If we divide the latter quantity with kT 2 we obtain the specific heat at constant
volume

CV = 1
kBT 2

(
〈E2〉 − 〈E〉2

)
,

which again can be related to the second derivative of Helmholtz’ free energy.

Magnetic moments and susceptibility in the canonical en-
semble
Using the same prescription, we can also evaluate the mean magnetization
through

〈M〉 =
M∑
i

MiPi(β) = 1
Z

M∑
i

Mie
−βEi ,

and the corresponding variance

σ2
M = 〈M2〉 − 〈M〉2 = 1

Z

M∑
i=1
M2

i e
−βEi −

(
1
Z

M∑
i=1
Mie

−βEi

)2

.

This quantity defines also the susceptibility χ

χ = 1
kBT

(
〈M2〉 − 〈M〉2

)
.

Our model, the Ising model in one and two dimensions
The model we will employ in our studies of phase transitions at finite temperature
for magnetic systems is the so-called Ising model. In its simplest form the energy
is expressed as

E = −J
N∑

<kl>

sksl − B
N∑
k

sk,

with sk = ±1, N is the total number of spins, J is a coupling constant expressing
the strength of the interaction between neighboring spins and B is an external
magnetic field interacting with the magnetic moment set up by the spins.

4

The symbol < kl > indicates that we sum over nearest neighbors only. Notice
that for J > 0 it is energetically favorable for neighboring spins to be aligned.
This feature leads to, at low enough temperatures, a cooperative phenomenon
called spontaneous magnetization. That is, through interactions between nearest
neighbors, a given magnetic moment can influence the alignment of spins that
are separated from the given spin by a macroscopic distance. These long range
correlations between spins are associated with a long-range order in which the
lattice has a net magnetization in the absence of a magnetic field.

Boltzmann distribution
In order to calculate expectation values such as the mean energy 〈E〉 or magne-
tization 〈M〉 in statistical physics at a given temperature, we need a probability
distribution

Pi(β) = e−βEi

Z

with β = 1/kT being the inverse temperature, k the Boltzmann constant, Ei
is the energy of a state i while Z is the partition function for the canonical
ensemble defined as

Z =
M∑
i=1

e−βEi ,

where the sum extends over all microstates M . Pi expresses the probability of
finding the system in a given configuration i.

Energy for a specific configuration
The energy for a specific configuration i is given by

Ei = −J
N∑

<kl>

sksl.

Configurations
To better understand what is meant with a configuration, consider first the case
of the one-dimensional Ising model with B = 0. In general, a given configuration
of N spins in one dimension may look like

↑ ↑ ↑ . . . ↑ ↓ ↑ . . . ↑ ↓
1 2 3 . . . i− 1 i i+ 1 . . . N − 1 N

In order to illustrate these features let us further specialize to just two spins.
With two spins, since each spin takes two values only, we have 22 = 4 possible

arrangements of the two spins. These four possibilities are

5

1 =↑↑ 2 =↑↓ 3 =↓↑ 4 =↓↓

Boundary conditions, free ends
What is the energy of each of these configurations?

For small systems, the way we treat the ends matters. Two cases are often
used.

In the first case we employ what is called free ends. This means that there
is no contribution from points to the right or left of the endpoints. For the
one-dimensional case, the energy is then written as a sum over a single index

Ei = −J
N−1∑
j=1

sjsj+1,

Free ends and the energy
If we label the first spin as s1 and the second as s2 we obtain the following
expression for the energy

E = −Js1s2.

The calculation of the energy for the one-dimensional lattice with free ends for
one specific spin-configuration can easily be implemented in the following lines

for (j=1; j < N; j++) {
energy += spin[j]*spin[j+1];

}

where the vector spin[] contains the spin value sk = ±1.

Free ends and energy
For the specific state E1, we have chosen all spins up. The energy of this
configuration becomes then

E1 = E↑↑ = −J.

The other configurations give

E2 = E↑↓ = +J,

E3 = E↓↑ = +J,

and

E4 = E↓↓ = −J.

6

Periodic boundary conditions
We can also choose so-called periodic boundary conditions. This means that the
neighbour to the right of sN is assumed to take the value of s1. Similarly, the
neighbour to the left of s1 takes the value sN . In this case the energy for the
one-dimensional lattice reads

Ei = −J
N∑
j=1

sjsj+1,

and we obtain the following expression for the two-spin case

E = −J(s1s2 + s2s1).

Energy with PBC
In this case the energy for E1 is different, we obtain namely

E1 = E↑↑ = −2J.

The other cases do also differ and we have

E2 = E↑↓ = +2J,

E3 = E↓↑ = +2J,

and

E4 = E↓↓ = −2J.

Simple code for PBC
If we choose to use periodic boundary conditions we can code the above expression
as

jm=N;
for (j=1; j <=N ; j++) {

energy += spin[j]*spin[jm];
jm = j ;

}

The magnetization is however the same, defined as

Mi =
N∑
j=1

sj ,

where we sum over all spins for a given configuration i.

