Project 2, deadline February 15, 2023

Erasmus+ Data Analysis and Machine Learning course, Fall/Winter
2022/2023

Dec 17, 2023

Introduction to project 2

For project 2, you can propose own data sets that relate to your research interests
or just use existing data sets from say

o Kaggle

o The University of California at Irvine (UCI) with its machine learning
repository

e "The credit card data set from UCI is also interesting and links to a recent
scientific article. See however below for possible project example. See in par-
ticular https://archive.ics.uci.edu/ml/datasets/default+of+credit+
card+clients and the article by Yeh and Lien.

e The pulsar classification data set is obtained from Kaggle, where it was
posted by Pavan Raj. The data file is available in the DataFiles folder of
this project.

¢ Or other data sets you find interesting and relevant.

e Furthermore, if you are interested in differential equations and their solutio
with deep learning methods, we present below an alternative project based
on using neural networks. This project variant is presented at the end
here.

The approach to the analysis of these new data sets should follow to a large
extent what you did in project 1. That is: Whether you end up with a regression
or a classification problem, you should employ at least two of the methods we
have discussed among linear regression (including Ridge and Lasso), Logistic
Regression, Neural Networks, Support Vector Machines (not covered during the
lectures) and Decision Trees, Random Forests, Bagging and Boosting. If you
wish to venture into convolutional neural networks or recurrent neural networks,
or extensions of neural networks, feel free to do so. For project 2, you should

https://www.kaggle.com/datasets
https://archive.ics.uci.edu/ml/index.php
https://archive.ics.uci.edu/ml/index.php
https://archive.ics.uci.edu/ml/index.php
https://archive.ics.uci.edu/ml/datasets/default+of+credit+card+clients
https://archive.ics.uci.edu/ml/datasets/default+of+credit+card+clients
https://www.sciencedirect.com/science/article/abs/pii/S0957417407006719
https://www.kaggle.com/pavanraj159/predicting-pulsar-star-in-the-universe/notebook?scriptVersionId=4487650

feel free to write your own code or use the available functionality of Scikit-learn,
Tensorflow, etc.

The estimates you used and tested in project 1 should also be included, that is
the R2-score, MSE, accuracy scores, cross-validation and/or bootstrap etc if these
are relevant. If possible, you should link the data sets with exisiting research and
analyses thereof. Scientific articles which have used Machine Learning algorithms
to analyze the data are highly welcome. Perhaps you can improve previous
analyses and even publish a new article?

A critical assessment of the methods with ditto perspectives and recommen-
dations is also something you need to include. All in all, the report should follow
the same pattern with abstract, introduction, methods, code, results, conclusions
etc as in project 1.

The Pulsar data. The pulsar classification data set is obtained from Kaggle,
where it was posted by Pavan Raj. It offers an interesting possible classification
problem. In the field of radio astronomy, pulsars are among the most studied
phenomena in nature. But despite astronomers’ long history with pulsars, little
is actually known with certainty. However, much of the uncertainty likely boils
down to the difficulty of confirming pulsar observations. While pulsars radiate
unmistakable radio signals, they are often lost in the sheer number of radio signals
observed by radio telescopes every day. Furthermore, due to the uniqueness of
pulsar radio signals, classifying pulsars in large data sets of radio observations
have historically been very difficult as human supervision has been a necessity.
However, recent advances in machine learning and data mining has made this
task much simpler by introducing incredibly fast, in comparison to humans that
is, classification methods.
The article of Bathes et al can serve as a reference for your discussions.

Other data sets. Alternatively, if you would like to test the various algorithms
on other data sets, please feel free to do so.

We propose also an alternative to the above. This is a project on using
machine learning methods (neural networks mainly) to the solution of ordinary
differential equations and partial differential equations, with a final twist on how
to diagonalize a symmetric matrix with neural networks.

This is a field with a large interest recently, spanning from studies of turbu-
lence in fluid mechanics and meteorology to the solution of quantum mechanical
systems. As reading background you can use the slides from week 42 and/or the
textbook by Yadav et al.

The basic structure of your project

Here follows a set up on how to structure your report and analyze the data you
have opted for.

https://arxiv.org/abs/1209.0793
https://compphysics.github.io/MachineLearning/doc/pub/week42/html/week42.html
https://www.springer.com/gp/book/9789401798150

Part a). The first part deals with structuring and reading the data, much
along the same lines as done in project 1. Explain how the data are produced
and place them in a proper context.

Part b). You need to include at least two central algorithms. Explain the
basics of the methods you have chosen to work with. This would be your theory
part.

Part c¢). Then describe your algorithm and its implementation and tests you
have performed.

Part d). Then presents your results and findings, link with existing literature
and more.

Part e). Finally, here you should present a critical assessment of the methods
you have studied and link your results with the existing literature.

Solving partial differential equations with neural networks

For this variant of project 2, we will assume that you have some background
in the solution of partial differential equations using finite difference schemes.
We will study the solution of the diffusion equation in one dimension using a
standard explicit scheme and neural networks to solve the same equations.

For the explicit scheme, you can study for example chapter 10 of the lecture
notes in Computational Physics or alternative sources.

