Computational Physics Lectures: Variational Monte Carlo methods

Morten Hjorth-Jensen ${ }^{1,2}$

Department of Physics, University of Oslo?

Department of Physics and Astronomy and National Superconducting Cyclotron
Laboratory, Michigan State University
\qquad
1999-2018, Morten Hiorth-Jensen. Relesesed under CC Attriution-NonCommercial 4.0 I icense

Given a hamiltonian H and a trial wave function Ψ_{T}, the variational principle states that the expectation value of $\langle H\rangle$, defined through

$$
E[H]=\langle H\rangle=\frac{\int d \boldsymbol{R} \Psi_{T}^{*}(\boldsymbol{R}) H(\boldsymbol{R}) \Psi_{T}(\boldsymbol{R})}{\int d \boldsymbol{R} \Psi_{T}^{*}(\boldsymbol{R}) \Psi_{T}(\boldsymbol{R})},
$$

is an upper bound to the ground state energy E_{0} of the hamiltonian H, that is

$$
E_{0} \leq\langle H\rangle .
$$

In general, the integrals involved in the calculation of various expectation values are multi-dimensional ones. Traditional integration methods such as the Gauss-Legendre will not be adequate for say the computation of the energy of a many-body system.

Quantum Monte Carlo Motivation

The trial wave function can be expanded in the eigenstates of th hamiltonian since they form a complete set, viz.,

$$
\psi_{T}(\boldsymbol{R})=\sum_{i} a_{i} \psi_{i}(\boldsymbol{R}),
$$

and assuming the set of eigenfunctions to be normalized one obtains

$$
\frac{\sum_{n m} a_{m}^{*} a_{n} \int d \boldsymbol{R} \Psi_{m}^{*}(\boldsymbol{R}) H(\boldsymbol{R}) \Psi_{n}(\boldsymbol{R})}{\sum_{n m} a_{m}^{*} a_{n} \int d \boldsymbol{R} \Psi_{m}^{*}(\boldsymbol{R}) \Psi_{n}(\boldsymbol{R})}=\frac{\sum_{n} a_{n}^{2} E_{n}}{\sum_{n} a_{n}^{2}} \geq E_{0},
$$

where we used that $H(R) \Psi_{n}(\boldsymbol{R})=E_{n} \Psi_{n}(\boldsymbol{R})$. In general, the integrals involved in the calculation of various expectation values are multi-dimensional ones. The variational principle yields the lowest state of a given symmetry.

Quantum Monte Carlo Motivation

In most cases, a wave function has only small values in large parts of configuration space, and a straightforward procedure which uses homogenously distributed random points in configuration space will most likely lead to poor results. This may suggest that some kind of importance sampling combined with e.g., the Metropolis algorithm may be a more efficient way of obtaining the ground state energy. The hope is then that those regions of configurations space where the wave function assumes appreciable values are sampled more efficiently.

Quantum Monte Carlo Motivation

The tedious part in a VMC calculation is the search for the variational minimum. A good knowledge of the system is required in order to carry out reasonable VMC calculations. This is not always the case, and often VMC calculations serve rather as the starting point for so-called diffusion Monte Carlo calculations (DMC). DM is a way of solving exactly the many-body Schroedinger equation by means of a stochastic procedure. A good guess on the binding performed VMC calculation can aid in this context.

Quantum Monte Carlo Motivation

- Construct first a trial wave function $\psi_{T}(\boldsymbol{R}, \boldsymbol{\alpha})$, for a many-body system consisting of N particles located at positions
$\boldsymbol{R}=\left(\boldsymbol{R}_{1}, \ldots, \boldsymbol{R}_{N}\right)$. The trial wave function depends on α
variational parameters $\boldsymbol{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{M}\right)$.
- Then we evaluate the expectation value of the hamiltonian H $E[H]=\langle H\rangle=\frac{\int d \boldsymbol{R} \psi_{T}^{*}(\boldsymbol{R}, \boldsymbol{\alpha}) H(\boldsymbol{R}) \Psi_{T}(\boldsymbol{R}, \boldsymbol{\alpha})}{\int d \boldsymbol{R} \Psi_{T}^{*}(\boldsymbol{R}, \boldsymbol{\alpha}) \Psi_{T}(\boldsymbol{R}, \boldsymbol{\alpha})}$.
- Thereafter we vary α according to some minimization algorithm and return to the first step.

