
First and second days: Exercise set 1

Data Analysis and Machine Learning for Nuclear Physics

Sep 26, 2022

Day one and two exercises
*
Exercise 1: Getting started

The first exercise here is of a mere technical art. We want you to have

• git as a version control software and to establish a user account on a
provider like GitHub. Other providers like GitLab etc are equally fine.

• Install various Python packages

We will make extensive use of Python as programming language and its myriad
of available libraries. You will find IPython/Jupyter notebooks invaluable in
your work. You can run R codes in the Jupyter/IPython notebooks, with the
immediate benefit of visualizing your data. You can also use compiled languages
like C++, Rust, Fortran etc if you prefer. The focus in these lectures will be on
Python.

If you have Python installed (we recommend Python3) and you feel pretty
familiar with installing different packages, we recommend that you install the
following Python packages via pip as

1. pip install numpy scipy matplotlib ipython scikit-learn sympy pandas
pillow

For Tensorflow, we recommend following the instructions in the text of Aurelien
Geron, Hands-On Machine Learning with Scikit-Learn and TensorFlow, O’Reilly

We will come back to tensorflow later.
For Python3, replace pip with pip3.
For OSX users we recommend, after having installed Xcode, to install brew.

Brew allows for a seamless installation of additional software via for example

1. brew install python3

http://shop.oreilly.com/product/0636920052289.do
http://shop.oreilly.com/product/0636920052289.do

For Linux users, with its variety of distributions like for example the widely
popular Ubuntu distribution, you can use pip as well and simply install Python
as

1. sudo apt-get install python3 (or python for Python2.7)

If you don’t want to perform these operations separately and venture into the
hassle of exploring how to set up dependencies and paths, we recommend two
widely used distrubutions which set up all relevant dependencies for Python,
namely

• Anaconda,

which is an open source distribution of the Python and R programming languages
for large-scale data processing, predictive analytics, and scientific computing,
that aims to simplify package management and deployment. Package versions
are managed by the package management system conda.

• Enthought canopy

is a Python distribution for scientific and analytic computing distribution and
analysis environment, available for free and under a commercial license.

We recommend using Anaconda.

*
Exercise 2: Our first Python encounter

This exercise has as its aim to write a small program which reads in data
from a csv file on the equation of state for dense nuclear matter. The file is
localized at https://github.com/mhjensen/MachineLearningMSU-FRIB2020/
blob/master/doc/pub/Regression/ipynb/datafiles/EoS.csv. Thereafter you
will have to set up the design matrix X for the n datapoints and a polynomial
of degree 3. The steps are:

• Write a Python code which reads the in the above mentioned file.

• Use for example pandas to order your data and find out how many data
points there are.

• Set thereafter up the design matrix with dimensionality n × p where p = 4
and where you have defined a polynomial of degree p − 1 = 3. Print the
matrix and check that the numbers are correct.

We recommend looking at the examples in the regression slides.

2

https://docs.anaconda.com/
https://www.enthought.com/product/canopy/
https://github.com/mhjensen/MachineLearningMSU-FRIB2020/blob/master/doc/pub/Regression/ipynb/datafiles/EoS.csv
https://github.com/mhjensen/MachineLearningMSU-FRIB2020/blob/master/doc/pub/Regression/ipynb/datafiles/EoS.csv
https://compphysics.github.io/MachineLearning/doc/pub/Regression/html/Regression-bs.html

Solution.
import os
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
Where to save the figures and data files
PROJECT_ROOT_DIR = "Results"
FIGURE_ID = "Results/FigureFiles"
DATA_ID = "DataFiles/"

if not os.path.exists(PROJECT_ROOT_DIR):
os.mkdir(PROJECT_ROOT_DIR)

if not os.path.exists(FIGURE_ID):
os.makedirs(FIGURE_ID)

if not os.path.exists(DATA_ID):
os.makedirs(DATA_ID)

def image_path(fig_id):
return os.path.join(FIGURE_ID, fig_id)

def data_path(dat_id):
return os.path.join(DATA_ID, dat_id)

def save_fig(fig_id):
plt.savefig(image_path(fig_id) + ".png", format='png')

def R2(y_data, y_model):
return 1 - np.sum((y_data - y_model) ** 2) / np.sum((y_data - np.mean(y_data)) ** 2)

def MSE(y_data,y_model):
n = np.size(y_model)
return np.sum((y_data-y_model)**2)/n

infile = open(data_path("EoS.csv"),'r')

