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Classification and Regression, from linear and logistic re-
gression to neural networks

The main aim of this project is to study both classification and regression
problems, starting with the regression algorithms studied in project 1. We will
include logistic regresion for classification problems and write our own multilayer
perceptron code for studying both regression and classification problems. The
codes developed in project 1, including bootstrap and/or cross-validation as well
as the computation of the mean-squared error and the R2 score function can also
be utilized (and included in logistic regression and the neural network codes) in
the present analysis.

We will use the so-called Ising model for our training data and will focus on
supervised training. We will follow closely the recent article of Mehta et al, arXiv
1803.08823. This article stands out as an excellent review on machine learning
(ML) algorithms. The added benefit is that each figure and model presented in
this article is accompanied by its jupyter notebook. This means that we can
start using these and compare with our own results. They provide also the data
set for the regression and classification analysis that we will explore. In this
sense, with their available notebooks, it makes life easier since we can compare
our own codes with their codes.

With the abovementioned configurations we will determine, using first various
regression methods, the value of the coupling constant for the energy of the
one-dimensional Ising model. Thereafter, we will use the two-dimensional data,
but now computed at different temperatures, in order to classify the phase
of the Ising model. Below the critical temperature, the system will be in
a so-called ferromagnetic phase. Close to the critical temperature, the final
magnetization becomes smaller and smaller in absolute value while above the
critical temperature, the net magnetization is zero. This classification case, that
is the two-dimensional Ising model, will be studied using logistic regression and
deep neural networks. The aim is to develop your own logistic regression code
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for the classification of the phases (this is a binary model) and your multilayer
perceptron code for the classification and regression case. You can compare
your own results with those obtained using scikit-learn or tensorflow or other
Python packages such as keras or other.

Feel free to use the notebooks to benchmark your code. If you wish to write
your own C++ or Fortran program for say a multilayer neural network model
and a logistic regression model, please feel free to do so.

Part a): Producing the data for the one-dimensional Ising model.
The model we will employ in our studies is the so-called Ising model. Together
with models like the Potts model and similar so-called lattice models, the Ising
model has been widely studied in mathematics (in statistics in particular),
physics, life science, chemistry and even in the social sciences in order to model
social behavior. It is a simple binary value system where the variables of the
model (spins often in physics) can take two values only, for example +1 or 0 and
1. The system exhibits a phase transition in two or higher dimensions and the
first person to find the analytical expressions for various expectation values was
the Norwegian chemist Lars Onsager (Nobel prize in chemistry) after a tour de
force mathematics exercise.

In our discussions here we will stay with a physicist’s approach and call the
variables for spin. You could replace this with any other type of binary variables,
ranging from a two political parties to blue and red spheres. In its simplest form
we define the energy of the system as

N
E=-J E SkSi,
<kl>

with s = £1, N is the total number of spins, J is a coupling constant expressing
the strength of the interaction between neighboring spins.

The symbol < kl > indicates that we sum over nearest neighbors only. Notice
that for J > 0 it is energetically favorable for neighboring spins to be aligned.
This feature leads to, at low enough temperatures, a cooperative phenomenon
called spontaneous magnetization. That is, through interactions between nearest
neighbors, a given magnetic moment can influence the alignment of spins that
are separated from the given spin by a macroscopic distance. These long range
correlations between spins are associated with a long-range order in which the
lattice has a net magnetization in the absence of a magnetic field.

We start by considering the one-dimensional Ising model with nearest neighbor
interactions. This model does not exhibit any phase transition.

Consider the 1D Ising model with nearest-neighbor interactions

N
E[§] = —JZS]‘S]‘_H,
j=1
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on a chain of length N with so-called periodic boundary conditions and
S; = =£1 Ising spin variables. In one dimension, this model has no phase
transition at finite temperature.

In the Python code below we generate, with a coupling coefficient set to
J =1, a large number of spin configurations say 10000 as shown in the code
below. It means that our data will be a set of ¢ = 1...n points of the form
{(E[s'],8")}. Our task is to find the value of J from the data set using linear
regression.

Here is the Python code you need to generate the training data, see also the
notebook of Mehta et al.

import numpy as np
import scipy.sparse as sp
np.random.seed (12)

import warnings
#Comment this to turn on warnings
warnings.filterwarnings(’ignore’)

### define Ising model aprams
# system size
L=40

# create 10000 random Ising states
states=np.random.choice([-1, 1], size=(10000,L))

def ising_energies(states,L):
nnn

This function calculates the energies of the states in the nn Ising Hamiltonian
nnn
J=np.zeros((L,L),)
for i in range(L):
J[i, (i+1)%L]1-=1.0
# compute energies
E = np.einsum(’...i,ij,...j->...’ ,states,J,states)

return E
# calculate Ising energies
energies=ising_energies(states,L)

We can now recast the problem as a linear regression model using our codes
from project 1. The way we are going to build our model mimicks the way we
could think of finding say the gravitional constant for the graviational force
between two planets. In the absence of any prior knowledge, one sensible choice
is the all-to-all Ising model
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Here ¢ represents a particular spin configuration (one of the possible n
configurations we generated with the code above).

