
Computational Physics Lectures: Variational Monte
Carlo methods

Morten Hjorth-Jensen1,2

Department of Physics, University of Oslo1

Department of Physics and Astronomy and National Superconducting Cyclotron
Laboratory, Michigan State University2

Jan 8, 2018
c© 1999-2018, Morten Hjorth-Jensen. Released under CC Attribution-NonCommercial 4.0 license

Quantum Monte Carlo Motivation

Given a hamiltonian H and a trial wave function ΨT , the variational
principle states that the expectation value of 〈H〉, defined through

E [H] = 〈H〉 =

∫
dRΨ∗T (R)H(R)ΨT (R)∫

dRΨ∗T (R)ΨT (R)
,

is an upper bound to the ground state energy E0 of the hamiltonian
H, that is

E0 ≤ 〈H〉.
In general, the integrals involved in the calculation of various
expectation values are multi-dimensional ones. Traditional
integration methods such as the Gauss-Legendre will not be
adequate for say the computation of the energy of a many-body
system.

Quantum Monte Carlo Motivation

The trial wave function can be expanded in the eigenstates of the
hamiltonian since they form a complete set, viz.,

ΨT (R) =
∑

i

aiΨi (R),

and assuming the set of eigenfunctions to be normalized one obtains
∑

nm a∗man
∫
dRΨ∗m(R)H(R)Ψn(R)∑

nm a∗man
∫
dRΨ∗m(R)Ψn(R)

=

∑
n a

2
nEn∑

n a
2
n

≥ E0,

where we used that H(R)Ψn(R) = EnΨn(R). In general, the
integrals involved in the calculation of various expectation values
are multi-dimensional ones. The variational principle yields the
lowest state of a given symmetry.

Quantum Monte Carlo Motivation

In most cases, a wave function has only small values in large parts
of configuration space, and a straightforward procedure which uses
homogenously distributed random points in configuration space will
most likely lead to poor results. This may suggest that some kind
of importance sampling combined with e.g., the Metropolis
algorithm may be a more efficient way of obtaining the ground
state energy. The hope is then that those regions of configurations
space where the wave function assumes appreciable values are
sampled more efficiently.

Quantum Monte Carlo Motivation

The tedious part in a VMC calculation is the search for the
variational minimum. A good knowledge of the system is required in
order to carry out reasonable VMC calculations. This is not always
the case, and often VMC calculations serve rather as the starting
point for so-called diffusion Monte Carlo calculations (DMC). DMC
is a way of solving exactly the many-body Schroedinger equation by
means of a stochastic procedure. A good guess on the binding
energy and its wave function is however necessary. A carefully
performed VMC calculation can aid in this context.

Quantum Monte Carlo Motivation

Construct first a trial wave function ψT (R,α), for a
many-body system consisting of N particles located at
positions

R = (R1, . . . ,RN). The trial wave function depends on α
variational parameters α = (α1, . . . , αM).

Then we evaluate the expectation value of the hamiltonian H

E [H] = 〈H〉 =

∫
dRΨ∗T (R,α)H(R)ΨT (R,α)∫

dRΨ∗T (R,α)ΨT (R,α)
.

Thereafter we vary α according to some minimization
algorithm and return to the first step.

Quantum Monte Carlo Motivation

Basic steps

Choose a trial wave function ψT (R).

P(R) =
|ψT (R)|2∫
|ψT (R)|2 dR

.

This is our new probability distribution function (PDF). The
approximation to the expectation value of the Hamiltonian is now

E [H(α)] =

∫
dRΨ∗T (R,α)H(R)ΨT (R,α)∫

dRΨ∗T (R,α)ΨT (R,α)
.

Quantum Monte Carlo Motivation

Define a new quantity

EL(R,α) =
1

ψT (R,α)
HψT (R,α),

called the local energy, which, together with our trial PDF yields

E [H(α)] =

∫
P(R)EL(R)dR ≈ 1

N

N∑

i=1

P(Ri ,α)EL(Ri ,α)

with N being the number of Monte Carlo samples.

Quantum Monte Carlo

The Algorithm for performing a variational Monte Carlo
calculations runs thus as this

Initialisation: Fix the number of Monte Carlo steps. Choose an
initial R and variational parameters α and calculate |ψαT (R)|2.
Initialise the energy and the variance and start the Monte
Carlo calculation.

