
Project 1, deadline January 31, 2023

Erasmus+ Data Analysis and Machine Learning course, Fall semester
2022

Nov 28, 2022

Regression analysis and resampling methods
The main aim of this project is to study in more detail various regression methods,
including the Ordinary Least Squares (OLS) method and Ridge regression.

The methods are in turn combined with resampling techniques like the
bootstrap method and cross validation.

We will first study how to fit polynomials to a specific two-dimensional
function called Franke’s function. This is a function which has been widely
used when testing various interpolation and fitting algorithms. Furthermore,
after having established the model and the method, we will employ resamling
techniques such as cross-validation and/or bootstrap in order to perform a proper
assessment of our models. We will also study in detail the so-called Bias-Variance
trade off.

The Franke function, which is a weighted sum of four exponentials reads as
follows

f(x, y) = 3
4 exp

(
− (9x − 2)2

4 − (9y − 2)2

4

)
+ 3

4 exp
(

− (9x + 1)2

49 − (9y + 1)
10

)
+ 1

2 exp
(

− (9x − 7)2

4 − (9y − 3)2

4

)
− 1

5 exp
(
−(9x − 4)2 − (9y − 7)2)

.

The function will be defined for x, y ∈ [0, 1]. Our first step will be to perform
an OLS regression analysis of this function, trying out a polynomial fit with an x
and y dependence of the form [x, y, x2, y2, xy, . . .]. We will also include bootstrap
first as a resampling technique. After that we will include the cross-validation
technique. As in homeworks 1 and 2, we can use a uniform distribution to set
up the arrays of values for x and y, or as in the example below just a set of fixed
values for x and y with a given step size. We will fit a function (for example a
polynomial) of x and y. Thereafter we will repeat much of the same procedure
using Ridge regression, introducing thus a dependence on the bias (penalty) λ.

Finally we are going to use (real) digital terrain data and try to reproduce
these data using the same methods. We will also try to go beyond the second-
order polynomials metioned above and explore which polynomial fits the data
best.

http://www.dtic.mil/dtic/tr/fulltext/u2/a081688.pdf

The Python code for the Franke function is included here (it performs also a
three-dimensional plot of it)

from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
from matplotlib import cm
from matplotlib.ticker import LinearLocator, FormatStrFormatter
import numpy as np
from random import random, seed

fig = plt.figure()
ax = fig.gca(projection='3d')

Make data.
x = np.arange(0, 1, 0.05)
y = np.arange(0, 1, 0.05)
x, y = np.meshgrid(x,y)

def FrankeFunction(x,y):
term1 = 0.75*np.exp(-(0.25*(9*x-2)**2) - 0.25*((9*y-2)**2))
term2 = 0.75*np.exp(-((9*x+1)**2)/49.0 - 0.1*(9*y+1))
term3 = 0.5*np.exp(-(9*x-7)**2/4.0 - 0.25*((9*y-3)**2))
term4 = -0.2*np.exp(-(9*x-4)**2 - (9*y-7)**2)
return term1 + term2 + term3 + term4

z = FrankeFunction(x, y)

Plot the surface.
surf = ax.plot_surface(x, y, z, cmap=cm.coolwarm,

linewidth=0, antialiased=False)

Customize the z axis.
ax.set_zlim(-0.10, 1.40)
ax.zaxis.set_major_locator(LinearLocator(10))
ax.zaxis.set_major_formatter(FormatStrFormatter('%.02f'))

Add a color bar which maps values to colors.
fig.colorbar(surf, shrink=0.5, aspect=5)

plt.show()

Part a): Ordinary Least Square (OLS) on the Franke function. We will
generate our own dataset for a function FrankeFunction(x, y) with x, y ∈ [0, 1].
The function f(x, y) is the Franke function. You should explore also the addition
of an added stochastic noise to this function using the normal distribution
N(0, 1).