7

Summing up
The table lists the energy and magnetization for both free ends and periodic
boundary conditions.

State Energy (FE) Energy (PBC) Magnetization
1 =↑↑ −J −2J 2
2 =↑↓ J 2J 0
3 =↓↑ J 2J 0
4 =↓↓ −J −2J -2

Reorganizing
We can reorganize according to the number of spins pointing up, as shown in
the table here

Number spins up Degeneracy Energy (FE) Energy (PBC) Magnetization
2 1 −J −2J 2
1 2 J 2J 0
0 1 −J −2J -2

Our model, the Ising model in one and two dimensions
It is worth noting that for small dimensions of the lattice, the energy differs
depending on whether we use periodic boundary conditions or free ends. This
means also that the partition functions will be different, as discussed below. In
the thermodynamic limit we have N →∞, and the final results do not depend
on the kind of boundary conditions we choose.

For a one-dimensional lattice with periodic boundary conditions, each spin
sees two neighbors. For a two-dimensional lattice each spin sees four neighboring
spins. How many neighbors does a spin see in three dimensions?

Ising model in one and two dimensions
In a similar way, we could enumerate the number of states for a two-dimensional
system consisting of two spins, i.e., a 2× 2 Ising model on a square lattice with
periodic boundary conditions. In this case we have a total of 24 = 16 states.
Some examples of configurations with their respective energies are listed here

E = −8J ↑ ↑
↑ ↑ E = 0 ↑ ↑

↑ ↓ E = 0 ↓ ↓
↑ ↓ E = −8J ↓ ↓

↓ ↓

8

List of configurations with energies and magnetic moment
In the table here we group these configurations according to their total energy
and magnetization.

Number spins up Degeneracy Energy Magnetization
4 1 −8J 4
3 4 0 2
2 4 0 0
2 2 8J 0
1 4 0 -2
0 1 −8J -4

Phase Transitions and Critical Phenomena
A phase transition is marked by abrupt macroscopic changes as external param-
eters are changed, such as an increase of temperature. The point where a phase
transition takes place is called a critical point.

We distinguish normally between two types of phase transitions; first-order
transitions and second-order transitions. An important quantity in studies of
phase transitions is the so-called correlation length ξ and various correlations
functions like spin-spin correlations. For the Ising model we shall show below
that the correlation length is related to the spin-correlation function, which again
defines the magnetic susceptibility. The spin-correlation function is nothing but
the covariance and expresses the degree of correlation between spins.

Phase Transitions and Critical Phenomena, correlation length
The correlation length defines the length scale at which the overall properties of
a material start to differ from its bulk properties. It is the distance over which
the fluctuations of the microscopic degrees of freedom (for example the position
of atoms) are significantly correlated with each other. Usually it is of the order
of few interatomic spacings for a solid. The correlation length ξ depends however
on external conditions such as pressure and temperature.

Classification of phase transitions
First order/discontinuous phase transitions are characterized by two or more
states on either side of the critical point that can coexist at the critical point.
As we pass through the critical point we observe a discontinuous behavior of
thermodynamical functions. The correlation length is normally finite at the
critical point. Phenomena such as hysteris occur, viz. there is a continuation of
state below the critical point into one above the critical point. This continuation
is metastable so that the system may take a macroscopically long time to readjust.
A classical example is the melting of ice. It takes a specific amount of time
before all the ice has melted. The temperature remains constant and water and

9

ice can coexist for a macroscopic time. The energy shows a discontinuity at the
critical point, reflecting the fact that a certain amount of heat is needed in order
to melt all the ice

Second-order phase Transitions
Second order or continuous transitions are different and in general much difficult
to understand and model. The correlation length diverges at the critical point,
fluctuations are correlated over all distance scales, which forces the system to
be in a unique critical phase. The two phases on either side of the critical
point become identical. The disappearance of a spontaneous magnetization is a
classical example of a second-order phase transitions. Structural transitions in
solids are other types of second-order phase transitions.

Phase Transitions and Critical Phenomena

System Transition Order Parameter

Liquid-gas Condensation/evaporation Density difference ∆ρ = ρliquid − ρgas
Binary liquid mixture/Unmixing Composition difference

Quantum liquid Normal fluid/superfluid < φ >, ψ = wavefunction
Liquid-solid Melting/crystallisation Reciprocal lattice vector

Magnetic solid Ferromagnetic Spontaneous magnetisation M
Antiferromagnetic Sublattice magnetisation M

Dielectric solid Ferroelectric Polarization P
Antiferroelectric Sublattice polarisation P

Eherenfest definition of phase Transitions
Using Ehrenfest’s definition of the order of a phase transition we can relate the
behavior around the critical point to various derivatives of the thermodynamical
potential. In the canonical ensemble we are using, the thermodynamical potential
is Helmholtz’ free energy

F = 〈E〉 − TS = −kT lnZ

meaning lnZ = −F/kT = −Fβ. The energy is given as the first derivative of F

〈E〉 = −∂lnZ
∂β

= ∂(βF)
∂β

.

and the specific heat is defined via the second derivative of F

CV = − 1
kT 2

∂2(βF)
∂β2 .