Basic steps

Choose a trial wave function $\psi_{T}(\boldsymbol{R})$

$$
P(\boldsymbol{R})=\frac{\left|\psi_{T}(\boldsymbol{R})\right|^{2}}{\int\left|\psi_{T}(\boldsymbol{R})\right|^{2} d \boldsymbol{R}} .
$$

This is our new probability distribution function (PDF). The approximation to the expectation value of the Hamiltonian is now

$$
E_{L}(\boldsymbol{R}, \boldsymbol{\alpha})=\frac{1}{\psi_{T}(\boldsymbol{R}, \boldsymbol{\alpha})} H \psi_{T}(\boldsymbol{R}, \boldsymbol{\alpha}),
$$

called the local energy, which, together with our trial PDF yields

$$
E[H(\boldsymbol{\alpha})]=\int P(\boldsymbol{R}) E_{L}(\boldsymbol{R}) d \boldsymbol{R} \approx \frac{1}{N} \sum_{i=1}^{N} P\left(\boldsymbol{R}_{\boldsymbol{i}}, \boldsymbol{\alpha}\right) E_{L}\left(\boldsymbol{R}_{\boldsymbol{i}}, \boldsymbol{\alpha}\right)
$$

with N being the number of Monte Carlo samples.

Quantum Monte Carlo

Quantum Monte Carlo: hydrogen atom

The radial Schroedinger equation for the hydrogen atom can be written as

$$
-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} u(r)}{\partial r^{2}}-\left(\frac{k e^{2}}{r}-\frac{\hbar^{2} l(l+1)}{2 m r^{2}}\right) u(r)=E u(r),
$$

Initialisation: Fix the number of Monte Carlo steps. Choose a
initial \boldsymbol{R} and variational parameters α and calculate $\left|\psi_{\tau}^{\alpha}(\boldsymbol{R})\right|^{2}$

- Initialise the energy and the variance and start the Monte
arlo calculation.
- Calculate a trial position $R_{p}=R+r *$ step where r is a
random variable $r \in[0,1]$.
Metropolis algorithm to accept or reject this move
$w=P\left(S_{R}\right)(P(R)$
- If the step is accepted, then we set $\boldsymbol{R}=\boldsymbol{R}_{p}$.
- Update averages
- Finish and compute final averages.

Observe that the jumping in space is governed by the variable step. This is Called brute-force sampling. Need importance sampling to get more relevant sampling, see lectures below.

$$
-\frac{1}{2} \frac{\partial^{2} u(\rho)}{\partial \rho^{2}}-\frac{u(\rho)}{\rho}+\frac{I(I+1)}{2 \rho^{2}} u(\rho)-\lambda u(\rho)=0,
$$

with the hamiltonian

$$
H=-\frac{1}{2} \frac{\partial^{2}}{\partial \rho^{2}}-\frac{1}{\rho}+\frac{I(I+1)}{2 \rho^{2}} .
$$

Use variational parameter α in the trial wave function
$u_{T}^{\alpha}(\rho)=\alpha \rho e^{-\alpha \rho}$.