Write your own code (using either a matrix inversion or a singular value
decomposition from e.g., numpy) or use your code from the exercise sets and
perform a standard least square regression analysis using polynomials in x and
y up to fifth order. Find the confidence intervals of the parameters (estimators)
β by computing their variances, evaluate the Mean Squared error (MSE)

2

https://en.wikipedia.org/wiki/Confidence_interval

MSE(y, ỹ) = 1
n

n−1∑
i=0

(yi − ỹi)2,

and the R2 score function. If ỹi is the predicted value of the i − th sample
and yi is the corresponding true value, then the score R2 is defined as

R2(y, ỹ) = 1 −
∑n−1

i=0 (yi − ỹi)2∑n−1
i=0 (yi − ȳ)2

,

where we have defined the mean value of y as

ȳ = 1
n

n−1∑
i=0

yi.

Your code should consider a scaling of the data (for example by subtracting
the mean value) and a split of the data in training and test data. For this
part you can either write your own code or use for example the function for
splitting training data provided by the library Scikit-Learn (make sure you
have installed it). This function is called train_test_split. Similarly, you can
use the data normalization functionality of Scikit-Learn.

It is normal in essentially all Machine Learning studies to split the data in a
training set and a test set (eventually also an additional validation set). There
is no explicit recipe for how much data should be included as training data and
say test data. An accepted rule of thumb is to use approximately 2/3 to 4/5 of
the data as training data.

Part b): Bias-variance trade-off and resamplng techniques. Our aim
here is to study the bias-variance trade-off by implementing the bootstrap
resampling technique.

With a code which does OLS and includes resampling techniques, we will
now discuss the bias-variance trade-off in the context of continuous predictions
such as regression. However, many of the intuitions and ideas discussed here also
carry over to classification tasks and basically all Machine Learning algorithms.

Before you perform an analysis of the bias-variance trade-off on your test
data, make first a figure similar to Fig. 2.11 of Hastie, Tibshirani, and Friedman.
Figure 2.11 of this reference displays only the test and training MSEs. The test
MSE can be used to indicate possible regions of low/high bias and variance. You
will most likely not get an equally smooth curve!

With this result we move on to the bias-variance trade-off analysis.
Consider a dataset L consisting of the data XL = {(yj ,xj), j = 0 . . . n − 1}.
Let us assume that the true data is generated from a noisy model

y = f(x) + ϵ.

Here ϵ is normally distributed with mean zero and standard deviation σ2.

3

In our derivation of the ordinary least squares method we defined then an
approximation to the function f in terms of the parameters β and the design
matrix X which embody our model, that is ỹ = Xβ.

The parameters β are in turn found by optimizing the means squared error
via the so-called cost function

C(X,β) = 1
n

n−1∑
i=0

(yi − ỹi)2 = E
[
(y − ỹ)2]

.

Here the expected value E is the sample value.
Show that you can rewrite this as

E
[
(y − ỹ)2]

= 1
n

∑
i

(fi − E [ỹ])2 + 1
n

∑
i

(ỹi − E [ỹ])2 + σ2.

Explain what the terms mean, which one is the bias and which one is the
variance and discuss their interpretations.

Perform then a bias-variance analysis of the Franke function by studying
the MSE value as function of the complexity of your model. Plot the bias and
variance trade-off, and evaluate how it depends on your model complexity, the
number of data points, and possibly also the noise parameter.

Note also that when you calculate the bias, in all applications you don’t
know the function values fi. You would hence replace them with the actual data
points yi.

Part c) Cross-validation as resampling techniques, adding more com-
plexity. The aim here is to study another widely popular resampling technique,
the so-called cross-validation method.

Before you start with the cross-validation approach, you should assess whether
you should scale your data before the whole procedure, or during the procedure
inbetween each split. This issue is relevant to the topic of data leakage.

Implement the k-fold cross-validation algorithm and evaluate again the MSE
function resulting from the test folds. You can use the functionality of Scikit-
Learn or even write your own code. Try 5 − 10 folds, comment on your results.

Compare the MSE you get from your cross-validation code with the one you
got from your bootstrap code. Comment your results.

Part d): Ridge Regression on the Franke function with resampling.
We will now use Ridge regression. You can use the Scikit-Learn functionality
or write your own code.

Perform the same bootstrap analysis as in the part b) (for the same polyno-
mials) and the cross-validation part in part c) but now for different values of λ.
Compare and analyze your results with those obtained in parts a-c). Study the
dependence on λ.

Study also the bias-variance trade-off as function of various values of the
parameter λ. For the bias-variance trade-off, use the bootstrap resampling
method. Comment your results.

