
Day 3: Exercise set 2
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Sep 26, 2022

Day three exercises
*
Exercise 1: Adding Ridge and Lasso Regression

This exercise is a continuation of exercise 3 from exercise set 1. We will use
the same function to generate our data set, still staying with a simple function
y(x) which we want to fit using linear regression, but now extending the analysis
to include the Ridge and the Lasso regression methods. You can use the code
under the Regression as an example on how to use the Ridge and the Lasso
methods, see the regression slides).

We will thus again generate our own dataset for a function y(x) where
x ∈ [0, 1] and defined by random numbers computed with the uniform distribution.
The function y is a quadratic polynomial in x with added stochastic noise
according to the normal distribution N (′, ∞).

The following simple Python instructions define our x and y values (with 100
data points).

x = np.random.rand(100)
y = 2.0+5*x*x+0.1*np.random.randn(100)
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a) Write your own code for the Ridge method (see chapter 3.4 of Hastie et al.,
equations (3.43) and (3.44)) and compute the parametrization for different values
of λ. Compare and analyze your results with those from exercise 3. Study the
dependence on λ while also varying the strength of the noise in your expression
for y(x).

Solution. The code here allows you to perform your own Ridge calculation
and perform calculations for various values of the regularization parameter λ.
This program can easily be extended upon.

https://compphysics.github.io/MachineLearning/doc/pub/Regression/html/Regression-bs.html


import os
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler

def R2(y_data, y_model):
return 1 - np.sum((y_data - y_model) ** 2) / np.sum((y_data - np.mean(y_data)) ** 2)

def MSE(y_data,y_model):
n = np.size(y_model)
return np.sum((y_data-y_model)**2)/n

# A seed just to ensure that the random numbers are the same for every run.
# Useful for eventual debugging.
np.random.seed(3155)

x = np.random.rand(100)
y = 2.0+5*x*x+0.1*np.random.randn(100)

# number of features p (here degree of polynomial
p = 3
# The design matrix now as function of a given polynomial
X = np.zeros((len(x),p))
X[:,0] = 1.0
X[:,1] = x
X[:,2] = x*x
# We split the data in test and training data
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
scaler = StandardScaler()
scaler.fit(X_train)
X_train_scaled = scaler.transform(X_train)
X_test_scaled = scaler.transform(X_test)

# matrix inversion to find beta
OLSbeta = np.linalg.inv(X_train.T @ X_train) @ X_train.T @ y_train
print(OLSbeta)
# and then make the prediction
ytildeOLS = X_train @ OLSbeta
print("Training R2 for OLS")
print(R2(y_train,ytildeOLS))
print("Training MSE for OLS")
print(MSE(y_train,ytildeOLS))
ypredictOLS = X_test @ OLSbeta
print("Test R2 for OLS")
print(R2(y_test,ypredictOLS))
print("Test MSE OLS")
print(MSE(y_test,ypredictOLS))

# Repeat now for Ridge regression and various values of the regularization parameter
I = np.eye(p,p)
# Decide which values of lambda to use
nlambdas = 20
MSEPredict = np.zeros(nlambdas)
MSETrain = np.zeros(nlambdas)
lambdas = np.logspace(-4, 1, nlambdas)
for i in range(nlambdas):

lmb = lambdas[i]
Ridgebeta = np.linalg.inv(X_train.T @ X_train+lmb*I) @ X_train.T @ y_train
# and then make the prediction
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ytildeRidge = X_train @ Ridgebeta
ypredictRidge = X_test @ Ridgebeta
MSEPredict[i] = MSE(y_test,ypredictRidge)
MSETrain[i] = MSE(y_train,ytildeRidge)

# Now plot the resulys
plt.figure()
plt.plot(np.log10(lambdas), MSETrain, label = 'MSE Ridge train')
plt.plot(np.log10(lambdas), MSEPredict, 'r--', label = 'MSE Ridge Test')
plt.xlabel('log10(lambda)')
plt.ylabel('MSE')
plt.legend()
plt.show()
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b) Repeat the above but using the functionality of Scikit-Learn. Compare
your code with the results from Scikit-Learn. Remember to run with the same
random numbers for generating x and y.