Quantum Monte Carlo: hydrogen atom

Inserting this wave function into the expression for the local energy E_{L} gives

$$
E_{L}(\rho)=-\frac{1}{\rho}-\frac{\alpha}{2}\left(\alpha-\frac{2}{\rho}\right) .
$$

A simple variational Monte Carlo calculation results in

α	$\langle H\rangle$	σ^{2}	$\sigma / \sqrt{ }$
$7.00000 \mathrm{E}-01$	$-4.57759 \mathrm{E}-01$	$4.51201 \mathrm{E}-02$	$6.71715 \mathrm{E}-04$

$\begin{array}{llll}8.00000 \mathrm{E}-01 & -4.81461 \mathrm{E}-01 & 3.05736 \mathrm{E}-02 & 5.52934 \mathrm{E}-04\end{array}$
$\begin{array}{llll}9.00000 E-01 & -4.95899 E-01 & 8.204977 E-03 & 5.86443 E-04\end{array}$
$1.00000 \mathrm{E}-00 \quad-5.00000 \mathrm{E}-01 \quad 0.00000 \mathrm{E}+00 \quad 0.00000 \mathrm{E}+00$
$\begin{array}{llll}1.10000 \mathrm{E}+00 & -4.93733 \mathrm{E}-01 & 1.169899 \mathrm{E}-02 & 3.42036 \mathrm{E}-04 \\ & 1.2000\end{array}$
$\begin{array}{lllll}1.20000 E+00 & -4.75563 \mathrm{E}-01 & 8.85899 \mathrm{E}-02 & 9.41222 \mathrm{E}-04\end{array}$

Quantum Monte Carlo: hydrogen atom

We note that at $\alpha=1$ we obtain the exact result, and the variance is zero, as it should. The reason is that we then have the exact wave function, and the action of the hamiltionan on the wase function

$$
H \psi=\text { constant } \times \psi,
$$

yields just a constant. The integral which defines various expectation values involving moments of the hamiltonian becomes then

$$
\left\langle\boldsymbol{H}^{n}\right\rangle=\frac{\int d \boldsymbol{R} \psi_{T}^{*}(\boldsymbol{R}) H^{n}(\boldsymbol{R}) \psi_{T}(\boldsymbol{R})}{\int d \boldsymbol{R} \psi_{T}^{*}(\boldsymbol{R}) \psi_{T}(\boldsymbol{R})}=\operatorname{constant} \times \frac{\int d \boldsymbol{R} \psi_{T}^{*}(\boldsymbol{R}) \psi_{T}(\boldsymbol{R})}{\int d \boldsymbol{R} \Psi_{T}^{*}(\boldsymbol{R}) \Psi_{T}(\boldsymbol{R})}
$$

This gives an important information: the exact wave function leads to zero variance! Variation is then performed by minimizing both the energy and the variance.

The helium atom consists of two electrons and a nucleus with charge $Z=2$. The contribution to the potential energy due to the attraction from the nucleus is

$$
-\frac{2 k e^{2}}{r_{1}}-\frac{2 k e^{2}}{r_{2}},
$$

and if we add the repulsion arising from the two interacting electrons, we obtain the potential energy

$$
V\left(r_{1}, r_{2}\right)=-\frac{2 k e^{2}}{r_{1}}-\frac{2 k e^{2}}{r_{2}}+\frac{k e^{2}}{r_{12}},
$$

with the electrons separated at a distance $\boldsymbol{r}_{12}=\left|\boldsymbol{r}_{1}-\boldsymbol{r}_{2}\right|$

The hamiltonian becomes then

$$
\hat{H}=-\frac{\hbar^{2} \nabla_{1}^{2}}{2 m}-\frac{\hbar^{2} \nabla_{2}^{2}}{2 m}-\frac{2 k e^{2}}{r_{1}}-\frac{2 k e^{2}}{r_{2}}+\frac{k e^{2}}{r_{12}},
$$

and Schroedingers equation reads

$$
\hat{H} \psi=E \psi \text {. }
$$

All observables are evaluated with respect to the probability distribution

$$
P(\boldsymbol{R})=\frac{\left|\psi_{T}(\boldsymbol{R})\right|^{2}}{\int\left|\psi_{T}(\boldsymbol{R})\right|^{2} d \boldsymbol{R}}
$$

generated by the trial wave function. The trial wave function must approximate an exact eigenstate in order that accurate results are to be obtained.