Part a), setting up the problem. The physical problem can be that of the
temperature gradient in a rod of length L = 1 at £ = 0 and z = 1. We are
looking at a one-dimensional problem

O*u(z,t) Ou(w,t)
ox2 Ot

,t >0,z €[0,L]

or
Ugy = Ut,
with initial conditions, i.e., the conditions at ¢ = 0,
u(z,0) =sin(mz) O0<z <L,
with L = 1 the length of the z-region of interest. The boundary conditions are

u(0,t) =0 ¢t>0,

and

wL,t)=0 t>0.

https://github.com/CompPhysics/ComputationalPhysics/blob/master/doc/Lectures/lectures2015.pdf

The function u(z,t) can be the temperature gradient of a rod. As time increases,
the velocity approaches a linear variation with x.

We will limit ourselves to the so-called explicit forward Euler algorithm with
discretized versions of time given by a forward formula and a centered difference
in space resulting in

w u(x,t + At) —u(w,t) u(xg, t; + At) —u(x;, t))
;2 =

At At

and

e~ u(x + Az, t) — 2u(z,t) + u(x — Az, t)

Ax?

or
w(x; + Az, t;) — 2u(x;, t;) + u(z; — Az, ty)
Ugy < .
Ax?

Write down the algorithm and the equations you need to implement. Find
also the analytical solution to the problem.

Part b). Implement the explicit scheme algorithm and perform tests of the
solution for Az = 1/10, Az = 1/100 using At as dictated by the stability limit
of the explicit scheme. The stability criterion for the explicit scheme requires
that At/Ax? < 1/2.

Study the solutions at two time points ¢; and ¢ where u(x,t1) is smooth
but still significantly curved and u(z,t2) is almost linear, close to the stationary
state.

Part ¢) Neural networks. Study now the lecture notes on solving ODEs
and PDEs with neural network and use either your own code from project 2
or the functionality of tensorflow/keras to solve the same equation as in part
b). Discuss your results and compare them with the standard explicit scheme.
Include also the analytical solution and compare with that.

Part d). Finally, present a critical assessment of the methods you have studied
and discuss the potential for solving differential equations with machine learning
methods.

Introduction to numerical projects

Here follows a brief recipe and recommendation on how to write a report for
each project.

e Give a short description of the nature of the problem and the eventual
numerical methods you have used.

o Describe the algorithm you have used and/or developed. Here you may
find it convenient to use pseudocoding. In many cases you can describe
the algorithm in the program itself.

¢ Include the source code of your program. Comment your program properly.

o If possible, try to find analytic solutions, or known limits in order to test
your program when developing the code.

o Include your results either in figure form or in a table. Remember to label
your results. All tables and figures should have relevant captions and labels
on the axes.

o Try to evaluate the reliabilty and numerical stability /precision of your
results. If possible, include a qualitative and/or quantitative discussion of
the numerical stability, eventual loss of precision etc.

o Try to give an interpretation of you results in your answers to the problems.

e Critique: if possible include your comments and reflections about the
exercise, whether you felt you learnt something, ideas for improvements
and other thoughts you’ve made when solving the exercise. We wish to
keep this course at the interactive level and your comments can help us
improve it.

e Try to establish a practice where you log your work at the computerlab.
You may find such a logbook very handy at later stages in your work,
especially when you don’t properly remember what a previous test version
of your program did. Here you could also record the time spent on solving
the exercise, various algorithms you may have tested or other topics which
you feel worthy of mentioning.

Format for electronic delivery of report and programs

The preferred format for the report is a PDF file. You can also use DOC or
postscript formats or as an ipython notebook file. As programming language we
prefer that you choose between C/C++, Fortran2008 or Python. The following
prescription should be followed when preparing the report:

¢ Send us by email only the report file or the link to your GitHub/GitLab
or similar repos! Mske sure it is public or if not, give us access. For the
source code file(s) you have developed please provide us with your link to
your GitHub/GitLab or similar domain. The report file should include all
of your discussions and a list of the codes you have developed.

e In your GitHub/GitLab or similar repository, please include a folder which
contains selected results. These can be in the form of output from your
code for a selected set of runs and input parameters.

Finally, we encourage you to collaborate. Optimal working groups consist of 2-3
students. You can then hand in a common report.

Software and needed installations

If you have Python installed (we recommend Python3) and you feel pretty
familiar with installing different packages, we recommend that you install the
following Python packages via pip as

1. pip install numpy scipy matplotlib ipython scikit-learn tensorflow sympy
pandas pillow

For Python3, replace pip with pip3.

See below for a discussion of tensorflow and scikit-learn.

For OSX users we recommend also, after having installed Xcode, to install
brew. Brew allows for a seamless installation of additional software via for
example

1. brew install python3

For Linux users, with its variety of distributions like for example the widely
popular Ubuntu distribution you can use pip as well and simply install Python
as

1. sudo apt-get install python3 (or python for python2.7)
etc ete.

If you don’t want to install various Python packages with their dependencies

separately, we recommend two widely used distrubutions which set up all relevant
dependencies for Python, namely

1. Anaconda Anaconda is an open source distribution of the Python and R
programming languages for large-scale data processing, predictive analytics,
and scientific computing, that aims to simplify package management and
deployment. Package versions are managed by the package management
system conda

2. Enthought canopy is a Python distribution for scientific and analytic
computing distribution and analysis environment, available for free and
under a commercial license.

Popular software packages written in Python for ML are
o Scikit-learn,
o Tensorflow,
o PyTorch and
o Keras.

These are all freely available at their respective GitHub sites. They encompass
communities of developers in the thousands or more. And the number of code
developers and contributors keeps increasing.

https://docs.anaconda.com/
https://www.enthought.com/product/canopy/
http://scikit-learn.org/stable/
https://www.tensorflow.org/
http://pytorch.org/
https://keras.io/