Solution. To use scikit-learn with Ridge, we simply need to add the relevant
function Ridge(), as done in the code here.

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
import sklearn.linear_model as skl

def R2(y_data, y_model):
return 1 - np.sum((y_data - y_model) ** 2) / np.sum((y_data - np.mean(y_data)) ** 2)

def MSE(y_data,y_model):
n = np.size(y_model)
return np.sum((y_data-y_model)**2)/n

# A seed just to ensure that the random numbers are the same for every run.
# Useful for eventual debugging.
np.random.seed(3155)

x = np.random.rand(100)
y = 2.0+5*x*x+0.1*np.random.randn(100)

# number of features p (here degree of polynomial
p = 3
# The design matrix now as function of a given polynomial
X = np.zeros((len(x),p))
X[:,0] = 1.0
X[:,1] = x
X[:,2] = x*x
# We split the data in test and training data
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
scaler = StandardScaler()
scaler.fit(X_train)
X_train_scaled = scaler.transform(X_train)
X_test_scaled = scaler.transform(X_test)
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# matrix inversion to find beta
OLSbeta = np.linalg.inv(X_train.T @ X_train) @ X_train.T @ y_train
print(OLSbeta)
# and then make the prediction
ytildeOLS = X_train @ OLSbeta
print("Training R2 for OLS")
print(R2(y_train,ytildeOLS))
print("Training MSE for OLS")
print(MSE(y_train,ytildeOLS))
ypredictOLS = X_test @ OLSbeta
print("Test R2 for OLS")
print(R2(y_test,ypredictOLS))
print("Test MSE OLS")
print(MSE(y_test,ypredictOLS))

# Repeat now for Ridge regression and various values of the regularization parameter
I = np.eye(p,p)
# Decide which values of lambda to use
nlambdas = 100
MSEPredict = np.zeros(nlambdas)
MSEPredictSKL = np.zeros(nlambdas)
MSETrain = np.zeros(nlambdas)
lambdas = np.logspace(-4, 0, nlambdas)
for i in range(nlambdas):

lmb = lambdas[i]
# add ridge
clf_ridge = skl.Ridge(alpha=lmb).fit(X_train, y_train)
yridge = clf_ridge.predict(X_test)
Ridgebeta = np.linalg.inv(X_train.T @ X_train+lmb*I) @ X_train.T @ y_train
# and then make the prediction
ytildeRidge = X_train @ Ridgebeta
ypredictRidge = X_test @ Ridgebeta
MSEPredict[i] = MSE(y_test,ypredictRidge)
MSEPredictSKL[i] = MSE(y_test,yridge)
MSETrain[i] = MSE(y_train,ytildeRidge)

#then plot the results
plt.figure()
plt.plot(np.log10(lambdas), MSETrain, label = 'MSE Ridge train')
plt.plot(np.log10(lambdas), MSEPredict, 'r--', label = 'MSE Ridge Test')
plt.plot(np.log10(lambdas), MSEPredictSKL, 'g--', label = 'MSE Ridge sickit-learn Test')
plt.xlabel('log10(lambda)')
plt.ylabel('MSE')
plt.legend()
plt.show()
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c) Our next step is to study the variance of the parameters β1 and β2 (assum-
ing that we are parameterizing our function with a second-order polynomial).
We will use standard linear regression and the Ridge regression. You can now
opt for either writing your own function or using Scikit-Learn to find the
parameters β. From your results calculate the variance of these parameters
(recall that this is equal to the diagonal elements of the matrix (X̂T X̂) + λÎ)−1).
Discuss the results of these variances as functions of λ. In particular, try to link
your discussion with the discussion in Hastie et al. and their figures 3.10 and
3.11. Scikit-Learn may not provide the variance of the parameters β. This
needs to be checked. With your own code you can however do so.
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Solution. import numpy as np import pandas as pd import matplotlib.pyplot
as plt from sklearn.modelselectionimporttraintestsplitfromsklearn.preprocessingimportStandardScalerimportsklearn.linearmodelasskl