Calculate a trial position Rp = R + r ∗ step where r is a
random variable r ∈ [0, 1].
Metropolis algorithm to accept or reject this move
w = P(Rp)/P(R).
If the step is accepted, then we set R = Rp.
Update averages

Finish and compute final averages.

Observe that the jumping in space is governed by the variable step.
This is Called brute-force sampling. Need importance sampling to
get more relevant sampling, see lectures below.

Quantum Monte Carlo: hydrogen atom

The radial Schroedinger equation for the hydrogen atom can be
written as

− ~2

2m
∂2u(r)

∂r2 −
(
ke2

r
− ~2l(l + 1)

2mr2

)
u(r) = Eu(r),

or with dimensionless variables

−1
2
∂2u(ρ)

∂ρ2 − u(ρ)

ρ
+

l(l + 1)

2ρ2 u(ρ)− λu(ρ) = 0,

with the hamiltonian

H = −1
2
∂2

∂ρ2 −
1
ρ

+
l(l + 1)

2ρ2 .

Use variational parameter α in the trial wave function

uαT (ρ) = αρe−αρ.

Quantum Monte Carlo: hydrogen atom

Inserting this wave function into the expression for the local energy
EL gives

EL(ρ) = −1
ρ
− α

2

(
α− 2

ρ

)
.

A simple variational Monte Carlo calculation results in
α 〈H〉 σ2 σ/

√
N

7.00000E-01 -4.57759E-01 4.51201E-02 6.71715E-04
8.00000E-01 -4.81461E-01 3.05736E-02 5.52934E-04
9.00000E-01 -4.95899E-01 8.20497E-03 2.86443E-04
1.00000E-00 -5.00000E-01 0.00000E+00 0.00000E+00
1.10000E+00 -4.93738E-01 1.16989E-02 3.42036E-04
1.20000E+00 -4.75563E-01 8.85899E-02 9.41222E-04
1.30000E+00 -4.54341E-01 1.45171E-01 1.20487E-03

Quantum Monte Carlo: hydrogen atom

We note that at α = 1 we obtain the exact result, and the variance
is zero, as it should. The reason is that we then have the exact
wave function, and the action of the hamiltionan on the wave
function

Hψ = constant× ψ,
yields just a constant. The integral which defines various
expectation values involving moments of the hamiltonian becomes
then

〈Hn〉 =

∫
dRΨ∗T (R)Hn(R)ΨT (R)∫

dRΨ∗T (R)ΨT (R)
= constant×

∫
dRΨ∗T (R)ΨT (R)∫
dRΨ∗T (R)ΨT (R)

= constant.

This gives an important information: the exact wave
function leads to zero variance! Variation is then performed by
minimizing both the energy and the variance.

Quantum Monte Carlo: the helium atom

The helium atom consists of two electrons and a nucleus with
charge Z = 2. The contribution to the potential energy due to the
attraction from the nucleus is

−2ke2

r1
− 2ke2

r2
,

and if we add the repulsion arising from the two interacting
electrons, we obtain the potential energy

V (r1, r2) = −2ke2

r1
− 2ke2

r2
+

ke2

r12
,

with the electrons separated at a distance r12 = |r1 − r2|.

Quantum Monte Carlo: the helium atom

The hamiltonian becomes then

Ĥ = −~2∇2
1

2m
− ~2∇2

2
2m

− 2ke2

r1
− 2ke2

r2
+

ke2

r12
,

and Schroedingers equation reads

Ĥψ = Eψ.

All observables are evaluated with respect to the probability
distribution

P(R) =
|ψT (R)|2∫
|ψT (R)|2 dR

.

generated by the trial wave function. The trial wave function must
approximate an exact eigenstate in order that accurate results are
to be obtained.

Quantum Monte Carlo: the helium atom

Choice of trial wave function for Helium: Assume r1 → 0.

EL(R) =
1

ψT (R)
HψT (R) =

1
ψT (R)

(
−1
2
∇2

1 −
Z

r1

)
ψT (R)+finite terms.