10

Phase Transitions and Critical Phenomena
We can relate observables to various derivatives of the partition function and the
free energy. When a given derivative of the free energy or the partition function
is discontinuous or diverges (logarithmic divergence for the heat capacity from
the Ising model) we talk of a phase transition of order of the derivative. A first-
order phase transition is recognized in a discontinuity of the energy, or the first
derivative of F . The Ising model exhibits a second-order phase transition since
the heat capacity diverges. The susceptibility is given by the second derivative
of F with respect to external magnetic field. Both these quantities diverge.

The Ising Model and Phase Transitions
The Ising model in two dimensions with B = 0 undergoes a phase transition of
second order. What it actually means is that below a given critical temperature
TC , the Ising model exhibits a spontaneous magnetization with 〈M〉 6= 0. Above
TC the average magnetization is zero. The mean magnetization approaches zero
at TC with an infinite slope. Such a behavior is an example of what are called
critical phenomena. A critical phenomenon is normally marked by one or more
thermodynamical variables which vanish above a critical point. In our case this
is the mean magnetization 〈M〉 6= 0. Such a parameter is normally called the
order parameter.

The Ising Model and Phase Transitions, mean magnetiza-
tion
It is possible to show that the mean magnetization is given by (for temperature
below TC)

〈M(T)〉 ∼ (T − TC)β ,

where β = 1/8 is a so-called critical exponent. A similar relation applies to the
heat capacity

CV (T) ∼ |TC − T |−α ,

and the susceptibility

χ(T) ∼ |TC − T |−γ ,

with α = 0 and γ = −7/4.

The Ising Model and Phase Transitions, correlation length
Another important quantity is the correlation length, which is expected to be of
the order of the lattice spacing for T is close to TC . Because the spins become
more and more correlated as T approaches TC , the correlation length increases

11

as we get closer to the critical temperature. The discontinuous behavior of the
correlation ξ near TC is

ξ(T) ∼ |TC − T |−ν . (1)

The Ising Model and Phase Transitions, critical behavior
A second-order phase transition is characterized by a correlation length which
spans the whole system. The correlation length is typically of the order of some
few interatomic distances. The fact that a system like the Ising model, whose
energy is described by the interaction between neighboring spins only, can yield
correlation lengths of macroscopic size at a critical point is still a feature which
is not properly understood.

The Ising Model and Phase Transitions, critical tempera-
ture
In our actual calculations of the two-dimensional Ising model, we are however
always limited to a finite lattice and ξ will be proportional with the size of the
lattice at the critical point. Through finite size scaling relations it is possible to
relate the behavior at finite lattices with the results for an infinitely large lattice.
The critical temperature scales then as

TC(L)− TC(L =∞) ∝ aL−1/ν , (2)

with a a constant and ν defined in Eq. (1).

The Ising Model and Phase Transitions, correlation length
The correlation length for a finite lattice size can then be shown to be proportional
to

ξ(T) ∝ L ∼ |TC − T |−ν .

and if we set T = TC one can obtain the following relations for the magnetization,
energy and susceptibility for T ≤ TC

〈M(T)〉 ∼ (T − TC)β ∝ L−β/ν ,

CV (T) ∼ |TC − T |−γ ∝ Lα/ν ,

and

χ(T) ∼ |TC − T |−α ∝ Lγ/ν .

12

The Metropolis Algorithm and the Two-dimensional Ising
Model
In our case we have as the Monte Carlo sampling function the probability for
finding the system in a state s given by

Ps = e−(βEs)

Z
,

with energy Es, β = 1/kT and Z is a normalization constant which defines the
partition function in the canonical ensemble. As discussed above

Z(β) =
∑
s

e−(βEs)

is difficult to compute since we need all states.

The Metropolis Algorithm and the Two-dimensional Ising
Model
In a calculation of the Ising model in two dimensions, the number of configurations
is given by 2N with N = L × L the number of spins for a lattice of length L.
Fortunately, the Metropolis algorithm considers only ratios between probabilities
and we do not need to compute the partition function at all. The algorithm goes
as follows

1. Establish an initial state with energy Eb by positioning yourself at a random
configuration in the lattice

2. Change the initial configuration by flipping e.g., one spin only. Compute
the energy of this trial state Et.

3. Calculate ∆E = Et −Eb. The number of values ∆E is limited to five for
the Ising model in two dimensions, see the discussion below.

4. If ∆E ≤ 0 we accept the new configuration, meaning that the energy is
lowered and we are hopefully moving towards the energy minimum at a
given temperature. Go to step 7.