def R2(ydata, ymodel) : return1−np.sum((ydata−ymodel)∗∗2)/np.sum((ydata−
np.mean(ydata))∗∗2)defMSE(ydata, ymodel) : n = np.size(ymodel)returnnp.sum((ydata−
ymodel) ∗ ∗2)/n

np.random.seed(3155)
x = np.random.rand(100) y = 2.0+5*x*x+0.1*np.random.randn(100)
p = 3 X = np.zeros((len(x),p)) X[:,0] = 1.0 X[:,1] = x X[:,2] = x*x Xtrain, Xtest, ytrain, ytest =

traintestsplit(X, y, testsize = 0.2)scaler = StandardScaler()scaler.fit(Xtrain)Xtrainscaled =
scaler.transform(Xtrain)Xtestscaled = scaler.transform(Xtest)

OLSbeta = np.linalg.inv(Xtrain.T @Xtrain)@Xtrain.T @ytrainprint(OLSbeta)print(np.linalg.inv(Xtrain.T @Xtrain))
I = np.eye(p,p) nlambdas = 10 MSEPredict = np.zeros(nlambdas) MSEPre-

dictSKL = np.zeros(nlambdas) MSETrain = np.zeros(nlambdas) lambdas =
np.logspace(-4, 0, nlambdas) for i in range(nlambdas): lmb = lambdas[i] Ridge-
beta = np.linalg.inv(Xtrain.T @Xtrain+lmb∗I)@Xtrain.T @ytrainprint(np.linalg.inv(Xtrain.T @Xtrain+
lmb ∗ I))
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d) Repeat the previous step but add now the Lasso method, see equation
(3.53) of Hastie et al.. Discuss your results and compare with standard regression
and the Ridge regression results. You can write your own code or use the
functionality of scikit-learn. We recommend the latter since we have not yet
discussed how to solve the Lasso equations numerically. Also, you do not need
to compute the variance of the parameters β but you can extract their values
and study their behavior as functions of the regularization parameter λ.

Solution. import numpy as np import pandas as pd import matplotlib.pyplot
as plt from sklearn.modelselectionimporttraintestsplitfromsklearn.preprocessingimportStandardScalerimportsklearn.linearmodelasskldefR2(ydata, ymodel) :
return1 − np.sum((ydata − ymodel) ∗ ∗2)/np.sum((ydata − np.mean(ydata)) ∗
∗2)defMSE(ydata, ymodel) : n = np.size(ymodel)returnnp.sum((ydata−ymodel)∗
∗2)/n

np.random.seed(3155)
x = np.random.rand(100) y = 2.0+5*x*x+0.1*np.random.randn(100)
p = 3 X = np.zeros((len(x),p)) X[:,0] = 1.0 X[:,1] = x X[:,2] = x*x Xtrain, Xtest, ytrain, ytest =

traintestsplit(X, y, testsize = 0.2)scaler = StandardScaler()scaler.fit(Xtrain)Xtrainscaled =
scaler.transform(Xtrain)Xtestscaled = scaler.transform(Xtest)

OLSbeta = np.linalg.inv(Xtrain.T @Xtrain)@Xtrain.T @ytrainprint(OLSbeta)ytildeOLS =
Xtrain@OLSbetaprint(”TrainingR2forOLS”)print(R2(ytrain, ytildeOLS))print(”TrainingMSEforOLS”)print(MSE(ytrain, ytildeOLS))ypredictOLS =
Xtest@OLSbetaprint(”TestR2forOLS”)print(R2(ytest, ypredictOLS))print(”TestMSEOLS”)print(MSE(ytest, ypredictOLS))