EL(R) =
1

RT (r1)

(
−1
2
d2

dr2
1
− 1

r1

d

dr1
− Z

r1

)
RT (r1) + finite terms

For small values of r1, the terms which dominate are

lim
r1→0

EL(R) =
1

RT (r1)

(
− 1
r1

d

dr1
− Z

r1

)
RT (r1),

since the second derivative does not diverge due to the finiteness of
Ψ at the origin.

Quantum Monte Carlo: the helium atom
This results in

1
RT (r1)

dRT (r1)

dr1
= −Z ,

and
RT (r1) ∝ e−Zr1 .

A similar condition applies to electron 2 as well. For orbital
momenta l > 0 we have

1
RT (r)

dRT (r)

dr
= − Z

l + 1
.

Similarly, studying the case r12 → 0 we can write a possible trial
wave function as

ψT (R) = e−α(r1+r2)eβr12 .

The last equation can be generalized to

ψT (R) = φ(r1)φ(r2) . . . φ(rN)
∏

i<j

f (rij),

for a system with N electrons or particles.

The first attempt at solving the helium atom

During the development of our code we need to make several
checks. It is also very instructive to compute a closed form
expression for the local energy. Since our wave function is rather
simple it is straightforward to find an analytic expressions. Consider
first the case of the simple helium function

ΨT (r1, r2) = e−α(r1+r2)

The local energy is for this case

EL1 = (α− Z)

(
1
r1

+
1
r2

)
+

1
r12
− α2

which gives an expectation value for the local energy given by

〈EL1〉 = α2 − 2α
(
Z − 5

16

)

The first attempt at solving the Helium atom

With closed form formulae we can speed up the computation of the
correlation. In our case we write it as

ΨC = exp




∑

i<j

arij
1 + βrij



,

which means that the gradient needed for the so-called quantum
force and local energy can be calculated analytically. This will speed
up your code since the computation of the correlation part and the
Slater determinant are the most time consuming parts in your code.
We will refer to this correlation function as ΨC or the linear
Pade-Jastrow.

The first attempt at solving the Helium atom

We can test this by computing the local energy for our helium wave
function

ψT (r1, r2) = exp (−α(r1 + r2)) exp
(

r12

2(1 + βr12)

)
,

with α and β as variational parameters.
The local energy is for this case

EL2 = EL1+
1

2(1 + βr12)2

{
α(r1 + r2)

r12
(1− r1r2

r1r2
)− 1

2(1 + βr12)2 −
2
r12

+
2β

1 + βr12

}

It is very useful to test your code against these expressions. It
means also that you don’t need to compute a derivative numerically
as discussed in the code example below.

The first attempt at solving the Helium atom

For the computation of various derivatives with different types of
wave functions, you will find it useful to use python with symbolic
python, that is sympy, see online manual. Using sympy allows you
autogenerate both Latex code as well c++, python or Fortran
codes. Here you will find some simple examples. We choose the 2s
hydrogen-orbital (not normalized) as an example

φ2s(r) = (Zr − 2) exp−(
1
2
Zr),

with r2 = x2 + y2 + z2.
from sympy import symbols, diff, exp, sqrt
x, y, z, Z = symbols(’x y z Z’)
r = sqrt(x*x + y*y + z*z)
r
phi = (Z*r - 2)*exp(-Z*r/2)
phi
diff(phi, x)

This doesn’t look very nice, but sympy provides several functions
that allow for improving and simplifying the output.

The first attempt at solving the Helium atom

We can improve our output by factorizing and substituting
expressions
from sympy import symbols, diff, exp, sqrt, factor, Symbol, printing
x, y, z, Z = symbols(’x y z Z’)
r = sqrt(x*x + y*y + z*z)
phi = (Z*r - 2)*exp(-Z*r/2)
R = Symbol(’r’) #Creates a symbolic equivalent of r
#print latex and c++ code
print printing.latex(diff(phi, x).factor().subs(r, R))
print printing.ccode(diff(phi, x).factor().subs(r, R))