This model is uniquely defined by the non-local coupling strengths J;;, which
we want to learn. The model is linear in J which makes it possible to use linear
regression.

To apply linear regression, we recast this model in the form

E! =X".]J,

model —

where the vectors X' represent all two-body interactions {s’s}, };V x—1, and the
index ¢ runs over the samples in the data set. To make the analogy complete, we
can also represent the dot product by a single index p = {j, k}, i.e. X*-J = X;;Jp.
Note that the regression model does not include the minus sign, so we expect to
learn negative J’s.

With these preliminaries, we are now ready to reutilize our codes from project
1.

Part b): Estimating the coupling constant of the one-dimensional
Ising model using linear regression. We start with the one-dimensional
Ising model and use the data we have generated with J = 1 in the previous
point. Use linear regression, Lasso and Ridge regression as done in project 1.
You can compare your results with those of Mehta et al.. Make sure it is the 1D
data which is used.

Discuss the methods and how they perform in computing the coupling
constant J and include a bias-variance analysis using either cross-validation or
bootstrap. Discuss also the mean squared error and the R2 score as measures to
assess your model.

Give a critical analysis of your results.

Part c): Determine the phase of the two-dimensional Ising model.
We switch now to binary classification methods and use logistic regression to
define the phases of the Ising model. This means that we switch to the two-
dimensional Ising model and use the data sets generated by Mehta et al These
energies and their corresponding spin orientation configurations represent then
your data. We will use a fixed lattice of L x L = 40 x 40 spins in two dimensions.
The link above contains data for several temperatures. The theoretical critical
temperature for a phase transition is T¢ &~ 2.269 in units of energy. However,
for a finite lattice the results representing the critical temperature are slightly
higher (T¢ = 2.3).

Our goal here, using logistic regression, is to train our model to predict the
phase of a sample given the spin configuration, whether it represents a state
above the critical temperature or below. The configurations representing states
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below the critical temperature are called ordered states (the spins tend to point
in one direction, resulting in a net magnetic moment) while those above the
critical temperature are called disordered. Since a finite lattice like this does not
exhibit a clear sign of a phase transition we will mainly stay with either orderer
or disordered phases. You could include the critical phase if you want.

Your aim here is thus to read in these data (use the examples from Mehta et
al) and write your own code for doing logistic regression, see the lecture notes
on logistic regression.

In this case, to evaluate the model, we will use the so-called accuracy score
instead of the bootstrap or cross-validation as done in the standard linear
regression part discussed in b). Examples of how to define the accuracy score
can be found under the neural network slides, see for example the slides here.

To measure the performance of our network we evaluate how well it does it
data it has never seen before, i.e. the test data. We measure the performance of
the network using the accuracy score. The accuracy is as you would expect just
the number of images correctly labeled divided by the total number of images.
A perfect classifier will have an accuracy score of 1.

n
Accuracy = iz Il =y) IT(Lti = %) )

where [ is the indicator function, 1 if ¢; = y; and 0 otherwise, where ¢;
represents the target and y; the outputs.

In order to find the optimal parameters of your logistic regressor you should
include a gradient descent solver, as discussed in the gradient descent lectures.
Since we don’t have so many data points, you may just code the standard
gradient descent with a given learning rate, or even attempt to use the Newton-
Raphson method. Alternatively, it may be useful for the next part on neural
networks to implement a stochastic gradient descent with and without mini-
batches. Stochastic gradient with mini-batches may give the best results. You
could finally compare your code with the output from scikit-learn’s toolbox
for optimization methods applied to logistic regression.

The notebook of Mehta et al is highly recommended in order to benchmark
your code and results.

Part d): Regression analysis of the one-dimensional Ising model using
neural networks. Your aim now, and this is the central part of this project,
is to write to your own multilayer perceptron model implementing the back
propagation algorithm discussed in the lecture slides. We start with the regression
case discussed in parts a) and b) but train now the network to find the optimal
weights and biases. You are free to use the codes in the above lecture slides as
starting points.

Train your network and compare the results with those from your lin-
ear regression code. You can test your results against a similar code using
scikitiearnseetheexamplesintheabovelecturenotes)ortensorflow /keras.

A useful reference on the back progagation algorithm is Nielsen’s book. It is
an excellent read.
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Part e): Classifying the Ising model phase using neural networks.
Finally, change now your cost function to the log cross-entropy classification cost
function for the case discussed in part c¢). Train your network again and compare
the results with those from your logistic regression code i c). Here again you can
compare your results with those of Mehta et al. There they used tensorflow to
classify the phases.

Part f) Critical evaluation of the various algorithms. After all these
glorious calculations, you should now summarize the various algorithms and
come with a critical evaluation of their pros and cons. Which algorithm works
best for the regression case and which is best for the classification case. These
codes will also be part of your final project 3, but now applied to other data sets.