I = np.eye(p,p) nlambdas = 100 MSEPredictLasso = np.zeros(nlambdas)
MSEPredictRidge = np.zeros(nlambdas) lambdas = np.logspace(-4, 0, nlambdas)
for i in range(nlambdas): lmb = lambdas[i] add ridge clfridge = skl.Ridge(alpha =
lmb).fit(Xtrain, ytrain)clflasso = skl.Lasso(alpha = lmb).fit(Xtrain, ytrain)yridge =
clfridge.predict(Xtest)ylasso = clflasso.predict(Xtest)MSEPredictLasso[i] =
MSE(ytest, ylasso)MSEPredictRidge[i] = MSE(ytest, yridge)plt.figure()plt.plot(np.log10(lambdas), MSEPredictRidge,′ r−
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−′, label =′ MSERidgeTest′)plt.plot(np.log10(lambdas), MSEPredictLasso,′ g−
−′, label =′ MSELassoTest′)plt.xlabel(′log10(lambda)′)plt.ylabel(′MSE′)plt.legend()plt.show()
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e) Finally, using Scikit-Learn or your own code, compute also the mean
square error, a risk metric corresponding to the expected value of the squared
(quadratic) error defined as

MSE(ŷ, ˆ̃y) = 1
n

n−1∑
i=0

(yi − ỹi)2,

and the R2 score function. If ˜̂yi is the predicted value of the i − th sample and
yi is the corresponding true value, then the score R2 is defined as

R2(ŷ, ˜̂y) = 1 −
∑n−1

i=0 (yi − ỹi)2∑n−1
i=0 (yi − ȳ)2

,

where we have defined the mean value of ŷ as

ȳ = 1
n

n−1∑
i=0

yi.

Discuss these quantities as functions of the variable λ in the Ridge and Lasso
regression methods.

Solution. These results can all be studied with the codes we have above. These
scores are included in the codes above.

*
Exercise 2: Normalizing our data

A much used approach before starting to train the data is to preprocess
our data. Normally the data may need a rescaling and/or may be sensitive to
extreme values. Scaling the data renders our inputs much more suitable for the
algorithms we want to employ.

Scikit-Learn has several functions which allow us to rescale the data, nor-
mally resulting in much better results in terms of various accuracy scores.
The StandardScaler function in Scikit-Learn ensures that for each fea-
ture/predictor we study the mean value is zero and the variance is one (every
column in the design/feature matrix). This scaling has the drawback that it
does not ensure that we have a particular maximum or minimum in our data
set. Another function included in Scikit-Learn is the MinMaxScaler which
ensures that all features are exactly between 0 and 1. The

The Normalizer scales each data point such that the feature vector has a
euclidean length of one. In other words, it projects a data point on the circle
(or sphere in the case of higher dimensions) with a radius of 1. This means

6



every data point is scaled by a different number (by the inverse of it’s length).
This normalization is often used when only the direction (or angle) of the data
matters, not the length of the feature vector.

The RobustScaler works similarly to the StandardScaler in that it ensures
statistical properties for each feature that guarantee that they are on the same
scale. However, the RobustScaler uses the median and quartiles, instead of mean
and variance. This makes the RobustScaler ignore data points that are very
different from the rest (like measurement errors). These odd data points are also
called outliers, and might often lead to trouble for other scaling techniques.

It also common to split the data in a training set and a testing set. A
typical split is to use 80% of the data for training and the rest for testing. This
can be done as follows with our design matrix X and data y (remember to
import scikit-learn)

# split in training and test data
X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=0.2)

Then we can use the standard scaler to scale our data as

scaler = StandardScaler()
scaler.fit(X_train)
X_train_scaled = scaler.transform(X_train)
X_test_scaled = scaler.transform(X_test)

In this exercise we want you to to compute the MSE for the training data
and the test data as function of the complexity of a polynomial, that is the
degree of a given polynomial. We want you also to compute the R2 score as
function of the complexity of the model for both training data and test data.
You should also run the calculation with and without scaling.