5. If ∆E > 0, calculate w = e−(β∆E).

6. Compare w with a random number r. If r ≤ w, then accept the new
configuration, else we keep the old configuration.

7. The next step is to update various expectations values.

8. The steps (2)-(7) are then repeated in order to obtain a sufficently good
representation of states.

13

9. Each time you sweep through the lattice, i.e., when you have summed over
all spins, constitutes what is called a Monte Carlo cycle. You could think
of one such cycle as a measurement. At the end, you should divide the
various expectation values with the total number of cycles. You can choose
whether you wish to divide by the number of spins or not. If you divide
with the number of spins as well, your result for e.g., the energy is now
the energy per spin.

The Metropolis Algorithm and the Two-dimensional Ising
Model, practical issues
The crucial step is the calculation of the energy difference and the change in
magnetization. This part needs to be coded in an as efficient as possible way
since the change in energy is computed many times. In the calculation of the
energy difference from one spin configuration to the other, we will limit the
change to the flipping of one spin only. For the Ising model in two dimensions it
means that there will only be a limited set of values for ∆E. Actually, there are
only five possible values.

Five possible energy differences
To see this, select first a random spin position x, y and assume that this spin
and its nearest neighbors are all pointing up. The energy for this configuration
is E = −4J . Now we flip this spin as shown below. The energy of the new
configuration is E = 4J , yielding ∆E = 8J .

E = −4J
↑

↑ ↑ ↑
↑

=⇒ E = 4J
↑

↑ ↓ ↑
↑

The four other possibilities are as follows

E = −2J
↑

↓ ↑ ↑
↑

=⇒ E = 2J
↑

↓ ↓ ↑
↑

with ∆E = 4J ,

E = 0
↑

↓ ↑ ↑
↓

=⇒ E = 0
↑

↓ ↓ ↑
↓

with ∆E = 0,

14

E = 2J
↓

↓ ↑ ↑
↓

=⇒ E = −2J
↓

↓ ↓ ↑
↓

with ∆E = −4J and finally

E = 4J
↓

↓ ↑ ↓
↓

=⇒ E = −4J
↓

↓ ↓ ↓
↓

with ∆E = −8J .

The Metropolis Algorithm and the Two-dimensional Ising
Model, elements of program
This means in turn that we could construct an array which contains all values of
eβ∆E before doing the Metropolis sampling. Else, we would have to evaluate the
exponential at each Monte Carlo sampling. For the two-dimensional Ising model
there are only five possible values. It is rather easy to convice oneself that for
the one-dimensional Ising model we have only three possible values. The main
part of the Ising model program is shown here

/*
Program to solve the two-dimensional Ising model
The coupling constant J = 1
Boltzmann’s constant = 1, temperature has thus dimension energy
Metropolis sampling is used. Periodic boundary conditions.

*/
#include <iostream>
#include <fstream>
#include <iomanip>
#include "lib.h"
using namespace std;
ofstream ofile;
// inline function for periodic boundary conditions
inline int periodic(int i, int limit, int add) {

return (i+limit+add) % (limit);
}
// Function to read in data from screen
void read_input(int&, int&, double&, double&, double&);
// Function to initialise energy and magnetization
void initialize(int, double, int **, double&, double&);
// The metropolis algorithm
void Metropolis(int, long&, int **, double&, double&, double *);
// prints to file the results of the calculations
void output(int, int, double, double *);

// main program
int main(int argc, char* argv[])
{

char *outfilename;
long idum;

15

https://github.com/CompPhysics/ComputationalPhysics/blob/master/doc/Programs/ParallelizationMPI/MPIising.cpp
https://github.com/CompPhysics/ComputationalPhysics/blob/master/doc/Programs/ParallelizationMPI/MPIising.cpp

int **spin_matrix, n_spins, mcs;
double w[17], average[5], initial_temp, final_temp, E, M, temp_step;

// Read in output file, abort if there are too few command-line arguments
if(argc <= 1){

cout << "Bad Usage: " << argv[0] <<
" read also output file on same line" << endl;

exit(1);
}
else{

outfilename=argv[1];
}
ofile.open(outfilename);
// Read in initial values such as size of lattice, temp and cycles
read_input(n_spins, mcs, initial_temp, final_temp, temp_step);
spin_matrix = (int**) matrix(n_spins, n_spins, sizeof(int));
idum = -1; // random starting point
for (double temp = initial_temp; temp <= final_temp; temp+=temp_step){

// initialise energy and magnetization
E = M = 0.;
// setup array for possible energy changes
for(int de =-8; de <= 8; de++) w[de+8] = 0;
for(int de =-8; de <= 8; de+=4) w[de+8] = exp(-de/temp);
// initialise array for expectation values
for(int i = 0; i < 5; i++) average[i] = 0.;
initialize(n_spins, double temp, spin_matrix, E, M);
// start Monte Carlo computation
for (int cycles = 1; cycles <= mcs; cycles++){

Metropolis(n_spins, idum, spin_matrix, E, M, w);
// update expectation values
average[0] += E; average[1] += E*E;
average[2] += M; average[3] += M*M; average[4] += fabs(M);

}
// print results
output(n_spins, mcs, temp, average);

}
free_matrix((void **) spin_matrix); // free memory
ofile.close(); // close output file
return 0;

}

Coding energy differences
The array w[17] contains values of ∆E spanning from −8J to 8J and it is
precalculated in the main part for every new temperature. The program takes as
input the initial temperature, final temperature, a temperature step, the number
of spins in one direction (we force the lattice to be a square lattice, meaning
that we have the same number of spins in the x and the y directions) and the
number of Monte Carlo cycles.