Quantum Monte Carlo: the helium atom

Choice of trial wave function for Helium: Assume $r_{1} \rightarrow 0$
$E_{L}(\boldsymbol{R})=\frac{1}{\psi_{T}(\boldsymbol{R})} H_{\psi_{T}}(\boldsymbol{R})=\frac{1}{\psi_{T}(\boldsymbol{R})}\left(-\frac{1}{2} \nabla_{1}^{2}-\frac{Z}{r_{1}}\right) \psi_{T}(\boldsymbol{R})+$ finite terms $E_{L}(R)=\frac{1}{\mathcal{R}_{T}\left(r_{1}\right)}\left(-\frac{1}{2} \frac{d^{2}}{d r_{1}^{2}}-\frac{1}{r_{1}} \frac{d}{d r_{1}}-\frac{Z}{r_{1}}\right) \mathcal{R}_{T}\left(r_{1}\right)+$ finite terms For small values of r_{1}, the terms which dominate are

$$
\lim _{r_{1} \rightarrow 0} E_{L}(R)=\frac{1}{\mathcal{R}_{T}\left(r_{1}\right)}\left(-\frac{1}{r_{1}} \frac{d}{d r_{1}}-\frac{Z}{r_{1}}\right) \mathcal{R}_{T}\left(r_{1}\right)
$$

since the second derivative does not diverge due to the finiteness of ψ at the origin.

Quantum Monte Carlo: the helium atom

This results in

$$
\frac{1}{\mathcal{R}_{T}\left(r_{1}\right)} \frac{d \mathcal{R}_{T}\left(r_{1}\right)}{d r_{1}}=-Z,
$$

and

$$
\mathcal{R}_{T}\left(r_{1}\right) \propto e^{-Z r_{1}} .
$$

A similar condition applies to electron 2 as well. For orbital momenta I >0 we have

$$
\frac{1}{\mathcal{R}_{T}(r)} \frac{d \mathcal{R}_{T}(r)}{d r}=-\frac{Z}{l+1} .
$$

Similarly, studying the case $r_{12} \rightarrow 0$ we can write a possible trial wave function as

$$
\psi_{T}(\boldsymbol{R})=e^{-\alpha\left(r_{1}+r_{2}\right)} e^{\beta r_{12}}
$$

The last equation can be generalized to
$\psi_{T}(\boldsymbol{R})=\phi\left(\boldsymbol{r}_{1}\right) \phi\left(\boldsymbol{r}_{2}\right) \ldots \phi\left(\boldsymbol{r}_{N}\right) \prod f\left(r_{i j}\right)$, \square

The first attempt at solving the helium atom

During the development of our code we need to make several checks. It is also very instructive to compute a closed form expression for the local energy. Since our wave function is rather simple it is straightforward to find an analytic expressions. Consider first the case of the simple helium function

$$
\Psi_{T}\left(\boldsymbol{r}_{1}, \boldsymbol{r}_{2}\right)=e^{-\alpha\left(r_{1}+r_{2}\right)}
$$

The local energy is for this case

$$
E_{L 1}=(\alpha-Z)\left(\frac{1}{r_{1}}+\frac{1}{r_{2}}\right)+\frac{1}{r_{12}}-\alpha^{2}
$$

which gives an expectation value for the local energy given by

$$
\left\langle E_{L 1}\right\rangle=\alpha^{2}-2 \alpha\left(z-\frac{5}{16}\right)
$$

The first attempt at solving the Helium atom

With closed form formulae we can speed up the computation of the correlation. In our case we write it as

$$
\Psi_{C}=\exp \left\{\sum_{i<j} \frac{a r_{i j}}{1+\beta r_{i j}}\right\},
$$

which means that the gradient needed for the so-called quantum
which means that the gradient needed for the so-called quantum force and local energy can be calculated analytically. Tis will speed
up your code since the computation of the correlation part and the Slater determinant are the most time consuming parts in your code. We will refer to this correlation function as Ψ_{C} or the linear Pade-Jastrow.