One of the aims is to reproduce Figure 2.11 of Hastie et al. We will also use
Ridge and Lasso regression.

Our data is defined by x ∈ [−3, 3] with a total of for example 100 data points.

np.random.seed()
n = 100
maxdegree = 14
# Make data set.
x = np.linspace(-3, 3, n).reshape(-1, 1)
y = np.exp(-x**2) + 1.5 * np.exp(-(x-2)**2)+ np.random.normal(0, 0.1, x.shape)

where y is the function we want to fit with a given polynomial.
aragraph!paragraph>paragraph>-0.5em

a) Write a first code which sets up a design matrix X defined by a fifth-order
polynomial. Scale your data and split it in training and test data.
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Solution.
import matplotlib.pyplot as plt
import numpy as np
from sklearn.linear_model import LinearRegression, Ridge, Lasso
from sklearn.preprocessing import PolynomialFeatures
from sklearn.model_selection import train_test_split
from sklearn.pipeline import make_pipeline

np.random.seed(2018)
n = 50
maxdegree = 5
# Make data set.
x = np.linspace(-3, 3, n).reshape(-1, 1)
y = np.exp(-x**2) + 1.5 * np.exp(-(x-2)**2)+ np.random.normal(0, 0.1, x.shape)
TestError = np.zeros(maxdegree)
TrainError = np.zeros(maxdegree)
polydegree = np.zeros(maxdegree)
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2)
scaler = StandardScaler()
scaler.fit(X_train)
x_train_scaled = scaler.transform(x_train)
x_test_scaled = scaler.transform(x_test)

for degree in range(maxdegree):
model = make_pipeline(PolynomialFeatures(degree=degree), LinearRegression(fit_intercept=False))
clf = model.fit(x_train_scale,y_train)
y_fit = clf.predict(x_train_scaled)
y_pred = clf.predict(x_test_scaled)
polydegree[degree] = degree
TestError[degree] = np.mean( np.mean((y_test - y_pred)**2) )
TrainError[degree] = np.mean( np.mean((y_train - y_fit)**2) )

plt.plot(polydegree, TestError, label='Test Error')
plt.plot(polydegree, TrainError, label='Train Error')
plt.legend()
plt.show()
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b) Perform an ordinary least squares and compute the means squared error
and the R2 factor for the training data and the test data, with and without
scaling.

Solution. This requires a simple extension to the above code where you simply
add a statement calling the R2 function included in the same code.
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c) Add now a model which allows you to make polynomials up to degree 15.
Perform a standard OLS fitting of the training data and compute the MSE and
R2 for the training and test data and plot both test and training data MSE and
R2 as functions of the polynomial degree. Compare what you see with Figure
2.11 of Hastie et al. Comment your results. For which polynomial degree do you
find an optimal MSE (smallest value)?
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Solution. Here you simply need to change the degree of the polynomial in the
above code to n = 15.

aragraph!paragraph>paragraph>-0.5em

d) Repeat part (2c) but now using Ridge regressions with various hyperpa-
rameters λ. Make the same plots for the optimal λ value for each polynomial
degree. Compare these results with those from the standard OLS approach.

Solution. Here you need to add for example the same loop over the parameters
λ as you did in the first exercise, that is add

nlambdas = 100
MSEPredictRidge = np.zeros(nlambdas)
lambdas = np.logspace(-4, 0, nlambdas)
for i in range(nlambdas):

lmb = lambdas[i]
# add ridge
clf_ridge = skl.Ridge(alpha=lmb).fit(X_train_scaled, y_train)

The plotting functionality of the first exercise can be reused here as well.
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