Efficient expression for energy differences
For every Monte Carlo cycle we run through all spins in the lattice in the
function metropolis and flip one spin at the time and perform the Metropolis
test. However, every time we flip a spin we need to compute the actual energy
difference ∆E in order to access the right element of the array which stores

16

eβ∆E . This is easily done in the Ising model since we can exploit the fact that
only one spin is flipped, meaning in turn that all the remaining spins keep their
values fixed. The energy difference between a state E1 and a state E2 with zero
external magnetic field is

∆E = E2 − E1 = J

N∑
<kl>

s1
ks

1
l − J

N∑
<kl>

s2
ks

2
l ,

which we can rewrite as

∆E = −J
N∑

<kl>

s2
k(s2

l − s1
l),

where the sum now runs only over the nearest neighbors k.

Final energy difference
Since the spin to be flipped takes only two values, s1

l = ±1 and s2
l = ±1, it

means that if s1
l = 1, then s2

l = −1 and if s1
l = −1, then s2

l = 1. The other spins
keep their values, meaning that s1

k = s2
k. If s1

l = 1 we must have s1
l − s2

l = 2,
and if s1

l = −1 we must have s1
l − s2

l = −2. From these results we see that the
energy difference can be coded efficiently as

∆E = 2Js1
l

N∑
<k>

sk, (3)

where the sum runs only over the nearest neighbors k of spin l. We can compute
the change in magnetisation by flipping one spin as well. Since only spin l is
flipped, all the surrounding spins remain unchanged.

Change in magnetization
The difference in magnetisation is therefore only given by the difference s1

l −s2
l =

±2, or in a more compact way as

M2 = M1 + 2s2
l , (4)

where M1 and M2 are the magnetizations before and after the spin flip, respec-
tively. Eqs. (3) and (4) are implemented in the function metropolis shown
here

void Metropolis(int n_spins, long& idum, int **spin_matrix, double& E, double&M, double *w)
{

// loop over all spins
for(int y =0; y < n_spins; y++) {

for (int x= 0; x < n_spins; x++){
// Find random position
int ix = (int) (ran1(&idum)*(double)n_spins);
int iy = (int) (ran1(&idum)*(double)n_spins);

17

int deltaE = 2*spin_matrix[iy][ix]*
(spin_matrix[iy][periodic(ix,n_spins,-1)]+
spin_matrix[periodic(iy,n_spins,-1)][ix] +
spin_matrix[iy][periodic(ix,n_spins,1)] +
spin_matrix[periodic(iy,n_spins,1)][ix]);

// Here we perform the Metropolis test
if (ran1(&idum) <= w[deltaE+8]) {

spin_matrix[iy][ix] *= -1; // flip one spin and accept new spin config
// update energy and magnetization
M += (double) 2*spin_matrix[iy][ix];
E += (double) deltaE;

}
}

}
} // end of Metropolis sampling over spins

A small note
Note that we loop over all spins but that we choose the lattice positions x and
y randomly. If the move is accepted after performing the Metropolis test, we
update the energy and the magnetisation. The new values are used to update
the averages computed in the main function.

Initialization
We need also to initialize various variables. This is done in the function here.

// function to initialise energy, spin matrix and magnetization
void initialize(int n_spins, double temp, int **spin_matrix,

double& E, double& M)
{

// setup spin matrix and intial magnetization
for(int y =0; y < n_spins; y++) {

for (int x= 0; x < n_spins; x++){
if (temp < 1.5) spin_matrix[y][x] = 1; // spin orientation for the ground state
M += (double) spin_matrix[y][x];

}
}
// setup initial energy
for(int y =0; y < n_spins; y++) {

for (int x= 0; x < n_spins; x++){
E -= (double) spin_matrix[y][x]*

(spin_matrix[periodic(y,n_spins,-1)][x] +
spin_matrix[y][periodic(x,n_spins,-1)]);

}
}

}// end function initialise

The Metropolis Algorithm and the Two-dimensional Ising
Model, elements of program
Here follows an alternative Ising model code using the Mersenne twister engine
as described in the c++ "random class":" ".