Background literature

1. The text of Michael Nielsen is highly recommended, see Nielsen’s book. It
is an excellent read.

2. The textbook of Trevor Hastie, Robert Tibshirani, Jerome H. Friedman,
The Elements of Statistical Learning, Springer, chapters 3 and 7 are the
most relevant ones for the analysis here.

3. Mehta et al, arXiv 1803.08823, A high-bias, low-variance introduction to
Machine Learning for physicists, ArXiv:1803.08823.

If you wish to read more about the Ising model and statistical physics here are
three suggestions.

1. M. Plischke and B. Bergersen, Equilibrium Statistical Physics, World
Scientific, see chapters 5 and 6.

2. D. P. Landau and K. Binder, A Guide to Monte Carlo Simulations in
Statistical Physics, Cambridge, see chapters 2,3 and 4.

3. M. E. J. Newman and T. Barkema, Monte Carlo Methods in Statistical
Physics, Oxford, see chapters 3 and 4.

Introduction to numerical projects

Here follows a brief recipe and recommendation on how to write a report for
each project.

e Give a short description of the nature of the problem and the eventual
numerical methods you have used.

e Describe the algorithm you have used and/or developed. Here you may
find it convenient to use pseudocoding. In many cases you can describe
the algorithm in the program itself.
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e Include the source code of your program. Comment your program properly.

e If possible, try to find analytic solutions, or known limits in order to test
your program when developing the code.

e Include your results either in figure form or in a table. Remember to label
your results. All tables and figures should have relevant captions and labels
on the axes.

e Try to evaluate the reliabilty and numerical stability /precision of your
results. If possible, include a qualitative and/or quantitative discussion of
the numerical stability, eventual loss of precision etc.

e Try to give an interpretation of you results in your answers to the problems.

e Critique: if possible include your comments and reflections about the
exercise, whether you felt you learnt something, ideas for improvements
and other thoughts you’ve made when solving the exercise. We wish to
keep this course at the interactive level and your comments can help us
improve it.

e Try to establish a practice where you log your work at the computerlab.
You may find such a logbook very handy at later stages in your work,
especially when you don’t properly remember what a previous test version
of your program did. Here you could also record the time spent on solving
the exercise, various algorithms you may have tested or other topics which
you feel worthy of mentioning.

Format for electronic delivery of report and programs

The preferred format for the report is a PDF file. You can also use DOC or
postscript formats or as an ipython notebook file. As programming language we
prefer that you choose between C/C++, Fortran2008 or Python. The following
prescription should be followed when preparing the report:

e Use Devilry to hand in your projects, log in at http://devilry.ifi.
uio.no with your normal UiO username and password and choose either
'fysstk3155 or ’fysstk4155. There you can load up the files within the
deadline.

e Upload only the report file! For the source code file(s) you have developed
please provide us with your link to your github domain. The report file
should include all of your discussions and a list of the codes you have
developed. Do not include library files which are available at the course
homepage, unless you have made specific changes to them.

e In your git repository, please include a folder which contains selected results.
These can be in the form of output from your code for a selected set of
runs and input parameters.
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e In this and all later projects, you should include tests (for example unit
tests) of your code(s).

e Comments from us on your projects, approval or not, corrections to be
made etc can be found under your Devilry domain and are only visible to
you and the teachers of the course.

Finally, we encourage you to collaborate. Optimal working groups consist of 2-3
students. You can then hand in a common report.

Software and needed installations

If you have Python installed (we recommend Python3) and you feel pretty
familiar with installing different packages, we recommend that you install the
following Python packages via pip as

1. pip install numpy scipy matplotlib ipython scikit-learn tensorflow sympy
pandas pillow

For Python3, replace pip with pip3.

See below for a discussion of tensorflow and scikit-learn.

For OSX users we recommend also, after having installed Xcode, to install
brew. Brew allows for a seamless installation of additional software via for
example

1. brew install python3

For Linux users, with its variety of distributions like for example the widely
popular Ubuntu distribution you can use pip as well and simply install Python
as

1. sudo apt-get install python3 (or python for python2.7)

etc etc.

If you don’t want to install various Python packages with their dependencies
separately, we recommend two widely used distrubutions which set up all relevant
dependencies for Python, namely

1. Anaconda Anaconda is an open source distribution of the Python and R
programming languages for large-scale data processing, predictive analytics,
and scientific computing, that aims to simplify package management and
deployment. Package versions are managed by the package management
system conda

2. Enthought canopy is a Python distribution for scientific and analytic
computing distribution and analysis environment, available for free and
under a commercial license.

Popular software packages written in Python for ML are
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e Scikit-learn,
e Tensorflow,
e PyTorch and

o Keras.

These are all freely available at their respective GitHub sites. They encompass
communities of developers in the thousands or more. And the number of code
developers and contributors keeps increasing.
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