For the computation of various derivatives with different types of wave functions, you will find it useful to use python with symboli python, that is sympy, see online manual. Using sympy allows you autogenerate both Latex code as well c++, python or Fortran codes. Here you will find some simple examples. We choose the $2 s$ hydrogen-orbital (not normalized) as an example

$$
\phi_{2 s}(\boldsymbol{r})=(Z r-2) \exp -\left(\frac{1}{2} Z r\right),
$$

with $r^{2}=x^{2}+y^{2}+z^{2}$
from sympy
$x, y, z, z=$ import symbols,
symois (' $x y$
y

phi $=(Z * r-2) * \exp (-z * r / 2)$

This doesn't look very nice, but sympy provides several functions that allow for improving and simplifying the output.

The first attempt at solving the Helium atom

We can improve our output by factorizing and substituting expressions
from sympy import symbols, diff, exp, sqrt, factor, Symbol, printing
$\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{z}=\mathrm{symbols('x} \mathrm{y} \mathrm{z}$ ') $x, y, z, z=\operatorname{symbols}(x, y)^{\prime} z$
$r==\operatorname{sqrt}(x * x+y * y+z * z)$

The first attempt at solving the Helium atom

We can in turn look at second derivatives

 With some practice this allows one to be able to check one's own calculation and translate automatically into code lines.

```
The c++ code with a VMC Solver class, main program first
    ##nclude"vmcsolver.h"
    using namespace std;
    int main()
        MCSOIver *solver = new vMCSolver();
        M
}
```

The first attempt at solving the Helium atom
The c++ code with a VMC Solver class, the VMCSolver header file

\#iniclude <arradililo>
using namespace arma
using namespace arma;
class VMCSolver
$\stackrel{\uparrow}{\text { publi }}$
VMCSOlver();
void runMonteCar1oIntegration();
private:
double wavefunction(const mat $\& \mathrm{rr})$;
double 1ocalEnergy (const mat $\& \mathrm{kr}$);
double localEne
int nDimensions;
int charge;
double stepLength
double stepLength
int nparticles;
double $h ;$
double h2;
his
double h2;
loung idum;
double alpha;
long idum;
double alpha;
int ncycles;
ant
met reycies;
mat ridew;
mat
\};
tendif // vMCSOLVER_H
$\#$ include
\#include
"vincsolver. $h " h$
$\#$ include <armadill
tinclude
iostrea
using namespace arma;
using namespace std
vMCSOIver: : VMCSolver ()
nDimensions (3),
charge(2),
$\substack{\text { charaneens } \\ \text { stepLengti }}$
s.

$\mathrm{h}(0.001)$),
$\mathrm{h} 2(1000000)$,

f
f

The first attempt at solving the Helium atom

The c++ code with a VMC Solver class, VMCSolver codes

double vMCSolver: : waveFunction(const mat $\&$ r)
double argument
for (int $i=0$
Oor dint it

${ }_{\text {argument }}^{\mathrm{f}}+\mathrm{sqrt}$ (rSing1eParticle);
return $\exp (-a r g u m e n t *$ alpha) \}
$\underset{\text { kineticEnergy }}{\text { Potential }}=0.5 *$ h2 $2 *$ kineticEnergy / waveFunctionCurren 1 Potential energy ouble rSingleParticle $=0$ or(int $i=0 ; 1<n$ narticles; $i++$)

The Metropolis algorithm

The Metropolis algorithm, see the original article (see also the FYS3150 lectures) was invented by Metropolis et. al and is often simply called the Metropolis algorithm. It is a method to sample a normalized probability distribution by a stochastic process. We define $\mathcal{P}_{i}^{(n)}$ to be the probability for finding the system in the state i at step n. The algorithm is then

- Sample a possible new state j with some probability $T_{i \rightarrow j}$
- Accept the new state j with probability $A_{i \rightarrow j}$ and use it as the next sample. With probability $1-A_{i \rightarrow j}$ the move is rejected and the original state i is used again as a sample.