/*
Program to solve the two-dimensional Ising model

18

https://github.com/CompPhysics/ComputationalPhysics/blob/master/doc/Programs/ParallelizationMPI/IsingModel.cpp
https://github.com/CompPhysics/ComputationalPhysics/blob/master/doc/Programs/ParallelizationMPI/IsingModel.cpp
http://www.cplusplus.com/reference/random/mt19937_64/

with zero external field and no parallelization using the Mersenne twister engine for generating random
numbers.
The coupling constant J = 1
Boltzmann’s constant = 1, temperature has thus dimension energy
Metropolis sampling is used. Periodic boundary conditions.
The code needs an output file on the command line and the variables mcs, nspins,
initial temp, final temp and temp step.
Run as
./executable Outputfile numberof spins number of MC cycles initial temp final temp tempstep
./test.x Lattice 100 10000000 2.1 2.4 0.01
Compile and link as
c++ -O3 -std=c++11 -Rpass=loop-vectorize -o Ising.x IsingModel.cpp -larmadillo

*/

#include <cmath>
#include <iostream>
#include <fstream>
#include <iomanip>
#include <cstdlib>
#include <random>
#include <armadillo>
#include <string>
using namespace std;
using namespace arma;
// output file
ofstream ofile;

// inline function for periodic boundary conditions
inline int periodic(int i, int limit, int add) {

return (i+limit+add) % (limit);
}
// Function to initialise energy and magnetization
void InitializeLattice(int, mat &, double&, double&);
// The metropolis algorithm including the loop over Monte Carlo cycles
void MetropolisSampling(int, int, double, vec &);
// prints to file the results of the calculations
void output(int, int, double, vec);

// Main program begins here

int main(int argc, char* argv[])
{

string filename;
int NSpins, MCcycles;
double InitialTemp, FinalTemp, TempStep;
if (argc <= 5) {

cout << "Bad Usage: " << argv[0] <<
" read output file, Number of spins, MC cycles, initial and final temperature and tempurate step" << endl;

exit(1);
}
if (argc > 1) {

filename=argv[1];
NSpins = atoi(argv[2]);
MCcycles = atoi(argv[3]);
InitialTemp = atof(argv[4]);
FinalTemp = atof(argv[5]);
TempStep = atof(argv[6]);

}
// Declare new file name and add lattice size to file name
string fileout = filename;
string argument = to_string(NSpins);

19

fileout.append(argument);
ofile.open(fileout);
// Start Monte Carlo sampling by looping over T first
for (double Temperature = InitialTemp; Temperature <= FinalTemp; Temperature+=TempStep){

vec ExpectationValues = zeros<mat>(5);
// start Monte Carlo computation
MetropolisSampling(NSpins, MCcycles, Temperature, ExpectationValues);
output(NSpins, MCcycles, Temperature, ExpectationValues);

}
ofile.close(); // close output file
return 0;

}

// function to initialise energy, spin matrix and magnetization
void InitializeLattice(int NSpins, mat &SpinMatrix, double& Energy, double& MagneticMoment)
{

// setup spin matrix and initial magnetization
for(int x =0; x < NSpins; x++) {

for (int y= 0; y < NSpins; y++){
SpinMatrix(x,y) = 1.0; // spin orientation for the ground state
MagneticMoment += (double) SpinMatrix(x,y);

}
}
// setup initial energy
for(int x =0; x < NSpins; x++) {

for (int y= 0; y < NSpins; y++){
Energy -= (double) SpinMatrix(x,y)*

(SpinMatrix(periodic(x,NSpins,-1),y) +
SpinMatrix(x,periodic(y,NSpins,-1)));

}
}

}// end function initialise

// The Monte Carlo part with the Metropolis algo with sweeps over the lattice
void MetropolisSampling(int NSpins, int MCcycles, double Temperature, vec &ExpectationValues)
{

// Initialize the seed and call the Mersenne algo
std::random_device rd;
std::mt19937_64 gen(rd());
// Then set up the uniform distribution for x \in [[0, 1]
std::uniform_real_distribution<double> distribution(0.0,1.0);
// Allocate memory for spin matrix
mat SpinMatrix = zeros<mat>(NSpins,NSpins);
// initialise energy and magnetization
double Energy = 0.; double MagneticMoment = 0.;
// initialize array for expectation values
InitializeLattice(NSpins, SpinMatrix, Energy, MagneticMoment);
// setup array for possible energy changes
vec EnergyDifference = zeros<mat>(17);
for(int de =-8; de <= 8; de+=4) EnergyDifference(de+8) = exp(-de/Temperature);
for (int cycles = 1; cycles <= MCcycles; cycles++){

// The sweep over the lattice, looping over all spin sites
for(int x =0; x < NSpins; x++) {

for (int y= 0; y < NSpins; y++){
int ix = (int) (distribution(gen)*(double)NSpins);
int iy = (int) (distribution(gen)*(double)NSpins);
int deltaE = 2*SpinMatrix(ix,iy)*

(SpinMatrix(ix,periodic(iy,NSpins,-1))+
SpinMatrix(periodic(ix,NSpins,-1),iy) +
SpinMatrix(ix,periodic(iy,NSpins,1)) +

20

SpinMatrix(periodic(ix,NSpins,1),iy));
if (distribution(gen) <= EnergyDifference(deltaE+8)) {

SpinMatrix(ix,iy) *= -1.0; // flip one spin and accept new spin config
MagneticMoment += (double) 2*SpinMatrix(ix,iy);
Energy += (double) deltaE;