The first attempt at solving the Helium atom

We can in turn look at second derivatives
from sympy import symbols, diff, exp, sqrt, factor, Symbol, printing
x, y, z, Z = symbols(’x y z Z’)
r = sqrt(x*x + y*y + z*z)
phi = (Z*r - 2)*exp(-Z*r/2)
R = Symbol(’r’) #Creates a symbolic equivalent of r
(diff(diff(phi, x), x) + diff(diff(phi, y), y) + diff(diff(phi, z), z)).factor().subs(r, R)
Collect the Z values
(diff(diff(phi, x), x) + diff(diff(phi, y), y) +diff(diff(phi, z), z)).factor().collect(Z).subs(r, R)
Factorize also the r**2 terms
(diff(diff(phi, x), x) + diff(diff(phi, y), y) + diff(diff(phi, z), z)).factor().collect(Z).subs(r, R).subs(r**2, R**2).factor()
print printing.ccode((diff(diff(phi, x), x) + diff(diff(phi, y), y) + diff(diff(phi, z), z)).factor().collect(Z).subs(r, R).subs(r**2, R**2).factor())

With some practice this allows one to be able to check one’s own
calculation and translate automatically into code lines.

The first attempt at solving the Helium atom

The c++ code with a VMC Solver class, main program first
#include "vmcsolver.h"
#include <iostream>
using namespace std;

int main()
{

VMCSolver *solver = new VMCSolver();
solver->runMonteCarloIntegration();
return 0;

}

The first attempt at solving the Helium atom
The c++ code with a VMC Solver class, the VMCSolver header file
#ifndef VMCSOLVER_H
#define VMCSOLVER_H
#include <armadillo>
using namespace arma;
class VMCSolver
{
public:

VMCSolver();
void runMonteCarloIntegration();

private:
double waveFunction(const mat &r);
double localEnergy(const mat &r);
int nDimensions;
int charge;
double stepLength;
int nParticles;
double h;
double h2;
long idum;
double alpha;
int nCycles;
mat rOld;
mat rNew;

};
#endif // VMCSOLVER_H

The first attempt at solving the Helium atom

The c++ code with a VMC Solver class, VMCSolver codes,
initialize
#include "vmcsolver.h"
#include "lib.h"
#include <armadillo>
#include <iostream>
using namespace arma;
using namespace std;

VMCSolver::VMCSolver() :
nDimensions(3),
charge(2),
stepLength(1.0),
nParticles(2),
h(0.001),
h2(1000000),
idum(-1),
alpha(0.5*charge),
nCycles(1000000)

{
}

The first attempt at solving the Helium atom
The c++ code with a VMC Solver class, VMCSolver codes
void VMCSolver::runMonteCarloIntegration()
{

rOld = zeros<mat>(nParticles, nDimensions);
rNew = zeros<mat>(nParticles, nDimensions);
double waveFunctionOld = 0;
double waveFunctionNew = 0;
double energySum = 0;
double energySquaredSum = 0;
double deltaE;
// initial trial positions
for(int i = 0; i < nParticles; i++) {

for(int j = 0; j < nDimensions; j++) {
rOld(i,j) = stepLength * (ran2(&idum) - 0.5);

}
}
rNew = rOld;
// loop over Monte Carlo cycles
for(int cycle = 0; cycle < nCycles; cycle++) {

// Store the current value of the wave function
waveFunctionOld = waveFunction(rOld);
// New position to test
for(int i = 0; i < nParticles; i++) {

for(int j = 0; j < nDimensions; j++) {
rNew(i,j) = rOld(i,j) + stepLength*(ran2(&idum) - 0.5);

}
// Recalculate the value of the wave function
waveFunctionNew = waveFunction(rNew);
// Check for step acceptance (if yes, update position, if no, reset position)
if(ran2(&idum) <= (waveFunctionNew*waveFunctionNew) / (waveFunctionOld*waveFunctionOld)) {

for(int j = 0; j < nDimensions; j++) {
rOld(i,j) = rNew(i,j);
waveFunctionOld = waveFunctionNew;

}
} else {

for(int j = 0; j < nDimensions; j++) {
rNew(i,j) = rOld(i,j);

}
}
// update energies
deltaE = localEnergy(rNew);
energySum += deltaE;
energySquaredSum += deltaE*deltaE;

}
}
double energy = energySum/(nCycles * nParticles);
double energySquared = energySquaredSum/(nCycles * nParticles);
cout << "Energy: " << energy << " Energy (squared sum): " << energySquared << endl;