Read the EoS data as csv file and organized into two arrays with density and energies
EoS = pd.read_csv(infile, names=('Density', 'Energy'))
EoS['Energy'] = pd.to_numeric(EoS['Energy'], errors='coerce')
EoS = EoS.dropna()
Energies = EoS['Energy']
Density = EoS['Density']
The design matrix now as function of various polytrops
X = np.zeros((len(Density),5))
X[:,0] = 1
X[:,1] = Density**(2.0/3.0)
X[:,2] = Density
X[:,3] = Density**(4.0/3.0)
X[:,4] = Density**(5.0/3.0)
We split the data in test and training data
X_train, X_test, y_train, y_test = train_test_split(X, Energies, test_size=0.2)
matrix inversion to find beta
beta = np.linalg.inv(X_train.T @ X_train) @ X_train.T @ y_train
and then make the prediction
ytilde = X_train @ beta
print("Training R2")
print(R2(y_train,ytilde))
print("Training MSE")
print(MSE(y_train,ytilde))

3

ypredict = X_test @ beta
print("Test R2")
print(R2(y_test,ypredict))
print("Test MSE")
print(MSE(y_test,ypredict))

*
Exercise 3: making your own data and exploring scikit-learn

We will generate our own dataset for a function y(x) where x ∈ [0, 1] and
defined by random numbers computed with the uniform distribution. The
function y is a quadratic polynomial in x with added stochastic noise according
to the normal distribution N(0, 1). The following simple Python instructions
define our x and y values (with 100 data points).

x = np.random.rand(100,1)
y = 2.0+5*x*x+0.1*np.random.randn(100,1)

1. Write your own code (following the examples under the regression slides)
for computing the parametrization of the data set fitting a second-order
polynomial.

2. Use thereafter scikit-learn (see again the examples in the regression slides)
and compare with your own code.

3. Using scikit-learn, compute also the mean square error, a risk metric
corresponding to the expected value of the squared (quadratic) error
defined as

MSE(y, ỹ) = 1
n

n−1∑
i=0

(yi − ỹi)2,

and the R2 score function. If ỹi is the predicted value of the i − th sample and
yi is the corresponding true value, then the score R2 is defined as

R2(y, ỹ) = 1 −
∑n−1

i=0 (yi − ỹi)2∑n−1
i=0 (yi − ȳ)2

,

where we have defined the mean value of ŷ as

ȳ = 1
n

n−1∑
i=0

yi.

You can use the functionality included in scikit-learn. If you feel for it, you
can use your own program and define functions which compute the above two
functions. Discuss the meaning of these results. Try also to vary the coefficient
in front of the added stochastic noise term and discuss the quality of the fits.

4

https://compphysics.github.io/MachineLearningECT/doc/pub/Day1/html/Day1-bs.html

Solution. The code here is an example of where we define our own design
matrix and fit parameters β.

import os
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split

def save_fig(fig_id):
plt.savefig(image_path(fig_id) + ".png", format='png')

def R2(y_data, y_model):
return 1 - np.sum((y_data - y_model) ** 2) / np.sum((y_data - np.mean(y_data)) ** 2)

def MSE(y_data,y_model):
n = np.size(y_model)
return np.sum((y_data-y_model)**2)/n

x = np.random.rand(100)
y = 2.0+5*x*x+0.1*np.random.randn(100)

The design matrix now as function of a given polynomial
X = np.zeros((len(x),3))
X[:,0] = 1.0
X[:,1] = x
X[:,2] = x**2
We split the data in test and training data
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
matrix inversion to find beta
beta = np.linalg.inv(X_train.T @ X_train) @ X_train.T @ y_train
print(beta)
and then make the prediction
ytilde = X_train @ beta
print("Training R2")
print(R2(y_train,ytilde))
print("Training MSE")
print(MSE(y_train,ytilde))
ypredict = X_test @ beta
print("Test R2")
print(R2(y_test,ypredict))
print("Test MSE")
print(MSE(y_test,ypredict))

*
Exercise 4: mean values and variances in linear regression

This exercise deals with various mean values ad variances in linear regression
method (here it may be useful to look up chapter 3, equation (3.8) of Trevor
Hastie, Robert Tibshirani, Jerome H. Friedman, The Elements of Statistical
Learning, Springer).