}
}

}
// update expectation values for local node
ExpectationValues(0) += Energy; ExpectationValues(1) += Energy*Energy;
ExpectationValues(2) += MagneticMoment;
ExpectationValues(3) += MagneticMoment*MagneticMoment;
ExpectationValues(4) += fabs(MagneticMoment);

}

} // end of Metropolis sampling over spins

void output(int NSpins, int MCcycles, double temperature, vec ExpectationValues)
{

double norm = 1.0/((double) (MCcycles)); // divided by number of cycles
double E_ExpectationValues = ExpectationValues(0)*norm;
double E2_ExpectationValues = ExpectationValues(1)*norm;
double M_ExpectationValues = ExpectationValues(2)*norm;
double M2_ExpectationValues = ExpectationValues(3)*norm;
double Mabs_ExpectationValues = ExpectationValues(4)*norm;
// all expectation values are per spin, divide by 1/NSpins/NSpins
double Evariance = (E2_ExpectationValues- E_ExpectationValues*E_ExpectationValues)/NSpins/NSpins;
double Mvariance = (M2_ExpectationValues - Mabs_ExpectationValues*Mabs_ExpectationValues)/NSpins/NSpins;
ofile << setiosflags(ios::showpoint | ios::uppercase);
ofile << setw(15) << setprecision(8) << temperature;
ofile << setw(15) << setprecision(8) << E_ExpectationValues/NSpins/NSpins;
ofile << setw(15) << setprecision(8) << Evariance/temperature/temperature;
ofile << setw(15) << setprecision(8) << M_ExpectationValues/NSpins/NSpins;
ofile << setw(15) << setprecision(8) << Mvariance/temperature;
ofile << setw(15) << setprecision(8) << Mabs_ExpectationValues/NSpins/NSpins << endl;

} // end output function

Two-dimensional Ising Model, energy per spin and specific
heat
The following Python program, based on the above C++ codes, plots the
expectation value of the energy and its fluctuation, that is the specific heat.
Both quantities are plotted per spin and genererated for a 20× 20 lattice.

from __future__ import division
import matplotlib.pyplot as plt
import numpy as np
import math, sys

def periodic (i, limit, add):
"""
Choose correct matrix index with periodic
boundary conditions

Input:
- i: Base index
- limit: Highest \"legal\" index
- add: Number to add or subtract from i

21

"""
return (i+limit+add) % limit

def monteCarlo(temp, NSpins, MCcycles):
"""
Calculate the energy and magnetization
(\"straight\" and squared) for a given temperature

Input:
- temp: Temperature to calculate for
- NSpins: dimension of square matrix
- MCcycles: Monte-carlo MCcycles (how many times do we

flip the matrix?)

Output:
- E_av: Energy of matrix averaged over MCcycles, normalized to spins**2
- E_variance: Variance of energy, same normalization * temp**2
- M_av: Magnetic field of matrix, averaged over MCcycles, normalized to spins**2
- M_variance: Variance of magnetic field, same normalization * temp
- Mabs: Absolute value of magnetic field, averaged over MCcycles
"""

#Setup spin matrix, initialize to ground state
spin_matrix = np.zeros((NSpins,NSpins), np.int8) + 1

#Create and initialize variables
E = M = 0
E_av = E2_av = M_av = M2_av = Mabs_av = 0

#Setup array for possible energy changes
w = np.zeros(17,np.float64)
for de in range(-8,9,4): #include +8

w[de+8] = math.exp(-de/temp)

#Calculate initial magnetization:
M = spin_matrix.sum()
#Calculate initial energy
for j in range(NSpins):

for i in range(NSpins):
E -= spin_matrix.item(i,j)*\

(spin_matrix.item(periodic(i,NSpins,-1),j) + spin_matrix.item(i,periodic(j,NSpins,1)))

#Start metropolis MonteCarlo computation
for i in range(MCcycles):

#Metropolis
#Loop over all spins, pick a random spin each time
for s in range(NSpins**2):

x = int(np.random.random()*NSpins)
y = int(np.random.random()*NSpins)
deltaE = 2*spin_matrix.item(x,y)*\

(spin_matrix.item(periodic(x,NSpins,-1), y) +\
spin_matrix.item(periodic(x,NSpins,1), y) +\
spin_matrix.item(x, periodic(y,NSpins,-1)) +\
spin_matrix.item(x, periodic(y,NSpins,1)))

if np.random.random() <= w[deltaE+8]:
#Accept!
spin_matrix[x,y] *= -1
M += 2*spin_matrix[x,y]
E += deltaE

#Update expectation values

22

E_av += E
E2_av += E**2
M_av += M
M2_av += M**2
Mabs_av += int(math.fabs(M))