}

The first attempt at solving the Helium atom
The c++ code with a VMC Solver class, VMCSolver codes
double VMCSolver::localEnergy(const mat &r)
{

mat rPlus = zeros<mat>(nParticles, nDimensions);
mat rMinus = zeros<mat>(nParticles, nDimensions);
rPlus = rMinus = r;
double waveFunctionMinus = 0;
double waveFunctionPlus = 0;
double waveFunctionCurrent = waveFunction(r);
// Kinetic energy, brute force derivations
double kineticEnergy = 0;
for(int i = 0; i < nParticles; i++) {

for(int j = 0; j < nDimensions; j++) {
rPlus(i,j) += h;
rMinus(i,j) -= h;
waveFunctionMinus = waveFunction(rMinus);
waveFunctionPlus = waveFunction(rPlus);
kineticEnergy -= (waveFunctionMinus + waveFunctionPlus - 2 * waveFunctionCurrent);
rPlus(i,j) = r(i,j);
rMinus(i,j) = r(i,j);

}
}
kineticEnergy = 0.5 * h2 * kineticEnergy / waveFunctionCurrent;
// Potential energy
double potentialEnergy = 0;
double rSingleParticle = 0;
for(int i = 0; i < nParticles; i++) {

rSingleParticle = 0;
for(int j = 0; j < nDimensions; j++) {

rSingleParticle += r(i,j)*r(i,j);
}
potentialEnergy -= charge / sqrt(rSingleParticle);

}
// Contribution from electron-electron potential
double r12 = 0;
for(int i = 0; i < nParticles; i++) {

for(int j = i + 1; j < nParticles; j++) {
r12 = 0;
for(int k = 0; k < nDimensions; k++) {

r12 += (r(i,k) - r(j,k)) * (r(i,k) - r(j,k));
}
potentialEnergy += 1 / sqrt(r12);

}
}
return kineticEnergy + potentialEnergy;

}

The first attempt at solving the Helium atom

The c++ code with a VMC Solver class, VMCSolver codes
double VMCSolver::waveFunction(const mat &r)
{

double argument = 0;
for(int i = 0; i < nParticles; i++) {

double rSingleParticle = 0;
for(int j = 0; j < nDimensions; j++) {

rSingleParticle += r(i,j) * r(i,j);
}
argument += sqrt(rSingleParticle);

}
return exp(-argument * alpha);

}

The first attempt at solving the Helium atom
The c++ code with a VMC Solver class, the VMCSolver header file
#include <armadillo>
#include <iostream>
using namespace arma;
using namespace std;
double ran2(long *);

class VMCSolver
{
public:

VMCSolver();
void runMonteCarloIntegration();

private:
double waveFunction(const mat &r);
double localEnergy(const mat &r);
int nDimensions;
int charge;
double stepLength;
int nParticles;
double h;
double h2;
long idum;
double alpha;
int nCycles;
mat rOld;
mat rNew;

};

VMCSolver::VMCSolver() :
nDimensions(3),
charge(2),
stepLength(1.0),
nParticles(2),
h(0.001),
h2(1000000),
idum(-1),
alpha(0.5*charge),
nCycles(1000000)

{
}

void VMCSolver::runMonteCarloIntegration()
{

rOld = zeros<mat>(nParticles, nDimensions);
rNew = zeros<mat>(nParticles, nDimensions);
double waveFunctionOld = 0;
double waveFunctionNew = 0;
double energySum = 0;
double energySquaredSum = 0;
double deltaE;
// initial trial positions
for(int i = 0; i < nParticles; i++) {

for(int j = 0; j < nDimensions; j++) {
rOld(i,j) = stepLength * (ran2(&idum) - 0.5);

}
}
rNew = rOld;
// loop over Monte Carlo cycles
for(int cycle = 0; cycle < nCycles; cycle++) {

// Store the current value of the wave function
waveFunctionOld = waveFunction(rOld);
// New position to test
for(int i = 0; i < nParticles; i++) {

for(int j = 0; j < nDimensions; j++) {
rNew(i,j) = rOld(i,j) + stepLength*(ran2(&idum) - 0.5);

}
// Recalculate the value of the wave function
waveFunctionNew = waveFunction(rNew);
// Check for step acceptance (if yes, update position, if no, reset position)
if(ran2(&idum) <= (waveFunctionNew*waveFunctionNew) / (waveFunctionOld*waveFunctionOld)) {

for(int j = 0; j < nDimensions; j++) {
rOld(i,j) = rNew(i,j);
waveFunctionOld = waveFunctionNew;