The assumption we have made is that there exists a function f(x) and a
normal distributed error ε ∼ N (0, σ2) which describes our data

y = f(x) + ε

5

https://www.springer.com/gp/book/9780387848570
https://www.springer.com/gp/book/9780387848570
https://www.springer.com/gp/book/9780387848570

We then approximate this function with our model from the solution of the
linear regression equations (ordinary least squares OLS), that is our function f
is approximated by ỹ where we minimized (y − ỹ)2, with

f(x) ≈ ỹ = Xβ.

The matrix X is the so-called design matrix.
aragraph!paragraph>paragraph>-0.5em

a) Show that the expected value of y for a given element i

E(yi) = Xi,∗ β,

and that its variance is

Var(yi) = σ2.

Hence, yi ∼ N (Xi,∗ β, σ2), that is y follows a normal distribution with mean
value Xβ and variance σ2.

Solution. We can calculate the expected value of y for a given element i

E(yi) = E(Xi,∗ β) + E(εi) = Xi,∗ β,

while its variance is

Var(yi) = E{[yi − E(yi)]2} = E(y2
i) − [E(yi)]2

= E[(Xi,∗ β + εi)2] − (Xi,∗ β)2

= E[(Xi,∗ β)2 + 2εiXi,∗ β + ε2
i] − (Xi,∗ β)2

= (Xi,∗ β)2 + 2E(εi)Xi,∗ β + E(ε2
i) − (Xi,∗ β)2

= E(ε2
i) = Var(εi) = σ2.

Hence, yi ∼ N (Xi,∗ β, σ2), that is y follows a normal distribution with mean
value Xβ and variance σ2 (not be confused with the singular values of the SVD).

aragraph!paragraph>paragraph>-0.5em

b) With the OLS expressions for the optimal parameters βopt show that

E(βopt) = β.

Solution.

E(βopt) = E[(X⊤X)−1XT Y] = (XT X)−1XTE[Y] = (XT X)−1XT Xβ = β.

This means that the estimator of the regression parameters is unbiased.
aragraph!paragraph>paragraph>-0.5em

c) Show finally that the variance of β is

Var(βopt) = σ2 (XT X)−1.

6

Solution. The variance of β is

Var(βopt) = E{[β − E(β)][β − E(β)]T }
= E{[(XT X)−1 XT Y − β] [(XT X)−1 XT Y − β]T }
= (XT X)−1 XT E{Y YT } X (XT X)−1 − β βT

= (XT X)−1 XT {Xβ βT XT + σ2} X (XT X)−1 − β βT

= β βT + σ2 (XT X)−1 − β βT = σ2 (XT X)−1,

where we have used that E(YYT) = Xβ βT XT + σ2 Inn. From Var(β) =
σ2 (XT X)−1, one obtains an estimate of the variance of the estimate of the
j-th regression coefficient: σ2(β̂j) = σ2

√
[(XT X)−1]jj . This may be used to

construct a confidence interval for the estimates.
In a similar way, we can obtain analytical expressions for say the expectation

values of the parameters β and their variance when we employ Ridge regression,
allowing us again to define a confidence interval.

*
Exercise 5: Playing with nuclear masses

Finally, try now to write your own code (you can use the example the nuclear
masses in the lecture slides on Regression and Getting started from Day1, that
reads in the nuclear masses and compute the proton separation energies, the
two-neutron and two-proton separation energies and finally the shell gaps for
selected nuclei.

Finally, try to compute the Q-values for β− decay for selected nuclei.

Solution. Let us study the Q values associated with the removal of one or
two nucleons from a nucleus. These are conventionally defined in terms of the
one-nucleon and two-nucleon separation energies. With the functionality in
pandas, two to three lines of code will allow us to plot the separation energies.
The neutron separation energy is defined as

Sn = −Qn = BE(N, Z) − BE(N − 1, Z),

and the proton separation energy reads

Sp = −Qp = BE(N, Z) − BE(N, Z − 1).

The two-neutron separation energy is defined as

S2n = −Q2n = BE(N, Z) − BE(N − 2, Z),

and the two-proton separation energy is given by

S2p = −Q2p = BE(N, Z) − BE(N, Z − 2).