4

https://en.wikipedia.org/wiki/Leakage_(machine_learning)

Part e): Introducing Real Data. With our codes functioning and having
been tested properly on a simpler function we are now ready to look at real data.
Feel free to propose other data sets! The data we are proposing are given
by the Boston Housing data set.

The dataset can be imported from scikit-learn as follows
import pandas as pd
from sklearn.datasets import load_boston
boston_data = load_boston()
boston_df = pd.DataFrame(boston_data.data, columns=boston_data.feature_names)
boston_df['MEDV'] = boston_data.target

The dataset contains 13 features, and 1 target named ’MEDV’. The goal of
this exercise is to perform polynomial regression, using both OLS and Ridge
Regression in order to find the model that best predicts the ’MEDV’ target value.
As before we assess the quality of a model by using the MSE and the R2 score.

You will have to use scikit-learn’s functionality to create your design matrix
poly = PolynomialFeatures(degree)
X = poly.fit_transform(x)

Note that previously we had a dependence on two original features (x, y),
this time around we have 13 original features. Therefore, you will quickly run
up the number of derived features as you increase complexity. This will sooner
or later introduce you to an underdetermined system of equations, where
you have more derived features than you have data(p > n). How does Ridge
regression, or the pseudoinverse fit into this context?

The goal of this exercise is as stated earlier: Find the best model. To achieve
this goal, vary your λ parameter, complexity, try different data-scaling methods,
and even evaluate whether you need all 13 features(Feature Selection). A good
starting point for the latter is to look at linear correlations asdefined by the
correlation matrix.

import seaborn as sns
corr_matrix = boston_df.corr().round(3)
sns.heatmap(data=corr_matrix, annot=True)

You can try to remove features that have low correlation with the target, and
evaluate to what degree it affects your metrics. You may also want to remove
features that have high correlation with each other, this is up to you. More on
this here on "Multicollinearity":"https://en.wikipedia.org/wiki/Multicollinearity.

Lastly, employ cross-validation as in part c) to assess how well your model(s)
generalizes. As stated above, feel free to replace this data set with one of your
preference and choice.

Part f): Presentation. Plot your results from part e)(e.g. the test MSE or
predictions vs. true).

At the end, you should present a critical evaluation of your results and discuss
the applicability of these regression methods to the type of data presented here.

5

https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html

Part g, optional with additional score of 30 points): Write your own
Stochastic Gradient Descent code. This exercise is optional. In order to
get started, we will now replace in our standard ordinary least squares (OLS) and
Ridge regression codes with the matrix inversion algorithm with our own gradient
descent (GD) and SGD codes. You can use the Franke function as data set.
However, we recommend using a simpler function like f(x) = a0 + a1x + a2x2

or higher-order one-dimensional polynomials. You can obviously test your
final codes against for example the Franke function. Having written your own
gradient descent code gives you a deeper insight about what is at the heart
of most machine learning methods, namely an optimization problem with the
calculation of derivatives.

You should include in your analysis of the GD and SGD codes the following
elements

1. A plain gradient descent with a fixed learning rate (you will need to tune
it).

2. Add momentum to the plain GD code and compare convergence with a
fixed learning rate (you may need to tune the learning rate).

3. Repeat these steps for stochastic gradient descent with mini batches and a
given number of epochs. You can use a tunable learning rate as discussed
in the lectures. Discuss the results as functions of the various parameters
(size of batches, number of epochs etc)

4. Implement the Adagrad method in order to tune the learning rate. Do
this with and without momentum for plain gradient descent and SGD.

5. Add RMSprop and Adam to your library of methods for tuning the learning
rate.

In summary, you should perform an analysis of the results for OLS and Ridge
regression as function of the chosen learning rates, the number of mini-batches
and epochs as well as algorithm for scaling the learning rate. You can also
compare your own results with those that can be obtained using for example
Scikit-Learn’s various SGD options. Discuss your results. For Ridge regression
you need now to study the results as functions of the hyper-parameter λ and
the learning rate η. Discuss your results.

We recommend reading chapter 8 on optimization from the textbook of
Goodfellow, Bengio and Courville. This chapter contains many useful insights
and discussions on the optimization part of machine learning.