}
} else {

for(int j = 0; j < nDimensions; j++) {
rNew(i,j) = rOld(i,j);

}
}
// update energies
deltaE = localEnergy(rNew);
energySum += deltaE;
energySquaredSum += deltaE*deltaE;

}
}
double energy = energySum/(nCycles * nParticles);
double energySquared = energySquaredSum/(nCycles * nParticles);
cout << "Energy: " << energy << " Energy (squared sum): " << energySquared << endl;

}

double VMCSolver::localEnergy(const mat &r)
{

mat rPlus = zeros<mat>(nParticles, nDimensions);
mat rMinus = zeros<mat>(nParticles, nDimensions);
rPlus = rMinus = r;
double waveFunctionMinus = 0;
double waveFunctionPlus = 0;
double waveFunctionCurrent = waveFunction(r);
// Kinetic energy, brute force derivations
double kineticEnergy = 0;
for(int i = 0; i < nParticles; i++) {

for(int j = 0; j < nDimensions; j++) {
rPlus(i,j) += h;
rMinus(i,j) -= h;
waveFunctionMinus = waveFunction(rMinus);
waveFunctionPlus = waveFunction(rPlus);
kineticEnergy -= (waveFunctionMinus + waveFunctionPlus - 2 * waveFunctionCurrent);
rPlus(i,j) = r(i,j);
rMinus(i,j) = r(i,j);

}
}
kineticEnergy = 0.5 * h2 * kineticEnergy / waveFunctionCurrent;
// Potential energy
double potentialEnergy = 0;
double rSingleParticle = 0;
for(int i = 0; i < nParticles; i++) {

rSingleParticle = 0;
for(int j = 0; j < nDimensions; j++) {

rSingleParticle += r(i,j)*r(i,j);
}
potentialEnergy -= charge / sqrt(rSingleParticle);

}
// Contribution from electron-electron potential
double r12 = 0;
for(int i = 0; i < nParticles; i++) {

for(int j = i + 1; j < nParticles; j++) {
r12 = 0;
for(int k = 0; k < nDimensions; k++) {

r12 += (r(i,k) - r(j,k)) * (r(i,k) - r(j,k));
}
potentialEnergy += 1 / sqrt(r12);

}
}
return kineticEnergy + potentialEnergy;

}

double VMCSolver::waveFunction(const mat &r)
{

double argument = 0;
for(int i = 0; i < nParticles; i++) {

double rSingleParticle = 0;
for(int j = 0; j < nDimensions; j++) {

rSingleParticle += r(i,j) * r(i,j);
}
argument += sqrt(rSingleParticle);

}
return exp(-argument * alpha);

}

/*
** The function
** ran2()
** is a long periode (> 2 x 10^18) random number generator of
** L’Ecuyer and Bays-Durham shuffle and added safeguards.
** Call with idum a negative integer to initialize; thereafter,
** do not alter idum between sucessive deviates in a
** sequence. RNMX should approximate the largest floating point value
** that is less than 1.
** The function returns a uniform deviate between 0.0 and 1.0
** (exclusive of end-point values).
*/

#define IM1 2147483563
#define IM2 2147483399
#define AM (1.0/IM1)
#define IMM1 (IM1-1)
#define IA1 40014
#define IA2 40692
#define IQ1 53668
#define IQ2 52774
#define IR1 12211
#define IR2 3791
#define NTAB 32
#define NDIV (1+IMM1/NTAB)
#define EPS 1.2e-7
#define RNMX (1.0-EPS)

double ran2(long *idum)
{

int j;
long k;
static long idum2 = 123456789;
static long iy=0;
static long iv[NTAB];
double temp;

if(*idum <= 0) {
if(-(*idum) < 1) *idum = 1;
else *idum = -(*idum);
idum2 = (*idum);
for(j = NTAB + 7; j >= 0; j--) {

k = (*idum)/IQ1;
idum = IA1(*idum - k*IQ1) - k*IR1;
if(*idum < 0) *idum += IM1;
if(j < NTAB) iv[j] = *idum;

}
iy=iv[0];