We wish to derive the required properties of T and A such that $\mathcal{P}_{i}^{(n \rightarrow \infty)} \rightarrow p_{i}$ so that starting from any distribution, the method converges to the correct distribution. Note that the description here is for a discrete probability distribution. Replacing probabilities p with expressions like $p\left(x_{i}\right) d x_{\text {; }}$ will take all of these over to the corresponding continuum expressions.

The dynamical equation for $\mathcal{P}^{(n)}$ can be written directly from the description above. The probability of being in the state i at step n is given by the probability of being in any state j at the previo is given by the probability of being in any state j at the pre
step, and making an accepted transition to i added to the probability of being in the state i, making a transition to any state j and rejecting the move:

$$
\mathcal{P}_{i}^{(n)}=\sum_{j}\left[\mathcal{P}_{j}^{(n-1)} T_{j \rightarrow i} A_{j \rightarrow i}+\mathcal{P}_{i}^{(n-1)} T_{i \rightarrow j}\left(1-A_{i \rightarrow j}\right)\right]
$$

Since the probability of making some transition must be 1 ,
$\sum_{j} T_{i \rightarrow j}=1$, and the above equation becomes

$$
\mathcal{P}_{i}^{(n)}=\mathcal{P}_{i}^{(n-1)}+\sum_{j}\left[\mathcal{P}_{j}^{(n-1)} T_{j \rightarrow i} A_{j \rightarrow i}-\mathcal{P}_{i}^{(n-1)} T_{i \rightarrow j} A_{i \rightarrow j}\right] .
$$

The Metropolis algorithm

The Metropolis algorithm

The Metropolis choice is to maximize the A values, that is

$$
A_{j \rightarrow i}=\min \left(1, \frac{p_{i} T_{i \rightarrow j}}{p_{j} T_{j \rightarrow i}}\right) .
$$

Other choices are possible, but they all correspond to multilplying $A_{i \rightarrow j}$ and $A_{j \rightarrow i}$ by the same constant smaller than unity. ${ }^{2}$
${ }^{3}$ The penalty function method uses just such a factor to compensate for p_{i} that are evaluated stochastically and are therefore noisy. detailed balance requirement is enforced, that is rather than the sum being set to zero, we set each term separately to zero and use this to determine the acceptance probabilities. Rearranging, the result is

$$
\frac{A_{j \rightarrow i}}{A_{i \rightarrow j}}=\frac{p_{i} T_{i \rightarrow j}}{p_{j} T_{j \rightarrow i}} .
$$

The Metropolis algorithm

The Metropolis algorithm
Having chosen the acceptance probabilities, we have guaranteed that if the $\mathcal{P}_{i}^{(n)}$ has equilibrated, that is if it is equal to p_{i}, it will remain equilibrated. Next we need to find the circumstances for convergence to equilibrium.
The dynamical equation can be written as

$$
\mathcal{P}_{i}^{(n)}=\sum_{i} M_{i j} \mathcal{P}_{j}^{(n-1)}
$$

with the matrix M given by

$$
M_{i j}=\delta_{i j}\left[1-\sum_{k} T_{i \rightarrow k} A_{i \rightarrow k}\right]+T_{j \rightarrow i} A_{j \rightarrow i} .
$$

Summing over i shows that $\sum_{i} M_{i j}=1$, and since $\sum_{k} T_{i \rightarrow k}=1$, and $A_{i \rightarrow k} \leq 1$, the elements of the matrix satisfy $M_{i j} \geq 0$. The matrix M is therefore a stochastic matrix.

The Metropolis method is simply the power method for computing the right eigenvector of M with the largest magnitude eigenvalue By construction, the correct probability distribution is a right By construction, the correct probability distribution is a right
eigenvector with eigenvalue 1. Therefore, for the Metropolis eigenvector with eigenvalue 1 . Therefore, for the Metropolis
method to converge to this result, we must show that M has only one eigenvalue with this magnitude, and all other eigenvalues are smaller