7

Using say the neutron separation energies (alternatively the proton separation
energies)

Sn = −Qn = BE(N, Z) − BE(N − 1, Z),

we can define the so-called energy gap for neutrons (or protons) as

∆Sn = BE(N, Z) − BE(N − 1, Z) − (BE(N + 1, Z) − BE(N, Z)) ,

or
∆Sn = 2BE(N, Z) − BE(N − 1, Z) − BE(N + 1, Z).

This quantity can in turn be used to determine which nuclei could be interpreted
as magic or not. For protons we would have

∆Sp = 2BE(N, Z) − BE(N, Z − 1) − BE(N, Z + 1).

To calculate say the neutron separation we need to multiply our masses with
the nucleon number A. The example here is for the neutron separation energies
for the oxygen isotopes. Note the simple function we use to compute the neutron
separation energies

Her we pick the oyxgen isotopes
Nucleus = df.loc[lambda df: df.Z==8, :]
drop cases with no number
Nucleus = Nucleus.dropna()
Here we do the magic and obtain the neutron separation energies, one line of code!!
Nucleus['NeutronSeparationEnergies'] = Nucleus['Energies'].diff(+1)

If we want another isotope we need simply to change the Z value. For
isotones, we fix simply the neutron number. Furthermore, if we wish to compute
say the two-neutron separation energies of the oyxgen isotopes we need simply
to write

Her we pick the oyxgen isotopes
Nucleus = df.loc[lambda df: df.Z==8, :]
drop cases with no number
Nucleus = Nucleus.dropna()
Here we do the magic and obtain the neutron separation energies, one line of code!!
Nucleus['NeutronSeparationEnergies'] = Nucleus['Energies'].diff(+2)

Note the +2 in the function diff(+2)! Easy, isn’t it? It is easy to change
to two-proton separation energies. The full example here is for the neutron
separation energies.

Common imports
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import os
from pylab import plt, mpl
plt.style.use('seaborn')
mpl.rcParams['font.family'] = 'serif'

8

Where to save the figures and data files
PROJECT_ROOT_DIR = "Results"
FIGURE_ID = "Results/FigureFiles"
DATA_ID = "DataFiles/"

if not os.path.exists(PROJECT_ROOT_DIR):
os.mkdir(PROJECT_ROOT_DIR)

if not os.path.exists(FIGURE_ID):
os.makedirs(FIGURE_ID)

if not os.path.exists(DATA_ID):
os.makedirs(DATA_ID)

def image_path(fig_id):
return os.path.join(FIGURE_ID, fig_id)

def data_path(dat_id):
return os.path.join(DATA_ID, dat_id)

def save_fig(fig_id):
plt.savefig(image_path(fig_id) + ".png", format='png')

infile = open(data_path("MassEval2016.dat"),'r')

Read the experimental data with Pandas
Masses = pd.read_fwf(infile, usecols=(2,3,4,6,11),

names=('N', 'Z', 'A', 'Element', 'Ebinding'),
widths=(1,3,5,5,5,1,3,4,1,13,11,11,9,1,2,11,9,1,3,1,12,11,1),
header=39,
index_col=False)

Extrapolated values are indicated by '#' in place of the decimal place, so
the Ebinding column won't be numeric. Coerce to float and drop these entries.
Masses['Ebinding'] = pd.to_numeric(Masses['Ebinding'], errors='coerce')
Masses = Masses.dropna()
Convert from keV to MeV.
Masses['Ebinding'] /= 1000
A = Masses['A']
Z = Masses['Z']
N = Masses['N']
Element = Masses['Element']
Energies = Masses['Ebinding']*A

df = pd.DataFrame({'A':A,'Z':Z, 'N':N,'Element':Element,'Energies':Energies})
Her we pick the oyxgen isotopes
Nucleus = df.loc[lambda df: df.Z==8, :]
drop cases with no number
Nucleus = Nucleus.dropna()
Here we do the magic and obtain the neutron separation energies, one line of code!!
Nucleus['NeutronSeparationEnergies'] = Nucleus['Energies'].diff(+1)
print(Nucleus)
MakePlot([Nucleus.A], [Nucleus.NeutronSeparationEnergies], ['b'], ['Neutron Separation Energy'], ['A','S_n'])
save_fig('Nucleus')
plt.show()

9

	paragraph>
	paragraph>
	paragraph>