}
k = (*idum)/IQ1;
idum = IA1(*idum - k*IQ1) - k*IR1;
if(*idum < 0) *idum += IM1;
k = idum2/IQ2;
idum2 = IA2*(idum2 - k*IQ2) - k*IR2;
if(idum2 < 0) idum2 += IM2;
j = iy/NDIV;
iy = iv[j] - idum2;
iv[j] = *idum;
if(iy < 1) iy += IMM1;
if((temp = AM*iy) > RNMX) return RNMX;
else return temp;

}
#undef IM1
#undef IM2
#undef AM
#undef IMM1
#undef IA1
#undef IA2
#undef IQ1
#undef IQ2
#undef IR1
#undef IR2
#undef NTAB
#undef NDIV
#undef EPS
#undef RNMX

// End: function ran2()

#include <iostream>
using namespace std;

int main()
{

VMCSolver *solver = new VMCSolver();
solver->runMonteCarloIntegration();
return 0;

}

The Metropolis algorithm

The Metropolis algorithm , see the original article (see also the
FYS3150 lectures) was invented by Metropolis et. al and is often
simply called the Metropolis algorithm. It is a method to sample a
normalized probability distribution by a stochastic process. We
define P(n)

i to be the probability for finding the system in the state
i at step n. The algorithm is then

Sample a possible new state j with some probability Ti→j .
Accept the new state j with probability Ai→j and use it as the
next sample. With probability 1− Ai→j the move is rejected
and the original state i is used again as a sample.

The Metropolis algorithm

We wish to derive the required properties of T and A such that
P(n→∞)
i → pi so that starting from any distribution, the method

converges to the correct distribution. Note that the description
here is for a discrete probability distribution. Replacing probabilities
pi with expressions like p(xi)dxi will take all of these over to the
corresponding continuum expressions.

The Metropolis algorithm

The dynamical equation for P(n)
i can be written directly from the

description above. The probability of being in the state i at step n
is given by the probability of being in any state j at the previous
step, and making an accepted transition to i added to the
probability of being in the state i , making a transition to any state
j and rejecting the move:

P(n)
i =

∑

j

[
P(n−1)
j Tj→iAj→i + P(n−1)

i Ti→j (1− Ai→j)
]
.

Since the probability of making some transition must be 1,∑
j Ti→j = 1, and the above equation becomes

P(n)
i = P(n−1)

i +
∑

j

[
P(n−1)
j Tj→iAj→i − P(n−1)

i Ti→jAi→j

]
.

The Metropolis algorithm

For large n we require that P(n→∞)
i = pi , the desired probability

distribution. Taking this limit, gives the balance requirement
∑

j

[pjTj→iAj→i − piTi→jAi→j] = 0 .

The balance requirement is very weak. Typically the much stronger
detailed balance requirement is enforced, that is rather than the
sum being set to zero, we set each term separately to zero and use
this to determine the acceptance probabilities. Rearranging, the
result is

Aj→i

Ai→j
=

piTi→j

pjTj→i
.

The Metropolis algorithm

The Metropolis choice is to maximize the A values, that is

Aj→i = min
(
1,

piTi→j

pjTj→i

)
.

Other choices are possible, but they all correspond to multilplying
Ai→j and Aj→i by the same constant smaller than unity.a

aThe penalty function method uses just such a factor to compensate for pi
that are evaluated stochastically and are therefore noisy.

The Metropolis algorithm

Having chosen the acceptance probabilities, we have guaranteed
that if the P(n)

i has equilibrated, that is if it is equal to pi , it will
remain equilibrated. Next we need to find the circumstances for
convergence to equilibrium.
The dynamical equation can be written as

P(n)
i =

∑

j

MijP(n−1)
j

with the matrix M given by

Mij = δij

[
1−

∑

k

Ti→kAi→k

]
+ Tj→iAj→i .

Summing over i shows that
∑

i Mij = 1, and since
∑

k Ti→k = 1,
and Ai→k ≤ 1, the elements of the matrix satisfy Mij ≥ 0. The
matrix M is therefore a stochastic matrix.

The Metropolis algorithm

The Metropolis method is simply the power method for computing
the right eigenvector of M with the largest magnitude eigenvalue.
By construction, the correct probability distribution is a right
eigenvector with eigenvalue 1. Therefore, for the Metropolis
method to converge to this result, we must show that M has only
one eigenvalue with this magnitude, and all other eigenvalues are
smaller.