#Normalize average values
E_av /= float(MCcycles);
E2_av /= float(MCcycles);
M_av /= float(MCcycles);
M2_av /= float(MCcycles);
Mabs_av /= float(MCcycles);
#Calculate variance and normalize to per-point and temp
E_variance = (E2_av-E_av*E_av)/float(NSpins*NSpins*temp*temp);
M_variance = (M2_av-M_av*M_av)/float(NSpins*NSpins*temp);
#Normalize returned averages to per-point
E_av /= float(NSpins*NSpins);
M_av /= float(NSpins*NSpins);
Mabs_av /= float(NSpins*NSpins);

return (E_av, E_variance, M_av, M_variance, Mabs_av)

Main program
temperature steps, initial temperature, final temperature
NumberTsteps = 20
InitialT = 1.5
FinalT = 2.5
Tsteps = (FinalT-InitialT)/NumberTsteps
Temp = np.zeros(NumberTsteps)
for T in range(NumberTsteps):

Temp[T] = InitialT+T*Tsteps
Declare arrays that hold averages
Energy = np.zeros(NumberTsteps); Magnetization = np.zeros(NumberTsteps)
SpecificHeat = np.zeros(NumberTsteps); Susceptibility = np.zeros(NumberTsteps)
MagnetizationAbs = np.zeros(NumberTsteps)
Define number of spins
NSpins = 20
Define number of Monte Carlo cycles
MCcycles = 100000
Perform the simulations over a range of temperatures
for T in range(NumberTsteps):

(Energy[T], SpecificHeat[T], Magnetization[T], Susceptibility[T], MagnetizationAbs[T]) = monteCarlo(Temp[T],NSpins,MCcycles)
And finally plot
f = plt.figure(figsize=(18, 10)); # plot the calculated values

sp = f.add_subplot(2, 2, 1);
plt.plot(Temp, Energy, ’o’, color="green");
plt.xlabel("Temperature (T)", fontsize=20);
plt.ylabel("Energy ", fontsize=20);

sp = f.add_subplot(2, 2, 2);
plt.plot(Temp, abs(Magnetization), ’o’, color="red");
plt.xlabel("Temperature (T)", fontsize=20);
plt.ylabel("Magnetization ", fontsize=20);

sp = f.add_subplot(2, 2, 3);
plt.plot(Temp, SpecificHeat, ’o’, color="blue");
plt.xlabel("Temperature (T)", fontsize=20);
plt.ylabel("Specific Heat ", fontsize=20);

23

sp = f.add_subplot(2, 2, 4);
plt.plot(Temp, Susceptibility, ’o’, color="black");
plt.xlabel("Temperature (T)", fontsize=20);
plt.ylabel("Susceptibility", fontsize=20);

plt.show()

Two-dimensional Ising Model, finding the distribution of
energies
Here we compute the distribution of energies, of relevance for the final project.

from __future__ import division
import matplotlib.pyplot as plt
import numpy as np
import math, sys

def periodic (i, limit, add):
return (i+limit+add) % limit

def monteCarlo(Energies, temp, NSpins, MCcycles):

#Setup spin matrix, initialize to ground state
spin_matrix = np.zeros((NSpins,NSpins), np.int8) + 1

E = M = 0.0
#Setup array for possible energy changes
w = np.zeros(17,np.float64)
for de in range(-8,9,4): #include +8

w[de+8] = math.exp(-de/temp)

#Calculate initial magnetization:
M = spin_matrix.sum()
#Calculate initial energy
for j in range(NSpins):

for i in range(NSpins):
E -= spin_matrix.item(i,j)*\

(spin_matrix.item(periodic(i,NSpins,-1),j) + spin_matrix.item(i,periodic(j,NSpins,1)))

#Start metropolis MonteCarlo computation
for i in range(MCcycles):

#Metropolis
#Loop over all spins, pick a random spin each time
for s in range(NSpins**2):

x = int(np.random.random()*NSpins)
y = int(np.random.random()*NSpins)
deltaE = 2*spin_matrix.item(x,y)*\

(spin_matrix.item(periodic(x,NSpins,-1), y) +\
spin_matrix.item(periodic(x,NSpins,1), y) +\
spin_matrix.item(x, periodic(y,NSpins,-1)) +\
spin_matrix.item(x, periodic(y,NSpins,1)))

if np.random.random() <= w[deltaE+8]:
#Accept!
spin_matrix[x,y] *= -1
E += deltaE

#Update expectation values
Energies[i] += E

24

Main program

Define number of spins
NSpins = 20
Define number of Monte Carlo cycles
MCcycles = 10000
temperature steps, initial temperature, final temperature
Temp = 2.5
Declare arrays that hold averages
Energies = np.zeros(MCcycles)
Obtain the energies to construct the diagram
monteCarlo(Energies,Temp,NSpins,MCcycles)

n, bins, patches = plt.hist(Energies, 100, facecolor=’green’)

plt.xlabel(’E’)
plt.ylabel(’Energy distribution P(E)’)
plt.title(r’Energy distribution at $k_BT=2.5$’)
plt.axis([-800, -300, 0, 500])
plt.grid(True)
plt.show()

25