Background literature
1. For a discussion and derivation of the variances and mean squared errors

using linear regression, see the Lecture notes on ridge regression by Wessel
N. van Wieringen

6

https://www.deeplearningbook.org/
https://arxiv.org/abs/1509.09169
https://arxiv.org/abs/1509.09169

2. The textbook of Trevor Hastie, Robert Tibshirani, Jerome H. Friedman,
The Elements of Statistical Learning, Springer, chapters 3 and 7 are the
most relevant ones for the analysis here.

Introduction to numerical projects
Here follows a brief recipe and recommendation on how to write a report for
each project.

• Give a short description of the nature of the problem and the eventual
numerical methods you have used.

• Describe the algorithm you have used and/or developed. Here you may
find it convenient to use pseudocoding. In many cases you can describe
the algorithm in the program itself.

• Include the source code of your program. Comment your program properly.

• If possible, try to find analytic solutions, or known limits in order to test
your program when developing the code.

• Include your results either in figure form or in a table. Remember to label
your results. All tables and figures should have relevant captions and labels
on the axes.

• Try to evaluate the reliabilty and numerical stability/precision of your
results. If possible, include a qualitative and/or quantitative discussion of
the numerical stability, eventual loss of precision etc.

• Try to give an interpretation of you results in your answers to the problems.

• Critique: if possible include your comments and reflections about the
exercise, whether you felt you learnt something, ideas for improvements
and other thoughts you’ve made when solving the exercise. We wish to
keep this course at the interactive level and your comments can help us
improve it.

• Try to establish a practice where you log your work at the computerlab.
You may find such a logbook very handy at later stages in your work,
especially when you don’t properly remember what a previous test version
of your program did. Here you could also record the time spent on solving
the exercise, various algorithms you may have tested or other topics which
you feel worthy of mentioning.

7

https://www.springer.com/gp/book/9780387848570
https://www.springer.com/gp/book/9780387848570

Format for electronic delivery of report and programs
The preferred format for the report is a PDF file. You can also use DOC or
postscript formats or as an ipython notebook file. As programming language we
prefer that you choose between C/C++, Fortran2008 or Python. The following
prescription should be followed when preparing the report:

• Send us by email only the report file or the link to your GitHub/GitLab
or similar repos! Make sure it is public or if not, give us access. For the
source code file(s) you have developed please provide us with your link to
your GitHub/GitLab or similar domain. The report file should include all
of your discussions and a list of the codes you have developed.

• In your GitHub/GitLab or similar repository, please include a folder which
contains selected results. These can be in the form of output from your
code for a selected set of runs and input parameters.

Finally, we encourage you to collaborate. Optimal working groups consist of 2-3
students. You can then hand in a common report.

Software and needed installations
If you have Python installed (we recommend Python3) and you feel pretty
familiar with installing different packages, we recommend that you install the
following Python packages via pip as

1. pip install numpy scipy matplotlib ipython scikit-learn tensorflow sympy
pandas pillow

For Python3, replace pip with pip3.
See below for a discussion of tensorflow and scikit-learn.
For OSX users we recommend also, after having installed Xcode, to install

brew. Brew allows for a seamless installation of additional software via for
example

1. brew install python3

For Linux users, with its variety of distributions like for example the widely
popular Ubuntu distribution you can use pip as well and simply install Python
as

1. sudo apt-get install python3 (or python for python2.7)

etc etc.
If you don’t want to install various Python packages with their dependencies

separately, we recommend two widely used distrubutions which set up all relevant
dependencies for Python, namely

8

1. Anaconda Anaconda is an open source distribution of the Python and R
programming languages for large-scale data processing, predictive analytics,
and scientific computing, that aims to simplify package management and
deployment. Package versions are managed by the package management
system conda

2. Enthought canopy is a Python distribution for scientific and analytic
computing distribution and analysis environment, available for free and
under a commercial license.

Popular software packages written in Python for ML are

• Scikit-learn,

• Tensorflow,

• PyTorch and

• Keras.

These are all freely available at their respective GitHub sites. They encompass
communities of developers in the thousands or more. And the number of code
developers and contributors keeps increasing.

9

https://docs.anaconda.com/
https://www.enthought.com/product/canopy/
http://scikit-learn.org/stable/
https://www.tensorflow.org/
http://pytorch.org/
https://keras.io/

